��sr!com.femlab.server.ModelFileHeader�D���%LtagstLcom/femlab/util/i;Ltypesq~LvrsntLcom/femlab/util/FlVersion;xpwsrcom.femlab.util.FlVersion��%�/B = IbuildImajorLdatetLjava/lang/String;Lextq~Lnameq~Lrcsq~L reactionExtq~L reactionNameq~L scriptExtq~L scriptNameq~xpwtCOMSOL Script 1.1tt#COMSOL Reaction Engineering Lab 1.2q~t COMSOL 3.3q~w�t $Name: $t$Date: 2006/08/31 18:03:47 $xur[Ljava.lang.String;��V��{Gxpt modelinfotxfemtguitfem0tg3tg1tfem1tfem1.0q~q~tfem2tfem2.0q~q~t mfileinfouq~ q~t femstructt guistructq~tdrawq~tgeomtmeshtsolutiontxmeshq~q~q~ q~!q~xsrcom.femlab.api.client.ModelInfo�^���%Ldescrq~LdocURLq~[imaget[Bxpwptpxuq~ tP�clear xfem clear vrsn vrsn.name = 'COMSOL 3.3'; vrsn.ext = ''; vrsn.major = 0; vrsn.build = 405; vrsn.rcs = '$Name: $'; vrsn.date = '$Date: 2006/08/31 18:03:47 $'; xfem.version = vrsn; xfem.id = 1; xfem.geomdata = 'geom'; xfem.eqvars = 'on'; xfem.cplbndeq = 'on'; xfem.cplbndsh = 'off'; xfem.drawvalid = 'on'; xfem.geomvalid = 'on'; xfem.solvalid = 'on'; xfem.meshtime = 't'; clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.mode.type = 'cartesian'; appl.dim = {'u','v','p','nxw','nyw'}; appl.sdim = {'x','y','z'}; appl.name = 'mmglf'; appl.module = 'MEMS'; appl.shape = {'shlag(2,''u'')','shlag(2,''v'')','shlag(1,''p'')'}; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.sshape = 2; appl.border = 'off'; appl.assignsuffix = '_mmglf'; clear prop prop.elemdefault='Lagp2p1'; prop.analysis='time'; prop.stensor='full'; prop.cornersmoothing='Off'; prop.nisot='Off'; prop.inerterm='On'; prop.frame='ref'; clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm1','lm2'}; prop.weakconstr = weakconstr; appl.prop = prop; clear pnt pnt.p0 = {'0'}; pnt.pnton = {'0'}; pnt.style = {{{'0'},{'0','0','255'}}}; pnt.ind = [1,1,1,1,1,1,1,1]; appl.pnt = pnt; clear bnd bnd.name = {'','','',''}; bnd.type = {'noslip','uv','neutral','uv'}; bnd.u0 = {'0','-eo*er*A*(zeta+Vpp)*Ex_dc/eta','0','-eo*er*A*(zeta-Vpp)*Ex_dc/eta'}; bnd.v0 = {'0','0','0','0'}; bnd.p0 = {'0','0','0','0'}; bnd.U0 = {'0','0','0','0'}; bnd.V0 = {'0','0','0','0'}; bnd.p0_inl = {'0','0','0','0'}; bnd.L0 = {'1','1','1','1'}; bnd.flowtype = {'velocity','velocity','velocity','velocity'}; bnd.constr0 = {'0','0','0','0'}; bnd.E_x = {'0','Ex_dc','0','Ex_dc'}; bnd.E_y = {'0','0','0','0'}; bnd.zeta = {'-0.1','0.04-V2','-0.1','0.04-V2'}; bnd.mueo = {'7e-8','-eo*er*A*(-zeta+Vpp)/eta','7e-8','-eo*er*A*(-zeta-Vpp)/eta'}; bnd.eotype = {'mueo','mueo','mueo','mueo'}; bnd.uw0 = {'0','0','0','0'}; bnd.vw0 = {'0','0','0','0'}; bnd.T = {'0','0','0','0'}; bnd.Ls = {'1e-7','1e-7','1e-7','1e-7'}; bnd.alphav = {'0.90','0.90','0.90','0.90'}; bnd.sigmat = {'0.75','0.75','0.75','0.75'}; bnd.isThermalCreep = {'0','0','0','0'}; bnd.isViscousSlip = {'1','1','1','1'}; bnd.lsvalue = {'definels','definels','definels','definels'}; bnd.style = {{{'0'},{'0','0','0'},{'solid'}},{{'0'},{'0','0','255'},{'solid'}}, ... {{'0'},{'0','0','0'},{'solid'}},{{'0'},{'0','255','255'},{'solid'}}}; bnd.ind = [1,4,1,1,3,1,1,2,1]; appl.bnd = bnd; clear equ equ.shape = {[1;2;3]}; equ.gporder = {{1;1;2}}; equ.cporder = {{1;1;2}}; equ.init = {{'0';'0';'0';'0';'0'}}; equ.usage = {1}; equ.rho = {'1e3'}; equ.eta = {'1e-3'}; equ.F_x = {'0'}; equ.F_y = {'0'}; equ.kappadv = {'0'}; equ.idon = {{'0'}}; equ.delid = {{'0.5'}}; equ.sdon = {{'0'}}; equ.sdtype = {{'pgc'}}; equ.delsd = {{'0.25'}}; equ.cdon = {{'0'}}; equ.cdtype = {{'sc'}}; equ.delcd = {{'0.35'}}; equ.pson = {{'0'}}; equ.delps = {{'1'}}; equ.thickness = {'1'}; equ.SCHAON = {'0'}; equ.epsilonr = {'80'}; equ.meanfrp = {'1e-6'}; equ.style = {{{'0'},{'0','0','255'}}}; equ.ind = [1,1]; appl.equ = equ; appl.var = {'epsilon0','8.854187817e-12'}; xfem.appl{1} = appl; clear appl appl.mode.class = 'ConductiveMediaDC'; appl.mode.type = 'cartesian'; appl.dim = {'V2'}; appl.sdim = {'x','y','z'}; appl.name = 'dc'; appl.shape = {'shlag(2,''V2'')'}; appl.gporder = 4; appl.cporder = 2; appl.sshape = 2; appl.border = 'off'; appl.assignsuffix = '_dc'; clear prop prop.elemdefault='Lag2'; prop.frame='ref'; clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear pnt pnt.Qj0 = {'0'}; pnt.type = {'Qj0'}; pnt.V0 = {'0'}; pnt.style = {{{'0'},{'0','0','0'}}}; pnt.ind = [1,1,1,1,1,1,1,1]; appl.pnt = pnt; clear bnd bnd.name = {'','','',''}; bnd.Vref = {'0','-1','0','+1'}; bnd.J0 = {{'0';'0'},{'0';'0'},{'0';'0'},{'0';'0'}}; bnd.sigmabnd = {'0','1e-3','0','1e-3'}; bnd.dbnd = {'1','1e-9','1','1e-9'}; bnd.Jn = {'0','-(zeta-Vpp)/Zdl','0','-(zeta+Vpp)/Zdl'}; bnd.V0 = {'0','+1','0','-1'}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.style = {{{'0'},{'0','0','0'},{'solid'}},{{'0'},{'0','0','255'},{'solid'}}, ... {{'0'},{'0','0','255'},{'solid'}},{{'0'},{'0','255','255'},{'solid'}}}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.shape = {[1]}; equ.gporder = {{1}}; equ.cporder = {{1}}; equ.init = {{'0'}}; equ.usage = {1}; equ.sigma = {'1e-3'}; equ.sigmatensor = {{'5.99e7','0';'0','5.99e7'}}; equ.sigtype = {'iso'}; equ.res0 = {'1.72e-8'}; equ.alpha = {'0.0039'}; equ.T = {'0'}; equ.T0 = {'0'}; equ.Je = {{'0';'0'}}; equ.Qj = {'0'}; equ.d = {'1'}; equ.style = {{{'0'},{'193','193','193'}}}; equ.ind = [1,1]; appl.equ = equ; appl.var = {'epsilon0','8.854187817e-12', ... 'mu0','4*pi*1e-7'}; xfem.appl{2} = appl; xfem.geom = flbinary('fem1','geom','ACEO (400um).mph'); xfem.mesh = flbinary('fem1.0','mesh','ACEO (400um).mph'); xfem.sdim = {'x','y'}; xfem.frame = {'ref'}; xfem.shape = {'shlag(2,''u'')','shlag(2,''v'')','shlag(1,''p'')','shlag(2,''V2'')'}; xfem.gporder = {4,2,0}; xfem.cporder = {2,1}; xfem.sshape = 2; xfem.simplify = 'on'; xfem.border = 1; xfem.form = 'general'; clear units; units.basesystem = 'SI'; xfem.units = units; clear equ equ.shape = {[1;2;3;4]}; equ.gporder = {{1;1;2;1}}; equ.cporder = {{1;1;2;1}}; equ.init = {{'0';'0';'0';'0'}}; equ.dinit = {{'0';'0';'0';'0'}}; equ.weak = {{'0';'0';'0';'dVol_dc*(-Jx_dc*test(Ex_dc)-Jy_dc*test(Ey_dc)+Qj_dc*test(V2))'}}; equ.dweak = {{'0';'0';'0';'0'}}; equ.constr = {{'0';'0';'0';'0'}}; equ.c = {{{'-diff(-2*eta_mmglf*ux+p,ux)','-diff(-2*eta_mmglf*ux+p,uy)'; ... '-diff(-eta_mmglf*(uy+vx),ux)','-diff(-eta_mmglf*(uy+vx),uy)'},{'-diff(-2*eta_mmglf*ux+p,vx)', ... '-diff(-2*eta_mmglf*ux+p,vy)';'-diff(-eta_mmglf*(uy+vx),vx)','-diff(-eta_mmglf*(uy+vx),vy)'}, ... {'-diff(-2*eta_mmglf*ux+p,px)','-diff(-2*eta_mmglf*ux+p,py)';'-diff(-eta_mmglf*(uy+vx),px)', ... '-diff(-eta_mmglf*(uy+vx),py)'},{'-diff(-2*eta_mmglf*ux+p,V2x)','-diff(-2*eta_mmglf*ux+p,V2y)'; ... '-diff(-eta_mmglf*(uy+vx),V2x)','-diff(-eta_mmglf*(uy+vx),V2y)'};{'-diff(-eta_mmglf*(vx+uy),ux)', ... '-diff(-eta_mmglf*(vx+uy),uy)';'-diff(-2*eta_mmglf*vy+p,ux)','-diff(-2*eta_mmglf*vy+p,uy)'}, ... {'-diff(-eta_mmglf*(vx+uy),vx)','-diff(-eta_mmglf*(vx+uy),vy)';'-diff(-2*eta_mmglf*vy+p,vx)', ... '-diff(-2*eta_mmglf*vy+p,vy)'},{'-diff(-eta_mmglf*(vx+uy),px)','-diff(-eta_mmglf*(vx+uy),py)'; ... '-diff(-2*eta_mmglf*vy+p,px)','-diff(-2*eta_mmglf*vy+p,py)'},{'-diff(-eta_mmglf*(vx+uy),V2x)', ... '-diff(-eta_mmglf*(vx+uy),V2y)';'-diff(-2*eta_mmglf*vy+p,V2x)','-diff(-2*eta_mmglf*vy+p,V2y)'}; ... {'0'},{'0'},{'0'},{'0'};{'0'},{'0'},{'0'},{'0'}}}; equ.a = {{'-diff(-rho_mmglf*(u*ux+v*uy),u)','-diff(-rho_mmglf*(u*ux+v*uy),v)', ... '-diff(-rho_mmglf*(u*ux+v*uy),p)','-diff(-rho_mmglf*(u*ux+v*uy),V2)';'-diff(-rho_mmglf*(u*vx+v*vy),u)', ... '-diff(-rho_mmglf*(u*vx+v*vy),v)','-diff(-rho_mmglf*(u*vx+v*vy),p)','-diff(-rho_mmglf*(u*vx+v*vy),V2)'; ... '-diff(-divU_mmglf,u)','-diff(-divU_mmglf,v)','-diff(-divU_mmglf,p)','-diff(-divU_mmglf,V2)'; ... '0','0','0','0'}}; equ.f = {{'-rho_mmglf*(u*ux+v*uy)';'-rho_mmglf*(u*vx+v*vy)';'-divU_mmglf'; ... '0'}}; equ.ea = {{'0','0','0','0';'0','0','0','0';'0','0','0','0';'0','0','0', ... '0'}}; equ.da = {{'rho_mmglf','0','0','0';'0','rho_mmglf','0','0';'0','0','0', ... '0';'0','0','0','0'}}; equ.al = {{{'-diff(-2*eta_mmglf*ux+p,u)';'-diff(-eta_mmglf*(uy+vx),u)'}, ... {'-diff(-2*eta_mmglf*ux+p,v)';'-diff(-eta_mmglf*(uy+vx),v)'},{'-diff(-2*eta_mmglf*ux+p,p)'; ... '-diff(-eta_mmglf*(uy+vx),p)'},{'-diff(-2*eta_mmglf*ux+p,V2)';'-diff(-eta_mmglf*(uy+vx),V2)'}; ... {'-diff(-eta_mmglf*(vx+uy),u)';'-diff(-2*eta_mmglf*vy+p,u)'},{'-diff(-eta_mmglf*(vx+uy),v)'; ... '-diff(-2*eta_mmglf*vy+p,v)'},{'-diff(-eta_mmglf*(vx+uy),p)';'-diff(-2*eta_mmglf*vy+p,p)'}, ... {'-diff(-eta_mmglf*(vx+uy),V2)';'-diff(-2*eta_mmglf*vy+p,V2)'};{'0';'0'}, ... {'0';'0'},{'0';'0'},{'0';'0'};{'0';'0'},{'0';'0'},{'0';'0'},{'0';'0'}}}; equ.be = {{{'-diff(-rho_mmglf*(u*ux+v*uy),ux)';'-diff(-rho_mmglf*(u*ux+v*uy),uy)'}, ... {'-diff(-rho_mmglf*(u*ux+v*uy),vx)';'-diff(-rho_mmglf*(u*ux+v*uy),vy)'}, ... {'-diff(-rho_mmglf*(u*ux+v*uy),px)';'-diff(-rho_mmglf*(u*ux+v*uy),py)'}, ... {'-diff(-rho_mmglf*(u*ux+v*uy),V2x)';'-diff(-rho_mmglf*(u*ux+v*uy),V2y)'}; ... {'-diff(-rho_mmglf*(u*vx+v*vy),ux)';'-diff(-rho_mmglf*(u*vx+v*vy),uy)'}, ... {'-diff(-rho_mmglf*(u*vx+v*vy),vx)';'-diff(-rho_mmglf*(u*vx+v*vy),vy)'}, ... {'-diff(-rho_mmglf*(u*vx+v*vy),px)';'-diff(-rho_mmglf*(u*vx+v*vy),py)'}, ... {'-diff(-rho_mmglf*(u*vx+v*vy),V2x)';'-diff(-rho_mmglf*(u*vx+v*vy),V2y)'}; ... {'-diff(-divU_mmglf,ux)';'-diff(-divU_mmglf,uy)'},{'-diff(-divU_mmglf,vx)'; ... '-diff(-divU_mmglf,vy)'},{'-diff(-divU_mmglf,px)';'-diff(-divU_mmglf,py)'}, ... {'-diff(-divU_mmglf,V2x)';'-diff(-divU_mmglf,V2y)'};{'0';'0'},{'0';'0'}, ... {'0';'0'},{'0';'0'}}}; equ.ga = {{{'-2*eta_mmglf*ux+p';'-eta_mmglf*(uy+vx)'};{'-eta_mmglf*(vx+uy)'; ... '-2*eta_mmglf*vy+p'};{'0';'0'};{'0';'0'}}}; equ.sshape = {[1]}; equ.sshapedim = {{1;1;1;1}}; equ.ind = [1,1]; equ.dim = {'u','v','p','V2'}; equ.var = {'U_mmglf',{'sqrt(u^2+v^2)'}, ... 'V_mmglf',{'vx-uy'}, ... 'divU_mmglf',{'ux+vy'}, ... 'cellRe_mmglf',{'rho_mmglf*U_mmglf*h/eta_mmglf'}, ... 'res_u_mmglf',{'rho_mmglf*(u*ux+v*uy)+px-F_x_mmglf-eta_mmglf*(2*uxx+uyy+vxy)'}, ... 'res_tst_u_mmglf',{'nojac(rho_mmglf)*(nojac(u)*ux+nojac(v)*uy)+px-nojac(eta_mmglf)*(2*uxx+uyy+vxy)'}, ... 'res_sc_u_mmglf',{'rho_mmglf*(u*ux+v*uy)+px-F_x_mmglf'}, ... 'res_v_mmglf',{'rho_mmglf*(u*vx+v*vy)+py-F_y_mmglf-eta_mmglf*(vxx+uyx+2*vyy)'}, ... 'res_tst_v_mmglf',{'nojac(rho_mmglf)*(nojac(u)*vx+nojac(v)*vy)+py-nojac(eta_mmglf)*(vxx+uyx+2*vyy)'}, ... 'res_sc_v_mmglf',{'rho_mmglf*(u*vx+v*vy)+py-F_y_mmglf'}, ... 'beta_x_mmglf',{'rho_mmglf*u'}, ... 'beta_y_mmglf',{'rho_mmglf*v'}, ... 'Dm_mmglf',{'eta_mmglf'}, ... 'da_mmglf',{'rho_mmglf'}, ... 'dVol_dc',{'d_dc'}, ... 'normE_dc',{'sqrt(abs(Ex_dc)^2+abs(Ey_dc)^2)'}, ... 'normJe_dc',{'sqrt(abs(Jex_dc)^2+abs(Jey_dc)^2)'}, ... 'normJi_dc',{'sqrt(abs(Jix_dc)^2+abs(Jiy_dc)^2)'}, ... 'normJ_dc',{'sqrt(abs(Jx_dc)^2+abs(Jy_dc)^2)'}, ... 'Jix_dc',{'sigmaxx_dc*Ex_dc+sigmaxy_dc*Ey_dc'}, ... 'Ex_dc',{'-V2x'}, ... 'Jx_dc',{'Jex_dc+Jix_dc'}, ... 'Jiy_dc',{'sigmayx_dc*Ex_dc+sigmayy_dc*Ey_dc'}, ... 'Ey_dc',{'-V2y'}, ... 'Jy_dc',{'Jey_dc+Jiy_dc'}, ... 'Q_dc',{'Jx_dc*Ex_dc+Jy_dc*Ey_dc'},'rho_mmglf',{'1000'}, ... 'eta_mmglf',{'0.001'}, ... 'F_x_mmglf',{'0'}, ... 'F_y_mmglf',{'0'}, ... 'kappadv_mmglf',{'0'}, ... 'thickness_mmglf',{'1'}, ... 'epsilonr_mmglf',{'80'}, ... 'meanfrp_mmglf',{'1e-006'}, ... 'sigma_dc',{'0.001'}, ... 'res0_dc',{'1.72e-008'}, ... 'alpha_dc',{'0.0039'}, ... 'T_dc',{'0'}, ... 'T0_dc',{'0'}, ... 'Qj_dc',{'0'}, ... 'd_dc',{'1'}, ... 'sigmaxx_dc',{'0.001'}, ... 'sigmayx_dc',{'0'}, ... 'sigmaxy_dc',{'0'}, ... 'sigmayy_dc',{'0.001'}, ... 'Jex_dc',{'0'}, ... 'Jey_dc',{'0'}}; equ.expr = {}; equ.bnd.weak = {{'0';'0';'0';'0'}}; equ.bnd.gporder = {{1;1;2;1}}; equ.bnd.ind = [1,1]; equ.bnd.expr = {}; equ.lock = [0,0]; equ.mlock = {[0,0]}; xfem.equ = equ; clear bnd bnd.weak = {{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0'; ... '0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'}}; bnd.dweak = {{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0'; ... '0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'}}; bnd.constr = {{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'},{'0';'0'; ... '0';'0';'0';'0'},{'0';'0';'0';'0';'0';'0'}}; bnd.q = {{'0','0','0','0','0','0';'0','0','0','0','0','0';'0','0','0', ... '0','0','0';'0','0','0','0','0','0';'0','0','0','0','0','0';'0','0','0', ... '0','0','0'},{'0','0','0','0','0','0';'0','0','0','0','0','0';'0','0','0', ... '0','0','0';'0','0','0','0','0','0';'0','0','0','0','0','0';'-diff(dVolbnd_dc*Jn_dc,u)', ... '-diff(dVolbnd_dc*Jn_dc,v)','-diff(dVolbnd_dc*Jn_dc,p)','-diff(dVolbnd_dc*Jn_dc,lmx_mmglf)', ... '-diff(dVolbnd_dc*Jn_dc,lmy_mmglf)','-diff(dVolbnd_dc*Jn_dc,V2)'},{'0', ... '0','0','0','0','0';'0','0','0','0','0','0';'0','0','0','0','0','0';'0', ... '0','0','0','0','0';'0','0','0','0','0','0';'0','0','0','0','0','0'},{'0', ... '0','0','0','0','0';'0','0','0','0','0','0';'0','0','0','0','0','0';'0', ... '0','0','0','0','0';'0','0','0','0','0','0';'-diff(dVolbnd_dc*Jn_dc,u)', ... '-diff(dVolbnd_dc*Jn_dc,v)','-diff(dVolbnd_dc*Jn_dc,p)','-diff(dVolbnd_dc*Jn_dc,lmx_mmglf)', ... '-diff(dVolbnd_dc*Jn_dc,lmy_mmglf)','-diff(dVolbnd_dc*Jn_dc,V2)'}}; bnd.h = {{'-diff(-u,u)','-diff(-u,v)','-diff(-u,p)','-diff(-u,lmx_mmglf)', ... '-diff(-u,lmy_mmglf)','-diff(-u,V2)';'-diff(-v,u)','-diff(-v,v)','-diff(-v,p)', ... '-diff(-v,lmx_mmglf)','-diff(-v,lmy_mmglf)','-diff(-v,V2)';'0','0','0', ... '0','0','0';'0','0','0','0','0','0';'0','0','0','0','0','0';'0','0','0', ... '0','0','0'},{'-diff(-u+u0_mmglf,u)','-diff(-u+u0_mmglf,v)','-diff(-u+u0_mmglf,p)', ... '-diff(-u+u0_mmglf,lmx_mmglf)','-diff(-u+u0_mmglf,lmy_mmglf)','-diff(-u+u0_mmglf,V2)'; ... '-diff(-v,u)','-diff(-v,v)','-diff(-v,p)','-diff(-v,lmx_mmglf)','-diff(-v,lmy_mmglf)', ... '-diff(-v,V2)';'0','0','0','0','0','0';'0','0','0','0','0','0';'0','0', ... '0','0','0','0';'0','0','0','0','0','0'},{'0','0','0','0','0','0';'0','0', ... '0','0','0','0';'0','0','0','0','0','0';'0','0','0','0','0','0';'0','0', ... '0','0','0','0';'0','0','0','0','0','0'},{'-diff(-u+u0_mmglf,u)','-diff(-u+u0_mmglf,v)', ... '-diff(-u+u0_mmglf,p)','-diff(-u+u0_mmglf,lmx_mmglf)','-diff(-u+u0_mmglf,lmy_mmglf)', ... '-diff(-u+u0_mmglf,V2)';'-diff(-v,u)','-diff(-v,v)','-diff(-v,p)','-diff(-v,lmx_mmglf)', ... '-diff(-v,lmy_mmglf)','-diff(-v,V2)';'0','0','0','0','0','0';'0','0','0', ... '0','0','0';'0','0','0','0','0','0';'0','0','0','0','0','0'}}; bnd.g = {{'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'dVolbnd_dc*Jn_dc'}, ... {'0';'0';'0';'0';'0';'0'},{'0';'0';'0';'0';'0';'dVolbnd_dc*Jn_dc'}}; bnd.r = {{'-u';'-v';'0';'0';'0';'0'},{'-u+u0_mmglf';'-v';'0';'0';'0';'0'}, ... {'0';'0';'0';'0';'0';'0'},{'-u+u0_mmglf';'-v';'0';'0';'0';'0'}}; bnd.shape = {[1;2;3;4],[1;2;3;4],[1;2;3;4],[1;2;3;4]}; bnd.sshape = {[1],[1],[1],[1]}; bnd.sshapedim = {{1;1;1;1;1;1},{1;1;1;1;1;1},{1;1;1;1;1;1},{1;1;1;1;1;1}}; bnd.gporder = {{1;1;2;3;3;1},{1;1;2;3;3;1},{1;1;2;3;3;1},{1;1;2;3;3;1}}; bnd.cporder = {{1;1;2;2;2;1},{1;1;2;2;2;1},{1;1;2;2;2;1},{1;1;2;2;2;1}}; bnd.init = {{'';'';'';'';'';''},{'';'';'';'';'';''},{'';'';'';'';'';''},{''; ... '';'';'';'';''}}; bnd.dinit = {{'';'';'';'';'';''},{'';'';'';'';'';''},{'';'';'';'';'';''},{''; ... '';'';'';'';''}}; bnd.ind = [1,2,1,1,3,1,1,4,1]; bnd.dim = {'u','v','p','lmx_mmglf','lmy_mmglf','V2'}; bnd.var = {'K_x_mmglf',{'2*nx_mmglf*eta_mmglf*ux+ny_mmglf*eta_mmglf*(uy+vx)', ... '2*nx_mmglf*eta_mmglf*ux+ny_mmglf*eta_mmglf*(uy+vx)','2*nx_mmglf*eta_mmglf*ux+ny_mmglf*eta_mmglf*(uy+vx)', ... '2*nx_mmglf*eta_mmglf*ux+ny_mmglf*eta_mmglf*(uy+vx)'}, ... 'T_x_mmglf',{'-nx_mmglf*p+2*nx_mmglf*eta_mmglf*ux+ny_mmglf*eta_mmglf*(uy+vx)', ... '-nx_mmglf*p+2*nx_mmglf*eta_mmglf*ux+ny_mmglf*eta_mmglf*(uy+vx)','-nx_mmglf*p+2*nx_mmglf*eta_mmglf*ux+ny_mmglf*eta_mmglf*(uy+vx)', ... '-nx_mmglf*p+2*nx_mmglf*eta_mmglf*ux+ny_mmglf*eta_mmglf*(uy+vx)'}, ... 'K_y_mmglf',{'nx_mmglf*eta_mmglf*(vx+uy)+2*ny_mmglf*eta_mmglf*vy', ... 'nx_mmglf*eta_mmglf*(vx+uy)+2*ny_mmglf*eta_mmglf*vy','nx_mmglf*eta_mmglf*(vx+uy)+2*ny_mmglf*eta_mmglf*vy', ... 'nx_mmglf*eta_mmglf*(vx+uy)+2*ny_mmglf*eta_mmglf*vy'}, ... 'T_y_mmglf',{'-ny_mmglf*p+nx_mmglf*eta_mmglf*(vx+uy)+2*ny_mmglf*eta_mmglf*vy', ... '-ny_mmglf*p+nx_mmglf*eta_mmglf*(vx+uy)+2*ny_mmglf*eta_mmglf*vy','-ny_mmglf*p+nx_mmglf*eta_mmglf*(vx+uy)+2*ny_mmglf*eta_mmglf*vy', ... '-ny_mmglf*p+nx_mmglf*eta_mmglf*(vx+uy)+2*ny_mmglf*eta_mmglf*vy'}, ... 'ET_x_mmglf',{'','','',''}, ... 'ET_y_mmglf',{'','','',''}, ... 'TTx_mmglf',{'','','',''}, ... 'TTy_mmglf',{'','','',''}, ... 'uwT_mmglf',{'','','',''}, ... 'vwT_mmglf',{'','','',''}, ... 'Nx_mmglf',{'','','',''}, ... 'Ny_mmglf',{'','','',''}, ... 'dVolbnd_dc',{'d_dc','d_dc','d_dc','d_dc'}, ... 'tEx_dc',{'-V2Tx','-V2Tx','-V2Tx','-V2Tx'}, ... 'tEy_dc',{'-V2Ty','-V2Ty','-V2Ty','-V2Ty'}, ... 'normtE_dc',{'sqrt(abs(tEx_dc)^2+abs(tEy_dc)^2)','sqrt(abs(tEx_dc)^2+abs(tEy_dc)^2)', ... 'sqrt(abs(tEx_dc)^2+abs(tEy_dc)^2)','sqrt(abs(tEx_dc)^2+abs(tEy_dc)^2)'}, ... 'nJ_dc',{'nx_dc*Jx_dc+ny_dc*Jy_dc','nx_dc*Jx_dc+ny_dc*Jy_dc','nx_dc*Jx_dc+ny_dc*Jy_dc', ... 'nx_dc*Jx_dc+ny_dc*Jy_dc'}, ... 'nJs_dc',{'unx*(Jx_dc_down-Jx_dc_up)+uny*(Jy_dc_down-Jy_dc_up)','unx*(Jx_dc_down-Jx_dc_up)+uny*(Jy_dc_down-Jy_dc_up)', ... 'unx*(Jx_dc_down-Jx_dc_up)+uny*(Jy_dc_down-Jy_dc_up)','unx*(Jx_dc_down-Jx_dc_up)+uny*(Jy_dc_down-Jy_dc_up)'},'u0_mmglf',{'0','-eo*er*A*(zeta-Vpp)*Ex_dc/eta','0','-eo*er*A*(zeta+Vpp)*Ex_dc/eta'}, ... 'v0_mmglf',{'0','0','0','0'}, ... 'p0_mmglf',{'0','0','0','0'}, ... 'U0_mmglf',{'0','0','0','0'}, ... 'V0_mmglf',{'0','0','0','0'}, ... 'p0_inl_mmglf',{'0','0','0','0'}, ... 'L0_mmglf',{'','','',''}, ... 'E_x_mmglf',{'0','Ex_dc','0','Ex_dc'}, ... 'E_y_mmglf',{'0','0','0','0'}, ... 'zeta_mmglf',{'','','',''}, ... 'mueo_mmglf',{'','','',''}, ... 'uw0_mmglf',{'0','0','0','0'}, ... 'vw0_mmglf',{'0','0','0','0'}, ... 'T_mmglf',{'','','',''}, ... 'Ls_mmglf',{'','','',''}, ... 'alphav_mmglf',{'','','',''}, ... 'sigmat_mmglf',{'','','',''}, ... 'nx_mmglf',{'nx','nx','nx','nx'}, ... 'ny_mmglf',{'ny','ny','ny','ny'}, ... 'Vref_dc',{'0','-1','0','1'}, ... 'sigmabnd_dc',{'0','0.001','0','0.001'}, ... 'dbnd_dc',{'1','1e-009','1','1e-009'}, ... 'Jn_dc',{'0','-(zeta-Vpp)/Zdl','0','-(zeta+Vpp)/Zdl'}, ... 'V0_dc',{'0','1','0','-1'}, ... 'nx_dc',{'nx','nx','nx','nx'}, ... 'ny_dc',{'ny','ny','ny','ny'}, ... 'J0x_dc',{'0','0','0','0'}, ... 'J0y_dc',{'0','0','0','0'}}; bnd.expr = {}; bnd.lock = [0,0,0,0,0,0,0,0,0]; bnd.mlock = {[0,0,0,0,0,0,0,0,0]}; xfem.bnd = bnd; clear pnt pnt.weak = {{'0';'0';'0';'0';'0';'0';'0'}}; pnt.dweak = {{'0';'0';'0';'0';'0';'0';'0'}}; pnt.constr = {{'0';'0';'0';'0';'0';'0';'0'}}; pnt.shape = {[1;2;3;4]}; pnt.sshape = {[1]}; pnt.sshapedim = {{1;1;1;1;1;1;1}}; pnt.init = {{'';'';'';'';'';'';''}}; pnt.dinit = {{'';'';'';'';'';'';''}}; pnt.ind = [1,1,1,1,1,1,1,1]; pnt.dim = {'u','v','p','lmx_mmglf','lmy_mmglf','Pinl_mmglf','V2'}; pnt.var = {'p0_mmglf',{'0'}, ... 'Qj0_dc',{'0'}, ... 'V0_dc',{'0'}}; pnt.expr = {}; pnt.lock = [0,0,0,0,0,0,0,0]; pnt.mlock = {[0,0,0,0,0,0,0,0]}; xfem.pnt = pnt; xfem.var = {'epsilon0_mmglf','8.854187817000001e-012','epsilon0_dc','8.854187817000001e-012','mu0_dc','4e-007*pi'}; xfem.expr = {}; clear elemmph clear elem elem.elem = 'elcplextr'; elem.g = {'1'}; src = cell(1,1); src{1} = {{}}; elem.src = src; geomdim = cell(1,1); geomdim{1} = {{},{},{}}; elem.geomdim = geomdim; elem.var = {}; map = cell(1,0); elem.map = map; elemmph{1} = elem; clear elem elem.elem = 'elcplscalar'; elem.g = {'1'}; src = cell(1,1); src{1} = {{},{},{}}; elem.src = src; geomdim = cell(1,1); geomdim{1} = {{},{},{}}; elem.geomdim = geomdim; elem.var = {}; elem.global = {}; elemmph{2} = elem; clear elem elem.elem = 'elcplextr'; elem.g = {'1'}; src = cell(1,1); clear equ equ.expr = {{'d_dc'}}; equ.map = {{'1'}}; equ.ind = {{'1','2'}}; src{1} = {{},{},equ}; elem.src = src; geomdim = cell(1,1); clear pnt pnt.map = {{'1'}}; pnt.ind = {{'1','2','3','4','5','6','7','8'}}; geomdim{1} = {pnt,{},{}}; elem.geomdim = geomdim; elem.var = {'d_dc'}; map = cell(1,1); clear submap submap.type = 'local'; submap.expr = {'x','y'}; map{1} = submap; elem.map = map; elemmph{3} = elem; xfem.elemmph = elemmph; clear draw draw.p.objs = {}; draw.p.name = {}; draw.c.objs = {}; draw.c.name = {}; draw.s.objs = {flbinary('g3','draw','ACEO (400um).mph'),flbinary('g1','draw','ACEO (400um).mph')}; draw.s.name = {'CO2','CO1'}; xfem.draw = draw; xfem.const = {'rho','1e3','eta','1e-3','lamda','3e-8','cond','1e-3','A','0.25','Vpp','10','Vdc','2','eo','8.85e-12','er','80','Cdl','eo*er/lamda','f','1000','w','2*pi*f','Zdl','1/i*w*Cdl','zeta','50e-3'}; xfem.globalexpr = {}; clear fcns xfem.functions = {}; clear descr descr.const= {'er','Relative Permittivity [N.A]','w','Frequency [rad]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','eo','Absolute Permittivity [F/m]','zeta','Zeta Potential [V]','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','f','Frequency [Hz]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; xfem.descr = descr; xfem.sol = flbinary('xfem','solution','ACEO (400um).mph'); xfem.xmcases = [0]; xfem.mcases = [0]; flbinary clear; xfem.rulingmode = 'mmglf'; xfem.solform = 'weak'; uq~ t�=gui.solvemodel.toutcomp='off'; gui.solvemodel.currsolver='stationary'; gui.solvemodel.solveroption=''; gui.solvemodel.postsolver='stationary'; gui.solvemodel.nonlin='auto'; gui.solvemodel.ntol='1.0E-3'; gui.solvemodel.maxiter='100'; gui.solvemodel.manualdamp='off'; gui.solvemodel.hnlin='off'; gui.solvemodel.initstep='1.0'; gui.solvemodel.minstep='1.0E-4'; gui.solvemodel.rstep='10.0'; gui.solvemodel.useaugsolver='off'; gui.solvemodel.autoaugcomp='on'; gui.solvemodel.augcomp=''; gui.solvemodel.augtol='1.0E-6'; gui.solvemodel.augmaxiter='25'; gui.solvemodel.augsolver='lumped'; gui.solvemodel.atol='0.0010'; gui.solvemodel.rtol='0.01'; gui.solvemodel.tlist='0:0.001:0.01'; gui.solvemodel.tout='tlist'; gui.solvemodel.tsteps='free'; gui.solvemodel.manualreassem='off'; gui.solvemodel.emassconst='on'; gui.solvemodel.massconst='on'; gui.solvemodel.loadconst='on'; gui.solvemodel.constrconst='on'; gui.solvemodel.jacobianconst='on'; gui.solvemodel.constrjacobianconst='on'; gui.solvemodel.manualstep='on'; gui.solvemodel.initialstep='1e-8'; gui.solvemodel.maxorder='5'; gui.solvemodel.maxstep='1e-6'; gui.solvemodel.timeusestopcond='off'; gui.solvemodel.timestopcond=''; gui.solvemodel.paramusestopcond='off'; gui.solvemodel.masssingular='maybe'; gui.solvemodel.consistent='bweuler'; gui.solvemodel.estrat='1'; gui.solvemodel.complex='off'; gui.solvemodel.neigs='6'; gui.solvemodel.shift='0'; gui.solvemodel.maxeigit='300'; gui.solvemodel.etol='0.0'; gui.solvemodel.krylovdim='0'; gui.solvemodel.eigname='lambda'; gui.solvemodel.eigref='0'; gui.solvemodel.pname=''; gui.solvemodel.plist=''; gui.solvemodel.porder='1'; gui.solvemodel.manualparam='off'; gui.solvemodel.pinitstep='0.0'; gui.solvemodel.pminstep='0.0'; gui.solvemodel.pmaxstep='0.0'; gui.solvemodel.autooldcomp='on'; gui.solvemodel.oldcomp=''; gui.solvemodel.outform='auto'; gui.solvemodel.symmetric='auto'; gui.solvemodel.symmhermit='auto'; gui.solvemodel.method='eliminate'; gui.solvemodel.nullfun='auto'; gui.solvemodel.blocksize='5000'; gui.solvemodel.uscale='auto'; gui.solvemodel.manscale=''; gui.solvemodel.rowscale='on'; gui.solvemodel.conjugate='off'; gui.solvemodel.complexfun='off'; gui.solvemodel.matherr='on'; gui.solvemodel.solfile='off'; gui.solvemodel.adaptgeom='currgeom'; gui.solvemodel.maxt='10000000'; gui.solvemodel.rmethod='longest'; gui.solvemodel.resmethod='weak'; gui.solvemodel.resorder='0'; gui.solvemodel.l2scale='1'; gui.solvemodel.l2staborder='2'; gui.solvemodel.eigselect='1'; gui.solvemodel.tpfun='fltpft'; gui.solvemodel.ngen='2'; gui.solvemodel.tpmult='1.7'; gui.solvemodel.tpworst='0.5'; gui.solvemodel.tpfract='0.5'; gui.solvemodel.autosolver='on'; gui.solvemodel.solcomp='u,p,v,V2'; gui.solvemodel.outcomp='u,p,v,V2'; gui.solvemodel.inittype='init_expr_radio'; gui.solvemodel.initsolnum='Automatic'; gui.solvemodel.inittime='0'; gui.solvemodel.utype='u_zero_radio'; gui.solvemodel.usolnum='All'; gui.solvemodel.utime='0'; gui.solvemodel.scriptcommands=''; gui.solvemodel.usescript='off'; gui.solvemodel.autoscript='off'; gui.solvemodel.sameaxis='off'; gui.solvemodel.linsolvernode.currlinsolver='umfpack'; gui.solvemodel.linsolvernode.type='linsolver'; gui.solvemodel.linsolvernode.droptol='0.0'; gui.solvemodel.linsolvernode.thresh='0.1'; gui.solvemodel.linsolvernode.umfalloc='0.7'; gui.solvemodel.linsolvernode.preorder='mmd'; gui.solvemodel.linsolvernode.preroworder='on'; gui.solvemodel.linsolvernode.pivotperturb='1.0E-8'; gui.solvemodel.linsolvernode.errorchk='on'; gui.solvemodel.linsolvernode.iter='2'; gui.solvemodel.linsolvernode.itol='1.0E-6'; gui.solvemodel.linsolvernode.rhob='400.0'; gui.solvemodel.linsolvernode.maxlinit='10000'; gui.solvemodel.linsolvernode.itrestart='50'; gui.solvemodel.linsolvernode.seconditer='1'; gui.solvemodel.linsolvernode.relax='1.0'; gui.solvemodel.linsolvernode.amgauto='3'; gui.solvemodel.linsolvernode.mglevels='6'; gui.solvemodel.linsolvernode.mgcycle='v'; gui.solvemodel.linsolvernode.maxcoarsedof='5000'; gui.solvemodel.linsolvernode.oocmemory='128.0'; gui.solvemodel.linsolvernode.oocfilename=''; gui.solvemodel.linsolvernode.modified='off'; gui.solvemodel.linsolvernode.fillratio='2.0'; gui.solvemodel.linsolvernode.respectpattern='on'; gui.solvemodel.linsolvernode.droptype='droptol'; gui.solvemodel.linsolvernode.vankavars=''; gui.solvemodel.linsolvernode.vankasolv='gmres'; gui.solvemodel.linsolvernode.vankatol='0.02'; gui.solvemodel.linsolvernode.vankarestart='100'; gui.solvemodel.linsolvernode.vankarelax='0.8'; gui.solvemodel.linsolvernode.mgauto='shape'; gui.solvemodel.linsolvernode.rmethod='regular'; gui.solvemodel.linsolvernode.coarseassem='on'; gui.solvemodel.linsolvernode.meshscale='2'; gui.solvemodel.linsolvernode.mgautolevels='2'; gui.solvemodel.linsolvernode.mgkeep='off'; gui.solvemodel.linsolvernode.mggeom='Geom1'; gui.solvemodel.linsolvernode.mcase0='on'; gui.solvemodel.linsolvernode.mgassem0='on'; gui.solvemodel.defaults.estrat='1'; gui.registry.general_currentmodel='Geom1'; gui.registry.general_currmeshcase='0'; gui.registry.general_savedonserver='off'; gui.registry.general_savedchanges='off'; gui.registry.general_rulingmode=''; gui.registry.general_incompletemfilehistory='off'; gui.registry.saved_license='0201111'; gui.registry.saved_version='COMSOL 3.3.0.405'; gui.registry.info_modelname=''; gui.registry.info_author=''; gui.registry.info_company=''; gui.registry.info_department=''; gui.registry.info_reference=''; gui.registry.info_url=''; gui.registry.info_saveddate='1257903309832'; gui.registry.info_creationdate='1251100071437'; gui.registry.info_modelresult=''; gui.reportregistry.report_contents='title=1;toc=1;modelprop=1;const=1;globalexpr=1;geometry=1;model_Geom1=1;mesh=1;appmode_lpeq=1;appmode_mmglf=1;appmode_dc=1;lib_material=1;lib_section=1;coord=1;odesettings=1;intcoup=1;extrcoup=1;projcoup=1;percond=1;idcond=1;functions=1;interp=1;solver=1;post=1;equations=1;variables=1;'; gui.reportregistry.report_outputformat='html'; gui.reportregistry.report_filename='C:\Users\xiaoyang\Desktop\sdfsd.html'; gui.reportregistry.report_autoopen='off'; gui.reportregistry.report_paperformat='a4'; gui.reportregistry.report_includedefaults='off'; gui.reportregistry.report_template='full'; gui.reportregistry.report_showemptysections='on'; gui.flmodel{1}.modelname='Geom1'; gui.flmodel{1}.currmode='post'; gui.flmodel{1}.currappl='1'; gui.flmodel{1}.axis.xmin='-2.0021725504193455E-5'; gui.flmodel{1}.axis.xmax='4.2045623558806255E-4'; gui.flmodel{1}.axis.ymin='-1.297997398754958E-4'; gui.flmodel{1}.axis.ymax='1.769320899942684E-4'; gui.flmodel{1}.axis.zmin='-1.0'; gui.flmodel{1}.axis.zmax='1.0'; gui.flmodel{1}.axis.xspacing='5.0E-6'; gui.flmodel{1}.axis.yspacing='5.0E-6'; gui.flmodel{1}.axis.zspacing='0.2'; gui.flmodel{1}.axis.extrax=''; gui.flmodel{1}.axis.extray=''; gui.flmodel{1}.axis.extraz=''; gui.flmodel{1}.camera.xmin='-2.20238980546128'; gui.flmodel{1}.camera.xmax='2.20238980546128'; gui.flmodel{1}.camera.ymin='-1.5336591493488214'; gui.flmodel{1}.camera.ymax='1.5336591493488214'; gui.flmodel{1}.camera.camposx='2.0021725504193455'; gui.flmodel{1}.camera.camposy='0.23566175059386296'; gui.flmodel{1}.camera.camposz='22.0238980546128'; gui.flmodel{1}.camera.camtargetx='2.0021725504193455'; gui.flmodel{1}.camera.camtargety='0.23566175059386296'; gui.flmodel{1}.camera.camtargetz='0.0'; gui.flmodel{1}.camera.camupx='0.0'; gui.flmodel{1}.camera.camupy='1.0'; gui.flmodel{1}.camera.camupz='0.0'; gui.flmodel{1}.lightmodel.headlight.type='point'; gui.flmodel{1}.lightmodel.headlight.name='headlight'; gui.flmodel{1}.lightmodel.headlight.enable='on'; gui.flmodel{1}.lightmodel.headlight.colorr='255'; gui.flmodel{1}.lightmodel.headlight.colorg='255'; gui.flmodel{1}.lightmodel.headlight.colorb='255'; gui.flmodel{1}.lightmodel.headlight.xpos='2.0021725'; gui.flmodel{1}.lightmodel.headlight.ypos='0.23566175'; gui.flmodel{1}.lightmodel.headlight.zpos='22.023897'; gui.flmodel{1}.lightmodel.scenelight{1}.type='directional'; gui.flmodel{1}.lightmodel.scenelight{1}.name='light 1'; gui.flmodel{1}.lightmodel.scenelight{1}.enable='on'; gui.flmodel{1}.lightmodel.scenelight{1}.colorr='255'; gui.flmodel{1}.lightmodel.scenelight{1}.colorg='255'; gui.flmodel{1}.lightmodel.scenelight{1}.colorb='255'; gui.flmodel{1}.lightmodel.scenelight{1}.xdir='1.0'; gui.flmodel{1}.lightmodel.scenelight{1}.ydir='-1.0'; gui.flmodel{1}.lightmodel.scenelight{1}.zdir='1.0'; gui.flmodel{1}.lightmodel.scenelight{2}.type='directional'; gui.flmodel{1}.lightmodel.scenelight{2}.name='light 2'; gui.flmodel{1}.lightmodel.scenelight{2}.enable='on'; gui.flmodel{1}.lightmodel.scenelight{2}.colorr='255'; gui.flmodel{1}.lightmodel.scenelight{2}.colorg='255'; gui.flmodel{1}.lightmodel.scenelight{2}.colorb='255'; gui.flmodel{1}.lightmodel.scenelight{2}.xdir='-1.0'; gui.flmodel{1}.lightmodel.scenelight{2}.ydir='1.0'; gui.flmodel{1}.lightmodel.scenelight{2}.zdir='-1.0'; gui.flmodel{1}.lightmodel.scenelight{3}.type='directional'; gui.flmodel{1}.lightmodel.scenelight{3}.name='light 3'; gui.flmodel{1}.lightmodel.scenelight{3}.enable='on'; gui.flmodel{1}.lightmodel.scenelight{3}.colorr='255'; gui.flmodel{1}.lightmodel.scenelight{3}.colorg='255'; gui.flmodel{1}.lightmodel.scenelight{3}.colorb='255'; gui.flmodel{1}.lightmodel.scenelight{3}.xdir='-1.0'; gui.flmodel{1}.lightmodel.scenelight{3}.ydir='-1.0'; gui.flmodel{1}.lightmodel.scenelight{3}.zdir='1.0'; gui.flmodel{1}.lightmodel.scenelight{4}.type='directional'; gui.flmodel{1}.lightmodel.scenelight{4}.name='light 4'; gui.flmodel{1}.lightmodel.scenelight{4}.enable='on'; gui.flmodel{1}.lightmodel.scenelight{4}.colorr='255'; gui.flmodel{1}.lightmodel.scenelight{4}.colorg='255'; gui.flmodel{1}.lightmodel.scenelight{4}.colorb='255'; gui.flmodel{1}.lightmodel.scenelight{4}.xdir='1.0'; gui.flmodel{1}.lightmodel.scenelight{4}.ydir='-1.0'; gui.flmodel{1}.lightmodel.scenelight{4}.zdir='-1.0'; gui.flmodel{1}.registry.axis_visible='on'; gui.flmodel{1}.registry.axis_auto='on'; gui.flmodel{1}.registry.axis_autoy='on'; gui.flmodel{1}.registry.axis_autoz='on'; gui.flmodel{1}.registry.axis_box='off'; gui.flmodel{1}.registry.axis_equal='on'; gui.flmodel{1}.registry.axis_csys='on'; gui.flmodel{1}.registry.grid_visible='on'; gui.flmodel{1}.registry.grid_auto='off'; gui.flmodel{1}.registry.grid_autoz='on'; gui.flmodel{1}.registry.grid_labels='on'; gui.flmodel{1}.registry.labels_object='on'; gui.flmodel{1}.registry.labels_vertex='off'; gui.flmodel{1}.registry.labels_edge='off'; gui.flmodel{1}.registry.labels_face='off'; gui.flmodel{1}.registry.labels_subdomain='off'; gui.flmodel{1}.registry.symbols_vertexscale='1.0'; gui.flmodel{1}.registry.symbols_edgescale='1.0'; gui.flmodel{1}.registry.symbols_facescale='1.0'; gui.flmodel{1}.registry.select_draw2d='size'; gui.flmodel{1}.registry.select_adj='cycle'; gui.flmodel{1}.registry.light_headlight='off'; gui.flmodel{1}.registry.light_scenelight='off'; gui.flmodel{1}.registry.light_shininess='0.5'; gui.flmodel{1}.registry.camera_mouse='orbit'; gui.flmodel{1}.registry.camera_camconstr='none'; gui.flmodel{1}.registry.camera_mouseconstr='none'; gui.flmodel{1}.registry.camera_perspective='off'; gui.flmodel{1}.registry.camera_moveasbox='off'; gui.flmodel{1}.registry.draw_assembly='off'; gui.flmodel{1}.registry.draw_dialog='off'; gui.flmodel{1}.registry.draw_keepborders='off'; gui.flmodel{1}.registry.draw_keepedges='off'; gui.flmodel{1}.registry.draw_multi='off'; gui.flmodel{1}.registry.draw_snap2grid='on'; gui.flmodel{1}.registry.draw_snap2vtx='on'; gui.flmodel{1}.registry.draw_solid='on'; gui.flmodel{1}.registry.draw_workplane_coordsys='on'; gui.flmodel{1}.registry.draw_workplane_showgeom='on'; gui.flmodel{1}.registry.draw_repair='off'; gui.flmodel{1}.registry.draw_repairtol='1.0E-4'; gui.flmodel{1}.registry.draw_projection='intersection'; gui.flmodel{1}.registry.transparency_value='1.0'; gui.flmodel{1}.registry.mesh_geomdetail='normal'; gui.flmodel{1}.registry.mesh_showquality='off'; gui.flmodel{1}.registry.post_cameraview='2'; gui.flmodel{1}.registry.graphics_scale='10000.0'; gui.flmodel{1}.registry.render_mesh='off'; gui.flmodel{1}.registry.render_bndarrow='on'; gui.flmodel{1}.registry.render_vertex='off'; gui.flmodel{1}.registry.render_edge='on'; gui.flmodel{1}.registry.render_face='off'; gui.flmodel{1}.registry.highlight_vertex='off'; gui.flmodel{1}.registry.highlight_edge='on'; gui.flmodel{1}.registry.highlight_face='on'; gui.flmodel{1}.meshparam.hauto='5'; gui.flmodel{1}.meshparam.usehauto='on'; gui.flmodel{1}.meshparam.hmax=''; gui.flmodel{1}.meshparam.hmaxfact='1'; gui.flmodel{1}.meshparam.hgrad='1.3'; gui.flmodel{1}.meshparam.hcurve='0.3'; gui.flmodel{1}.meshparam.hcutoff='0.001'; gui.flmodel{1}.meshparam.hnarrow='1'; gui.flmodel{1}.meshparam.hpnt='10'; gui.flmodel{1}.meshparam.xscale='1.0'; gui.flmodel{1}.meshparam.yscale='1.0'; gui.flmodel{1}.meshparam.jiggle='on'; gui.flmodel{1}.meshparam.mcase='0'; gui.flmodel{1}.meshparam.rmethod='regular'; gui.flmodel{1}.meshparam.hmaxvtx={'10e-9','','10e-9','','','10e-9','10e-9',''}; gui.flmodel{1}.meshparam.hgradvtx={'','','','','','','',''}; gui.flmodel{1}.meshparam.hgradedg={'','','','','','','','',''}; gui.flmodel{1}.meshparam.hcurveedg={'','','','','','','','',''}; gui.flmodel{1}.meshparam.hmaxedg={'','','','','','','','',''}; gui.flmodel{1}.meshparam.hcutoffedg={'','','','','','','','',''}; gui.flmodel{1}.meshparam.hgradsub={'',''}; gui.flmodel{1}.meshparam.hmaxsub={'',''}; gui.flmodel{1}.postmodel.postplot.triplot='on'; gui.flmodel{1}.postmodel.postplot.tridata={'V2'}; gui.flmodel{1}.postmodel.postplot.trirangeauto='on'; gui.flmodel{1}.postmodel.postplot.trirangemin='-19.23370460401859'; gui.flmodel{1}.postmodel.postplot.trirangemax='-19.233652585310733'; gui.flmodel{1}.postmodel.postplot.tricont='on'; gui.flmodel{1}.postmodel.postplot.triunit='V'; gui.flmodel{1}.postmodel.postplot.triheightdata={'U_mmglf'}; gui.flmodel{1}.postmodel.postplot.triheightdatacheck='off'; gui.flmodel{1}.postmodel.postplot.triheightunit='m/s'; gui.flmodel{1}.postmodel.postplot.trimap='jet'; gui.flmodel{1}.postmodel.postplot.trimapdepth='1024'; gui.flmodel{1}.postmodel.postplot.tribar='on'; gui.flmodel{1}.postmodel.postplot.triusemap='on'; gui.flmodel{1}.postmodel.postplot.tricolor='255,0,0'; gui.flmodel{1}.postmodel.postplot.tricoloring='interp'; gui.flmodel{1}.postmodel.postplot.trifill='fill'; gui.flmodel{1}.postmodel.postplot.contplot='off'; gui.flmodel{1}.postmodel.postplot.contdata={'U_mmglf'}; gui.flmodel{1}.postmodel.postplot.contcont='on'; gui.flmodel{1}.postmodel.postplot.contunit='m/s'; gui.flmodel{1}.postmodel.postplot.contheightdata={'U_mmglf'}; gui.flmodel{1}.postmodel.postplot.contheightdatacheck='off'; gui.flmodel{1}.postmodel.postplot.contheightunit='m/s'; gui.flmodel{1}.postmodel.postplot.contcolordata={'U_mmglf'}; gui.flmodel{1}.postmodel.postplot.contcolorrangeauto='on'; gui.flmodel{1}.postmodel.postplot.contcolorrangemin=''; gui.flmodel{1}.postmodel.postplot.contcolorrangemax=''; gui.flmodel{1}.postmodel.postplot.contcolordatacheck='off'; gui.flmodel{1}.postmodel.postplot.contcolorunit='m/s'; gui.flmodel{1}.postmodel.postplot.contmap='cool'; gui.flmodel{1}.postmodel.postplot.contmapdepth='1024'; gui.flmodel{1}.postmodel.postplot.contbar='on'; gui.flmodel{1}.postmodel.postplot.contusemap='on'; gui.flmodel{1}.postmodel.postplot.contcolor='255,0,0'; gui.flmodel{1}.postmodel.postplot.contlevels='100'; gui.flmodel{1}.postmodel.postplot.contvectorlevels=''; gui.flmodel{1}.postmodel.postplot.contisvector='off'; gui.flmodel{1}.postmodel.postplot.contlabel='off'; gui.flmodel{1}.postmodel.postplot.contfill='off'; gui.flmodel{1}.postmodel.postplot.linplot='off'; gui.flmodel{1}.postmodel.postplot.lindata={'U_mmglf'}; gui.flmodel{1}.postmodel.postplot.linrangeauto='on'; gui.flmodel{1}.postmodel.postplot.linrangemin='0.0'; gui.flmodel{1}.postmodel.postplot.linrangemax='0.0'; gui.flmodel{1}.postmodel.postplot.lincont='on'; gui.flmodel{1}.postmodel.postplot.linunit='m/s'; gui.flmodel{1}.postmodel.postplot.linheightdata={'U_mmglf'}; gui.flmodel{1}.postmodel.postplot.linheightdatacheck='off'; gui.flmodel{1}.postmodel.postplot.linheightunit='m/s'; gui.flmodel{1}.postmodel.postplot.linmap='jet'; gui.flmodel{1}.postmodel.postplot.linmapdepth='1024'; gui.flmodel{1}.postmodel.postplot.linbar='on'; gui.flmodel{1}.postmodel.postplot.linusemap='on'; gui.flmodel{1}.postmodel.postplot.lincolor='255,0,0'; gui.flmodel{1}.postmodel.postplot.lincoloring='interp'; gui.flmodel{1}.postmodel.postplot.arrowplot='on'; gui.flmodel{1}.postmodel.postplot.arrowploton='sub'; gui.flmodel{1}.postmodel.postplot.arrowdata={'u','v'}; gui.flmodel{1}.postmodel.postplot.arrowunit='m/s'; gui.flmodel{1}.postmodel.postplot.arrowbnddata={'tEx_dc','tEy_dc'}; gui.flmodel{1}.postmodel.postplot.arrowbndunit='V/m'; gui.flmodel{1}.postmodel.postplot.arrowheightdata={'U_mmglf'}; gui.flmodel{1}.postmodel.postplot.arrowheightdatacheck='off'; gui.flmodel{1}.postmodel.postplot.arrowheightunit='m/s'; gui.flmodel{1}.postmodel.postplot.arrowxspacing='25'; gui.flmodel{1}.postmodel.postplot.arrowxvectorspacing=''; gui.flmodel{1}.postmodel.postplot.arrowxisvector='off'; gui.flmodel{1}.postmodel.postplot.arrowyspacing='10'; gui.flmodel{1}.postmodel.postplot.arrowyvectorspacing=''; gui.flmodel{1}.postmodel.postplot.arrowyisvector='off'; gui.flmodel{1}.postmodel.postplot.arrowtype='arrow'; gui.flmodel{1}.postmodel.postplot.arrowlength='proportional'; gui.flmodel{1}.postmodel.postplot.arrowcolor='0,0,0'; gui.flmodel{1}.postmodel.postplot.arrowautoscale='off'; gui.flmodel{1}.postmodel.postplot.arrowscale='1'; gui.flmodel{1}.postmodel.postplot.princplot='off'; gui.flmodel{1}.postmodel.postplot.princdata={'','','','','','','','','','','',''}; gui.flmodel{1}.postmodel.postplot.princheightdata={'U_mmglf'}; gui.flmodel{1}.postmodel.postplot.princheightdatacheck='off'; gui.flmodel{1}.postmodel.postplot.princheightunit='m/s'; gui.flmodel{1}.postmodel.postplot.princxspacing='8'; gui.flmodel{1}.postmodel.postplot.princxvectorspacing=''; gui.flmodel{1}.postmodel.postplot.princxisvector='off'; gui.flmodel{1}.postmodel.postplot.princyspacing='8'; gui.flmodel{1}.postmodel.postplot.princyvectorspacing=''; gui.flmodel{1}.postmodel.postplot.princyisvector='off'; gui.flmodel{1}.postmodel.postplot.princtype='arrow'; gui.flmodel{1}.postmodel.postplot.princlength='proportional'; gui.flmodel{1}.postmodel.postplot.princcolor='0,153,0'; gui.flmodel{1}.postmodel.postplot.princautoscale='on'; gui.flmodel{1}.postmodel.postplot.princscale='1'; gui.flmodel{1}.postmodel.postplot.flowplot='off'; gui.flmodel{1}.postmodel.postplot.flowdata={'u','v'}; gui.flmodel{1}.postmodel.postplot.flowunit='m/s'; gui.flmodel{1}.postmodel.postplot.flowuseexpression='off'; gui.flmodel{1}.postmodel.postplot.flowcolor='51,255,153'; gui.flmodel{1}.postmodel.postplot.flowcolordata={'U_mmglf'}; gui.flmodel{1}.postmodel.postplot.flowcolorunit='m/s'; gui.flmodel{1}.postmodel.postplot.flowmap='jet'; gui.flmodel{1}.postmodel.postplot.flowmapdepth='1024'; gui.flmodel{1}.postmodel.postplot.flowbar='on'; gui.flmodel{1}.postmodel.postplot.flowheightdata={'U_mmglf'}; gui.flmodel{1}.postmodel.postplot.flowheightdatacheck='off'; gui.flmodel{1}.postmodel.postplot.flowheightunit='m/s'; gui.flmodel{1}.postmodel.postplot.flowlines='20'; gui.flmodel{1}.postmodel.postplot.flowstart='sub'; gui.flmodel{1}.postmodel.postplot.flowstartx=''; gui.flmodel{1}.postmodel.postplot.flowstarty=''; gui.flmodel{1}.postmodel.postplot.flowisstartvector='off'; gui.flmodel{1}.postmodel.postplot.flowtol='0.001'; gui.flmodel{1}.postmodel.postplot.flowstattol='0.01'; gui.flmodel{1}.postmodel.postplot.flowlooptol='0.01'; gui.flmodel{1}.postmodel.postplot.flowmaxtime='Inf'; gui.flmodel{1}.postmodel.postplot.flowmaxsteps='5000'; gui.flmodel{1}.postmodel.postplot.flowback='on'; gui.flmodel{1}.postmodel.postplot.flownormal='off'; gui.flmodel{1}.postmodel.postplot.flowdistuniform='0.05'; gui.flmodel{1}.postmodel.postplot.flowlinesvel='10'; gui.flmodel{1}.postmodel.postplot.flowseedmanual='off'; gui.flmodel{1}.postmodel.postplot.flowseed1=''; gui.flmodel{1}.postmodel.postplot.flowseed2=''; gui.flmodel{1}.postmodel.postplot.flowinitref='1'; gui.flmodel{1}.postmodel.postplot.flowignoredist='0.5'; gui.flmodel{1}.postmodel.postplot.flowsat='1.3'; gui.flmodel{1}.postmodel.postplot.flowdistend='0.5'; gui.flmodel{1}.postmodel.postplot.flowdens='uniform'; gui.flmodel{1}.postmodel.postplot.partplot='off'; gui.flmodel{1}.postmodel.postplot.partmasstype='mass'; gui.flmodel{1}.postmodel.postplot.partplotas='lines'; gui.flmodel{1}.postmodel.postplot.predefforces='khanforce_mmglf,emforce_dc'; gui.flmodel{1}.postmodel.postplot.partforceparam0='radius,partr,1e-4'; gui.flmodel{1}.postmodel.postplot.partforceparam1='charge,partq,1.602e-19'; gui.flmodel{1}.postmodel.postplot.partmass='4*pi/3*1e-9'; gui.flmodel{1}.postmodel.postplot.partforce={'sign(u-partu)*pi*partr^2*rho_mmglf*(u-partu)^2*(1.84*(abs(u-partu)*2*partr*rho_mmglf/eta_mmglf)^(-0.31)+0.293*(abs(u-partu)*2*partr*rho_mmglf/eta_mmglf)^0.06)^3.45+partq*Ex_dc','sign(v-partv)*pi*partr^2*rho_mmglf*(v-partv)^2*(1.84*(abs(v-partv)*2*partr*rho_mmglf/eta_mmglf)^(-0.31)+0.293*(abs(v-partv)*2*partr*rho_mmglf/eta_mmglf)^0.06)^3.45+partq*Ey_dc',''}; gui.flmodel{1}.postmodel.postplot.part_massless_flowdata={'u','v'}; gui.flmodel{1}.postmodel.postplot.part_massless_flowunit='m/s'; gui.flmodel{1}.postmodel.postplot.parttstartauto='on'; gui.flmodel{1}.postmodel.postplot.parttstart=''; gui.flmodel{1}.postmodel.postplot.partvelstart={'0','0','0'}; gui.flmodel{1}.postmodel.postplot.partstartptssel='partstart_explicit'; gui.flmodel{1}.postmodel.postplot.partstartdl=''; gui.flmodel{1}.postmodel.postplot.partstartedim1levels='10'; gui.flmodel{1}.postmodel.postplot.partstartedim1vectorlevels=''; gui.flmodel{1}.postmodel.postplot.partstartedim1isvector='off'; gui.flmodel{1}.postmodel.postplot.explicitcoord={'0','0'}; gui.flmodel{1}.postmodel.postplot.partuseexpression='off'; gui.flmodel{1}.postmodel.postplot.partcolor='255,0,0'; gui.flmodel{1}.postmodel.postplot.partcolordata={'U_mmglf'}; gui.flmodel{1}.postmodel.postplot.partmap='jet'; gui.flmodel{1}.postmodel.postplot.partmapdepth='1024'; gui.flmodel{1}.postmodel.postplot.partbar='on'; gui.flmodel{1}.postmodel.postplot.partpointcolor='255,0,0'; gui.flmodel{1}.postmodel.postplot.partpointautoscale='on'; gui.flmodel{1}.postmodel.postplot.partpointscale='1'; gui.flmodel{1}.postmodel.postplot.partdroptype='once'; gui.flmodel{1}.postmodel.postplot.partdroptimes=''; gui.flmodel{1}.postmodel.postplot.partdropfreq=''; gui.flmodel{1}.postmodel.postplot.partbnd='stick'; gui.flmodel{1}.postmodel.postplot.partmasslessrtol='0.001'; gui.flmodel{1}.postmodel.postplot.partmasslessatolmanual='off'; gui.flmodel{1}.postmodel.postplot.partmasslessatol={''}; gui.flmodel{1}.postmodel.postplot.partmasslessstepsizemanual='off'; gui.flmodel{1}.postmodel.postplot.partmasslesstendauto='on'; gui.flmodel{1}.postmodel.postplot.partmasslessmaxstepsauto='on'; gui.flmodel{1}.postmodel.postplot.partmasslessedgetol='0.001'; gui.flmodel{1}.postmodel.postplot.partmasslesstvar='partt'; gui.flmodel{1}.postmodel.postplot.partmasslessstatic='off'; gui.flmodel{1}.postmodel.postplot.partmasslessres='5'; gui.flmodel{1}.postmodel.postplot.partrtol='0.001'; gui.flmodel{1}.postmodel.postplot.partatolmanual='off'; gui.flmodel{1}.postmodel.postplot.partatol={'',''}; gui.flmodel{1}.postmodel.postplot.partstepsizemanual='off'; gui.flmodel{1}.postmodel.postplot.parttendauto='on'; gui.flmodel{1}.postmodel.postplot.partmaxstepsauto='on'; gui.flmodel{1}.postmodel.postplot.partedgetol='0.001'; gui.flmodel{1}.postmodel.postplot.partvelvar={'partu','partv','partw'}; gui.flmodel{1}.postmodel.postplot.parttvar='partt'; gui.flmodel{1}.postmodel.postplot.partstatic='off'; gui.flmodel{1}.postmodel.postplot.partres='5'; gui.flmodel{1}.postmodel.postplot.maxminplot='off'; gui.flmodel{1}.postmodel.postplot.maxminsubdata={'U_mmglf'}; gui.flmodel{1}.postmodel.postplot.maxminsubdatacheck='on'; gui.flmodel{1}.postmodel.postplot.maxminsubunit='m/s'; gui.flmodel{1}.postmodel.postplot.maxminbnddata={'U_mmglf'}; gui.flmodel{1}.postmodel.postplot.maxminbnddatacheck='off'; gui.flmodel{1}.postmodel.postplot.maxminbndunit='m/s'; gui.flmodel{1}.postmodel.postplot.geom='on'; gui.flmodel{1}.postmodel.postplot.roughplot='off'; gui.flmodel{1}.postmodel.postplot.autorefine='on'; gui.flmodel{1}.postmodel.postplot.refine='3'; gui.flmodel{1}.postmodel.postplot.geomnum={'Geom1'}; gui.flmodel{1}.postmodel.postplot.phase='0'; gui.flmodel{1}.postmodel.postplot.solnum='0'; gui.flmodel{1}.postmodel.postplot.selectvia='stored'; gui.flmodel{1}.postmodel.postplot.autotitle='on'; gui.flmodel{1}.postmodel.postplot.customtitle=''; gui.flmodel{1}.postmodel.postplot.smoothinternal='on'; gui.flmodel{1}.postmodel.postplot.useellogic='off'; gui.flmodel{1}.postmodel.postplot.ellogic=''; gui.flmodel{1}.postmodel.postplot.ellogictype='all'; gui.flmodel{1}.postmodel.postplot.deformplot='off'; gui.flmodel{1}.postmodel.postplot.deformsub='on'; gui.flmodel{1}.postmodel.postplot.deformbnd='on'; gui.flmodel{1}.postmodel.postplot.deformsubdata={'u','v'}; gui.flmodel{1}.postmodel.postplot.deformsubunit='m/s'; gui.flmodel{1}.postmodel.postplot.deformbnddata={'tEx_dc','tEy_dc'}; gui.flmodel{1}.postmodel.postplot.deformbndunit='V/m'; gui.flmodel{1}.postmodel.postplot.deformautoscale='on'; gui.flmodel{1}.postmodel.postplot.deformscale='0.113849'; gui.flmodel{1}.postmodel.postplot.animate_solnum='0'; gui.flmodel{1}.postmodel.postplot.animate_selectvia='stored'; gui.flmodel{1}.postmodel.postplot.filetype='AVI'; gui.flmodel{1}.postmodel.postplot.width='640'; gui.flmodel{1}.postmodel.postplot.height='480'; gui.flmodel{1}.postmodel.postplot.fps='1'; gui.flmodel{1}.postmodel.postplot.statfunctype='linear'; gui.flmodel{1}.postmodel.postplot.statnframes='11'; gui.flmodel{1}.postmodel.postplot.reverse='on'; gui.flmodel{1}.postmodel.postplot.movieinmatlab='off'; gui.flmodel{1}.postmodel.postplot.copyaxis='off'; gui.flmodel{1}.postmodel.intdata{1}.intdata={'V2'}; gui.flmodel{1}.postmodel.intdata{1}.intunit='V'; gui.flmodel{1}.postmodel.intdata{1}.phase='0'; gui.flmodel{1}.postmodel.intdata{1}.solnum='0'; gui.flmodel{1}.postmodel.intdata{1}.selectvia='stored'; gui.flmodel{1}.postmodel.intdata{2}.autoorder='on'; gui.flmodel{1}.postmodel.intdata{2}.multiplyexpr='off'; gui.flmodel{1}.postmodel.intdata{2}.intdata={'U_mmglf'}; gui.flmodel{1}.postmodel.intdata{2}.intunit='m^2/s'; gui.flmodel{1}.postmodel.intdata{2}.phase='0'; gui.flmodel{1}.postmodel.intdata{2}.solnum='0'; gui.flmodel{1}.postmodel.intdata{2}.selectvia='stored'; gui.flmodel{1}.postmodel.intdata{3}.autoorder='on'; gui.flmodel{1}.postmodel.intdata{3}.multiplyexpr='off'; gui.flmodel{1}.postmodel.intdata{3}.intdata={'U_mmglf'}; gui.flmodel{1}.postmodel.intdata{3}.intunit='m^3/s'; gui.flmodel{1}.postmodel.intdata{3}.phase='0'; gui.flmodel{1}.postmodel.intdata{3}.solnum='0'; gui.flmodel{1}.postmodel.intdata{3}.selectvia='stored'; gui.flmodel{1}.postmodel.domainplot.colordata={'U_mmglf'}; gui.flmodel{1}.postmodel.domainplot.colorrangeauto='on'; gui.flmodel{1}.postmodel.domainplot.colorrangemin=''; gui.flmodel{1}.postmodel.domainplot.colorrangemax=''; gui.flmodel{1}.postmodel.domainplot.colorcont='on'; gui.flmodel{1}.postmodel.domainplot.colorunit='m/s'; gui.flmodel{1}.postmodel.domainplot.surfacesurfacemap='jet'; gui.flmodel{1}.postmodel.domainplot.surfacesurfacemapdepth='1024'; gui.flmodel{1}.postmodel.domainplot.surfacesurfacebar='on'; gui.flmodel{1}.postmodel.domainplot.surfacesurfaceusemap='on'; gui.flmodel{1}.postmodel.domainplot.surfacesurfacecolor='255,0,0'; gui.flmodel{1}.postmodel.domainplot.surfacesurfacecoloring='interp'; gui.flmodel{1}.postmodel.domainplot.surfacesurfacefill='fill'; gui.flmodel{1}.postmodel.domainplot.extrusion='off'; gui.flmodel{1}.postmodel.domainplot.lineyaxisdata={'U_mmglf'}; gui.flmodel{1}.postmodel.domainplot.lineyaxiscont='on'; gui.flmodel{1}.postmodel.domainplot.lineyaxisunit='m/s'; gui.flmodel{1}.postmodel.domainplot.linexaxisxaxistype='arc'; gui.flmodel{1}.postmodel.domainplot.linexaxisuseexpr='off'; gui.flmodel{1}.postmodel.domainplot.linexaxisdata={'U_mmglf'}; gui.flmodel{1}.postmodel.domainplot.linexaxisunit='m/s'; gui.flmodel{1}.postmodel.domainplot.linelinestyle='solid'; gui.flmodel{1}.postmodel.domainplot.linelinecolor='cyclecolor'; gui.flmodel{1}.postmodel.domainplot.linelinemarker='none'; gui.flmodel{1}.postmodel.domainplot.linelegend='off'; gui.flmodel{1}.postmodel.domainplot.linelinelabels='off'; gui.flmodel{1}.postmodel.domainplot.linecolor='255,0,0'; gui.flmodel{1}.postmodel.domainplot.linesurfacemap='jet'; gui.flmodel{1}.postmodel.domainplot.linesurfacemapdepth='1024'; gui.flmodel{1}.postmodel.domainplot.linesurfacebar='on'; gui.flmodel{1}.postmodel.domainplot.linesurfaceusemap='on'; gui.flmodel{1}.postmodel.domainplot.linesurfacecolor='255,0,0'; gui.flmodel{1}.postmodel.domainplot.linesurfacecoloring='interp'; gui.flmodel{1}.postmodel.domainplot.linesurfacefill='fill'; gui.flmodel{1}.postmodel.domainplot.pointyaxisdata={'V2'}; gui.flmodel{1}.postmodel.domainplot.pointyaxisunit='V'; gui.flmodel{1}.postmodel.domainplot.pointxxaxistype=''; gui.flmodel{1}.postmodel.domainplot.pointxuseexpr='off'; gui.flmodel{1}.postmodel.domainplot.pointxdata={'V2'}; gui.flmodel{1}.postmodel.domainplot.pointxunit='V'; gui.flmodel{1}.postmodel.domainplot.pointlinestyle='solid'; gui.flmodel{1}.postmodel.domainplot.pointlinecolor='cyclecolor'; gui.flmodel{1}.postmodel.domainplot.pointlinemarker='none'; gui.flmodel{1}.postmodel.domainplot.pointlegend='off'; gui.flmodel{1}.postmodel.domainplot.pointlinelabels='off'; gui.flmodel{1}.postmodel.domainplot.pointcolor='255,0,0'; gui.flmodel{1}.postmodel.domainplot.crossdispcolor='255,0,0'; gui.flmodel{1}.postmodel.domainplot.phase='0'; gui.flmodel{1}.postmodel.domainplot.solnum='0'; gui.flmodel{1}.postmodel.domainplot.selectvia='stored'; gui.flmodel{1}.postmodel.domainplot.autotitle='on'; gui.flmodel{1}.postmodel.domainplot.customtitle=''; gui.flmodel{1}.postmodel.domainplot.autolabelx='on'; gui.flmodel{1}.postmodel.domainplot.customlabelx=''; gui.flmodel{1}.postmodel.domainplot.autolabely='on'; gui.flmodel{1}.postmodel.domainplot.customlabely=''; gui.flmodel{1}.postmodel.domainplot.axistype={'lin','lin'}; gui.flmodel{1}.postmodel.domainplot.smoothinternal='on'; gui.flmodel{1}.postmodel.domainplot.autorefine='on'; gui.flmodel{1}.postmodel.domainplot.refine='1'; gui.flmodel{1}.postmodel.domainplot.plottypeind='0'; gui.flmodel{1}.postmodel.crossplot.extrusion='off'; gui.flmodel{1}.postmodel.crossplot.lineyaxisdata={'u'}; gui.flmodel{1}.postmodel.crossplot.lineyaxisunit='m/s'; gui.flmodel{1}.postmodel.crossplot.linexaxisxaxistype='arc'; gui.flmodel{1}.postmodel.crossplot.linexaxisuseexpr='off'; gui.flmodel{1}.postmodel.crossplot.linexaxisdata={'U_mmglf'}; gui.flmodel{1}.postmodel.crossplot.linexaxisunit='m/s'; gui.flmodel{1}.postmodel.crossplot.linelinestyle='solid'; gui.flmodel{1}.postmodel.crossplot.linelinecolor='cyclecolor'; gui.flmodel{1}.postmodel.crossplot.linelinemarker='none'; gui.flmodel{1}.postmodel.crossplot.linelegend='off'; gui.flmodel{1}.postmodel.crossplot.linelinelabels='off'; gui.flmodel{1}.postmodel.crossplot.linecolor='255,0,0'; gui.flmodel{1}.postmodel.crossplot.linesurfacemap='jet'; gui.flmodel{1}.postmodel.crossplot.linesurfacemapdepth='1024'; gui.flmodel{1}.postmodel.crossplot.linesurfacebar='on'; gui.flmodel{1}.postmodel.crossplot.linesurfaceusemap='on'; gui.flmodel{1}.postmodel.crossplot.linesurfacecolor='255,0,0'; gui.flmodel{1}.postmodel.crossplot.linesurfacecoloring='interp'; gui.flmodel{1}.postmodel.crossplot.linesurfacefill='fill'; gui.flmodel{1}.postmodel.crossplot.lineresolution='200'; gui.flmodel{1}.postmodel.crossplot.linecoord={'0','-2.7e-4','5e-6','1.9e-4'}; gui.flmodel{1}.postmodel.crossplot.linelevels='5'; gui.flmodel{1}.postmodel.crossplot.linevectorlevels=''; gui.flmodel{1}.postmodel.crossplot.lineisvector='off'; gui.flmodel{1}.postmodel.crossplot.lineactive='off'; gui.flmodel{1}.postmodel.crossplot.pointyaxisdata={'U_mmglf'}; gui.flmodel{1}.postmodel.crossplot.pointyaxisunit='m/s'; gui.flmodel{1}.postmodel.crossplot.pointxxaxistype=''; gui.flmodel{1}.postmodel.crossplot.pointxuseexpr='off'; gui.flmodel{1}.postmodel.crossplot.pointxdata={'U_mmglf'}; gui.flmodel{1}.postmodel.crossplot.pointxunit='m/s'; gui.flmodel{1}.postmodel.crossplot.pointlinestyle='solid'; gui.flmodel{1}.postmodel.crossplot.pointlinecolor='cyclecolor'; gui.flmodel{1}.postmodel.crossplot.pointlinemarker='none'; gui.flmodel{1}.postmodel.crossplot.pointlegend='off'; gui.flmodel{1}.postmodel.crossplot.pointlinelabels='off'; gui.flmodel{1}.postmodel.crossplot.pointcolor='255,0,0'; gui.flmodel{1}.postmodel.crossplot.pointcoord={'4.9e-5 8.9e-5 7e-5 7e-5 5.4e-5 1.3e-5 1.3e-5 1.3e-5 ','2e-6 3e-6 9e-6 9e-6 -3e-6 -1e-6 -1e-6 -1e-6 '}; gui.flmodel{1}.postmodel.crossplot.crossdispcolor='255,0,0'; gui.flmodel{1}.postmodel.crossplot.phase='0'; gui.flmodel{1}.postmodel.crossplot.solnum='0'; gui.flmodel{1}.postmodel.crossplot.selectvia='stored'; gui.flmodel{1}.postmodel.crossplot.autotitle='on'; gui.flmodel{1}.postmodel.crossplot.customtitle=''; gui.flmodel{1}.postmodel.crossplot.autolabelx='on'; gui.flmodel{1}.postmodel.crossplot.customlabelx=''; gui.flmodel{1}.postmodel.crossplot.autolabely='on'; gui.flmodel{1}.postmodel.crossplot.customlabely=''; gui.flmodel{1}.postmodel.crossplot.axistype={'lin','lin'}; gui.flmodel{1}.postmodel.crossplot.plottypeind='0'; gui.flmodel{1}.postmodel.dataexport.pntdata={'V2'}; gui.flmodel{1}.postmodel.dataexport.pntunit='V'; gui.flmodel{1}.postmodel.dataexport.pntlocation='element'; gui.flmodel{1}.postmodel.dataexport.pntlagorder='2'; gui.flmodel{1}.postmodel.dataexport.bnddata={'U_mmglf'}; gui.flmodel{1}.postmodel.dataexport.bndcont='off'; gui.flmodel{1}.postmodel.dataexport.bndunit='m/s'; gui.flmodel{1}.postmodel.dataexport.bndlocation='element'; gui.flmodel{1}.postmodel.dataexport.bndlagorder='2'; gui.flmodel{1}.postmodel.dataexport.subdata={'U_mmglf'}; gui.flmodel{1}.postmodel.dataexport.subcont='off'; gui.flmodel{1}.postmodel.dataexport.subunit='m/s'; gui.flmodel{1}.postmodel.dataexport.subxspacing='10'; gui.flmodel{1}.postmodel.dataexport.subxvectorspacing=''; gui.flmodel{1}.postmodel.dataexport.subxisvector='off'; gui.flmodel{1}.postmodel.dataexport.subyspacing='10'; gui.flmodel{1}.postmodel.dataexport.subyvectorspacing=''; gui.flmodel{1}.postmodel.dataexport.subyisvector='off'; gui.flmodel{1}.postmodel.dataexport.sublocation='element'; gui.flmodel{1}.postmodel.dataexport.sublagorder='2'; gui.flmodel{1}.postmodel.dataexport.phase='0'; gui.flmodel{1}.postmodel.dataexport.solnum='0'; gui.flmodel{1}.postmodel.dataexport.selectvia='stored'; gui.flmodel{1}.postmodel.dataexport.exportformat='ptd'; gui.flmodel{1}.postmodel.dataexport.exportedim='2'; gui.flmodel{1}.postmodel.dataexport.struct='off'; gui.flmodel{1}.postmodel.datadisplay.fullprecision='off'; gui.flmodel{1}.postmodel.datadisplay.phase='0'; gui.flmodel{1}.postmodel.datadisplay.solnum='0'; gui.flmodel{1}.postmodel.datadisplay.selectvia='stored'; gui.flmodel{1}.postmodel.datadisplay.interpdata={'U_mmglf'}; gui.flmodel{1}.postmodel.datadisplay.interpunit='m/s'; gui.flmodel{1}.postmodel.datadisplay.coord={'0','0'}; gui.flmodel{1}.postmodel.globalplot.globalyaxisexprs={}; gui.flmodel{1}.postmodel.globalplot.globalyaxisexprsdisp={}; gui.flmodel{1}.postmodel.globalplot.linexaxisxaxistype=''; gui.flmodel{1}.postmodel.globalplot.linexaxisuseexpr='off'; gui.flmodel{1}.postmodel.globalplot.globallinestyle='solid'; gui.flmodel{1}.postmodel.globalplot.globallinecolor='cyclecolor'; gui.flmodel{1}.postmodel.globalplot.globallinemarker='none'; gui.flmodel{1}.postmodel.globalplot.globallegend='off'; gui.flmodel{1}.postmodel.globalplot.globallinelabels='off'; gui.flmodel{1}.postmodel.globalplot.globalcolor='255,0,0'; gui.flmodel{1}.postmodel.globalplot.autotitle='on'; gui.flmodel{1}.postmodel.globalplot.customtitle=''; gui.flmodel{1}.postmodel.globalplot.autolabelx='on'; gui.flmodel{1}.postmodel.globalplot.customlabelx=''; gui.flmodel{1}.postmodel.globalplot.autolabely='on'; gui.flmodel{1}.postmodel.globalplot.customlabely=''; gui.flmodel{1}.postmodel.globalplot.axistype={'lin','lin'}; gui.flmodel{1}.postmodel.globalplot.phase='0'; gui.flmodel{1}.postmodel.globalplot.solnum='0'; gui.flmodel{1}.postmodel.globalplot.selectvia='stored'; gui.flmodel{1}.postmodel.globalplot.plotimported='off'; gui.flmodel{1}.geommodel.suppressed{1}=[]; gui.flmodel{1}.geommodel.suppressed{2}=[]; gui.flmodel{1}.geommodel.suppressed{3}=[]; gui.flmodel{1}.workplane.type='0'; gui.flmodel{1}.workplane.wrkpln='0,1,0,0,0,1,0,0,0'; gui.flmodel{1}.workplane.localsys='0,1,0,0,0,0,1,0,0,0,0,1'; gui.flmodel{1}.workplane.model2d='Geom1'; gui.flmodel{1}.workplane.quicktype='10'; gui.flmodel{1}.workplane.parameter='0'; gui.flmodel{1}.workplane.zdir='up'; gui.flmodel{1}.meshmodel.meshplot.subplot='on'; gui.flmodel{1}.meshmodel.meshplot.meshsubuseexpression='on'; gui.flmodel{1}.meshmodel.meshplot.meshsubcolor='128,128,128'; gui.flmodel{1}.meshmodel.meshplot.meshsubbordercheck='off'; gui.flmodel{1}.meshmodel.meshplot.meshwiresubplot='on'; gui.flmodel{1}.meshmodel.meshplot.meshwiresubcolor='192,192,192'; gui.flmodel{1}.meshmodel.meshplot.bndplot='on'; gui.flmodel{1}.meshmodel.meshplot.meshbndcolor='0,0,0'; gui.flmodel{1}.meshmodel.meshplot.useellogic='off'; gui.flmodel{1}.meshmodel.meshplot.ellogic=''; gui.flmodel{1}.meshmodel.meshplot.ellogictype='all'; gui.flmodel{1}.meshmodel.meshplot.meshkeepfraction='1'; gui.flmodel{1}.meshmodel.meshplot.meshkeeptype='random'; gui.flmodel{1}.meshmodel.meshplot.meshmap='jet'; gui.flmodel{1}.meshmodel.meshplot.meshmapdepth='1024'; gui.flmodel{1}.meshmodel.meshplot.meshbar='on'; uq~ q~srcom.femlab.geom.Geom2�V���c/Oxrcom.femlab.geom.Geom͹�6��{L geomAssoctLcom/femlab/geom/GeomAssoc;Lversionq~xpwq~wAur[B���T�xpAGeom2�����|�=-C��6?-C��6*?�����-C��6*?-C��6 ?�����iUMu/?�����-C��6:?�����-C��6:?-C��6 ?������?��?��?��?��?� BezierCurve-C��6*?�?-C��6*?-C��6 ?�? BezierCurve-C��6*?�?iUMu/?�? BezierCurve-C��6*?-C��6 ?�?-C��6:?-C��6 ?�? BezierCurveiUMu/?�?-C��6:?�? BezierCurve-C��6:?�?-C��6:?-C��6 ?�? AssocAttrib VectorInt+ xwxsq~+wq~wAuq~/AGeom2�����|�=-C��6?�����-C��6 ?������h㈵�$?�����-C��6*?�����-C��6*?-C��6 ?������?��?��?��?��?� BezierCurve�?-C��6 ?�? BezierCurve�?�h㈵�$?�? BezierCurve-C��6 ?�?-C��6*?-C��6 ?�? BezierCurve�h㈵�$?�?-C��6*?�? BezierCurve-C��6*?�?-C��6*?-C��6 ?�? AssocAttrib VectorInt+ xwxsq~+wq~w}uq~/}Geom2�����|�=-C��6?�����-C��6 ?������h㈵�$?�����-C��6*?�����-C��6*?-C��6 ?�����iUMu/?�����-C��6:?�����-C��6:?-C��6 ?����� �?��?��?��?��?��?��?��?��? � BezierCurve�?-C��6 ?�? BezierCurve�?�h㈵�$?�? BezierCurve-C��6 ?�?-C��6*?-C��6 ?�? BezierCurve�h㈵�$?�?-C��6*?�? BezierCurve-C��6*?�?-C��6*?-C��6 ?�? BezierCurve-C��6*?�?iUMu/?�? BezierCurve-C��6*?-C��6 ?�?-C��6:?-C��6 ?�? BezierCurveiUMu/?�?-C��6:?�? BezierCurve-C��6:?�?-C��6:?-C��6 ?�? AssocAttrib VectorInt8  xwxsrcom.femlab.mesh.Mesh�_�q �Lversionq~xpwq~w�uq~/Meshf-C��6 ?�h㈵�$?-C��6*?-C��6*?-C��6 ?iUMu/?-C��6:?-C��6:?-C��6 ?*��c�SH>h^��v\>l��&i>����q�s>����9�}>�]5�h�>�"�$�4�>��_���>dv�0�>J�M\0��>Dn Z���(�>��'��>�o�!���>\iZlC;�>�5���>�12��>��T����>����>+��;�>Z{�8�>�>�p�����>mg�%�0�>�堏�?h��[�H>��bԎ�\>�=�["�i>�K P}]t>4E�Um�~>���2�> �rZ��>����>]��>�Ɗ� �>d (v�Ѭ>qX��4��>� c���>YW�*�>6s*n��>�C-G���>#|%3ח�>i+��F��>̵�qh��>�#����>&������>)zve݅�>~��,|>?Y�`V�L?a��G`z?Q?[��?"��`�?c��]/?���{Ϟ ?~ė^�!?���準"?��l5#?���#?'ȫ�$?C���EB$?G�wZ�q$? ��C:�$?s�,Z�$?�vQ��$?�� ��$?��?��$?��u�$?x��HD�$?> *��$?b���$?z����$?k�N'��$?�98c#�$?�����$?N���$?�h�{R�$?�HêЍ�>-C��6 ?|�H��?-C��6 ?S�t,�?.C��6 ?��Wp�y?-C��6 ?0��1��?-C��6 ?V���!?,C��6 ?JOW�#?.C��6 ?�;;۰%?-C��6 ?�Ud���'?-C��6 ?5�<.�$?73М�$?���#O�$?�}��>�$?dTF��$?,��2�$?S� xy%?^6v�%?��R}�%?bw�. %?2wpZ�%?/��%?7���,%?��ys'>%?�B�vV%?��h�&w%?(�%?����/�%?ۅ4��-&?%yr�&?W�69('?~�a�(�'?J�L��(?-C��6*?d3�N8-�>-C��6*?�p�b��>-C��6*? �BA�?���+?���A��,? ���E-?8v4]S�-?�8$@.?�ɘ-��.?Yr���.?n��6��.?�C$�N/?��b�//?$��5�A/?,���%O/?)�{&Y/?����`/?���Xf/?�O�� -C��6:?h^��v\>,C��6:?l��&i>-C��6:?����q�s>-C��6:?����9�}>-C��6:?�]5�h�>.C��6:?�"�$�4�>,C��6:?��_���>-C��6:?dv�0�>-C��6:?J�M\0��>-C��6:?Dn -C��6:?Z���(�>-C��6:?��'��>-C��6:?�o�!���>-C��6:?\iZlC;�>-C��6:?�5���>-C��6:?�12��>-C��6:?��T����>.C��6:?����>-C��6:?+��;�>-C��6:?Z{�8�>�>-C��6:?�p�����>-C��6:?mg�%�0�>.C��6:?�堏�?0�n��j?�6Z�>� cI�?���E���>�a&}�I?������>E��M� ?��ϵU"�>Z�O��5#?Y��p��>�v�S�'?�s:�`�>S�.ˆ ?VY���^�>��Ux ?���^�>꒎��&�>@���sc�> ����?G�4}�?6$��̢?� ;�,?� ��$?��Aܹ�?x��a��>8B���Q�>�^�8/�?V�CRE�?C��#%?��ݜ �>J'����>hTk`F�?~���/?b2U0*�?��J��?=��`�6�>>Q_8�o?B��UZ�>~Ղs��(?X�zB?��>��w�&N!?V�I�.?u��{rP&?�x��?�c�_V"?7��!�>\ƕ�.�?XTA��?}W��j� ?�91�>���J��?�M<��>X��;��&? ��Lj��>�}��'?3�É?���70�(?n� �?$#O'�"?���Ç?_���o�>����oY�>���o�f?%%�i�7�>�3�C�$?��_ ?�> ��Y?��Y_J��>Z�y�|�'?���>֗�>7�,�u�?#��u��?Q�>?�-�d�?y�k~�>�f��t�?��P/ � ?l�H���>���9�� ?o|7��?jRǼ��?�GOn�?�>�t.n�!?�b�7��>j��{�%?� n�f2�>'������>E�F%��>&��)?��JmB �>1"'�Y��>`e�"AL�>��ϓF(?Ts� �>�����v�>��>�>d��s�"$?��Eq`�>�U}B�$?}yg��>���f�%?�:�-�?�>��}o6#?r8/?�n?=Û�^��>�N�T?�8�G��>�ԧ�X?3�[��!?� �>z>p�S�#?~�� q�>��0��>�v����>���Ȓ?D�5N���>�7lz�!?K?�)�\�>X"��^?�rL���>���L�$?����7?"4�cp&?�^B��>Y�'�?B׻��G�>�P+�h�>���*��>\�i�q3%?Hpx��8?���h�)?0��om�>�I��'?�]B?`l�>V^��%?���$�>Z�B��E�>�޽v��?3DR K�>�Y�*? �`k?���";�>@/{�)?�+��O�>�Zc���"?4bh���>�\�0W"?�4���>T��e��&?|�91�>�x��%�"?�vVdH�>��t6[�'?�������>�y��+�>����>�9B �#?��d���>�Y7��T�>������>ьג '?�����S�>�y��^�&?$�0���>�p�E0*�>�l��s1�>�Drg)?��ZN��>[7�]e9"?`GFb��>C����,%?<��WM�?�jK�#?������>�Q\j)? rި���>9�4�"%?S���>��8$%?�} ���>x)�y��$?ɞl��>�� �JK�>"���C��>�qpÔ�#?��@`�>#����"?&D���-�>��:� �$?���A�>�_*� ?�D��d��>^������>������>]�m�RP"?�_xZ�,�>8�F� �>=�K��>�����>0�����>��0���&?=�j���>�d�4˟'?5������>=\�h&?e4��eC�>P�$xB�(?��q~�>�����%?a�QM\�>��c�f#?��x�>eĻ-9�>B' t��>�?Rd#'?�h��B�>�=p�c"?_���ĺ�>�o��Y�>�u�ίU�>]Y$��>9Gi����>�xcD�&?���bo�>='L"�j'? �=\r.�>� ��(�>�ր���>QR���$?H� nD�>Шv�c$%?��?��9�>��D��[&?W�^Xm?�>X4�i5##?�L<^\C�>�3X�Ze#? >�/�w�>is�����>[����>�GM |�'?�xc�M�>�gg��#?�ARs/7�>��U'��$?�W�_�>#�e"(%?\F�[�r�>"���#=&?�t�8��>]+�8,$?4��z���>q{�b��>.�����>W�\[�Q$?7�*%��>���x�%?AK�+5`�>@�M���#?���Țx�>x��$?�}�ߓ��>�41g�>����c��>��U 1�>[R�&ǻ�> ��^>�>T8����>�r�5'?�����>�:Xa�"?l�=lD�>1t�Ό%?i8 �o��>�a�1�&?֍}�g�>��FF���>P�ͳ4N�>�e ��"?�;)�3�>���}?�>���R� �> �c�7&?��q� �>=�Y���$?�EQ���>�`�m�$?�3�,F��>�תM��#?U�6���>3�!�> q�ܛK�>V$Cm�/#?�,��_�>�+ ���&?���j��>��W3�#?V�y(�Q�>C*K� %?��P���>��'@3X$?���ٽ��>�H��f)%?h'�f~�>��nN%?r�mu��>�̛0n%?BʴXNN�>�}b�Q�&?��զ�>�Q����>D���*�>#�m�z�$?ع.�V�>Pl^�&?�J]�b�>�{m���>rJN���>��^Z�$?ށ��<��>ۊ�9C&?������>�y|�Qy%?�H���>99U2W&?�_O\�>$��|3�>䐇7��>d�pn�$?Z��h��>Ph�+`�%?AV��^�>��n� %�>���C��>��s�[$?�ы짬�>NO����>@��>�>�gH�xh&?��L#���>.�U� $?�n�<�$�>Xr;N��%?�� R�>lM)�R�>ku���>m6����>'��N:�>j�23%?E�a!��>Ff�3��>����-��>��2��L%?�n����>�]��]��>��O����><���$?=�5�#�>G+�7���>5C� ��>��V��$?�ڗ1�>|\P d�>3���8�>�Mj$?h�% j�>�'���$?FЯcb�>��oFѽ>�.}�YO�>�.4G�!�>�w̧ �>�c��/$?�ey����>��Drg%?Z� ���>g� �$?Il�Mǫ�>���m)$?>QO=}�>0����#?d�&�>�-<�́%?�����>�� �_~$?l��(�>Q���C��>ة��@��>X��c�.�>E���#��>U�����>"qM<���>P�ҾP�>�?l^��>ZZ$�@$?��f5�x�>:[$J�>dDlj��>�bE%?�g�7p_�>�#�4hd%?�oc-�1�>�E�e�$?� }u_�>y���ο%?Ble4��>�S���$?Kpc����>�m|bb�>`ɡX��>��� .�$?<������>2Z�Ԛ�$?����x��>����||$?�g���>������$?����>:�Y ��$?x ����>�wSD�;%?\�ͺ��>͖��5s$?�A����>�r�ݞ�%?md��y�>�����%?�����>,�E��>�'o�\�>����A2%?;��*.��>��$�%?-m�)�e�>�|�͏%?z9��ݒ�>c�B���>�T��# �>��C�2��>�]g�>�7���j%?R�H�R�>�?粱�%?uwL5|U�>�67�ڇ$?� 7��n�>@ɢ�I�$?����:�>�Pk˜K�>�0ǖ�w�>��5���$?����.��>³��V$?�Џ#�>���ٜ��>k, :�^�>ҹZ�8�>mz�j́�>B<�q�q%?]/�*���>�Fb��%?� �� �>ż��b�$?��o���>f�C�T$?�lPQ��>@���Ŭ�>�I���>ɹ4y��>��\Y���>�ͷ�%?}Vřh�>eCH�|_%?HJ�t��>6GṤ2%?��6x���>�"�� �>������>��I �>!�E��>]�M�h?�>8�R�}B�>D����$?ѿ<�3w�>�!J��>�X�kU�>89\4k��> n1���>����iU%?���k��>LJN Z�>Eٗ F�>���R\�$?����K��>�WN�˞$?"��"�>b�Y]H(%?�Dۉk�>Y�l�\�>��=m�q�>�C�:��$?�@c�y�>�rw��%?����v��>ZU��g�>���S���>.���1%?�[�u��>3��7]H%?��~^%�>���xf�$?+��*0U�>�F�T'�%?=�* ��>Ċ���>*��Nc��>\�z�=�$?��k8w�>\��=*%?��Á3��>�b��f$?ܩE�[�>�v\v9;�> 9QbA��>�����1%?n�iɰ��>!=��%?�]<6B�>8����$?W��}e�>&K�Ć�$?��p3+)�>H���?�$?9U�����>����$?�� < S�>�E^�<%?C93g�|�>@9>ȇ�$?�+j6 �>f�c��$?�>�����>qq=~�N%?���9�>�W�[V��>NC��e�>Bד�㠧>�L��?غ>Ʌ>�6%?z��;g��>t�]KI��>4%:�MԢ>.��E��>m)����>�5�O��$?�3� �>���:�$?���T"��>���nC��>� ���> I�;a%? j���;�>�;}��$?.6�՜T�>e�xm�w%?,/3MJʫ>��&�~%?X�=���>)�����$?/��D�>�>����]�$?��C� c�>�\3Ը$?�j�E�>0����$?��MQP�>�LO�)�>N & ���>�Yi��>הQ���>!���$?�� �}�>��^*�>���ݨ>�M7`F�>��S^��>�1V�L%?#��>���$?�(��ו�>pG�eqA%?V���s�>|�)�P�>�õ0���>���?%?bw��ճ>1DJ�{��>/���Ϥ>F�y�8�>�W����>�3x�%?0�XQ$��> ��h�$?¾�B��>�}���$? bq���>� �}�$?N�I�hg�>n����%?������>@=�d��>�q�`E�>ҳJ�t%?�=�.�> �v9�ǡ>��n���>�R�t44%?>�.��8�>t�����$?⺲pJ��>ܽ_�{2%?d-�`�m�>��u��$?�]�y��>�Mw@�$?a��!d�> +Λ-%?��~K���>& Z�I��>ᠼb���>vN��%�$?L*ڄ��>�3�Pg9%?C��58:�>�I�9i�$?*�#�ж�>��Qpv�$?���w�>r���I�>�pE�r�>x�Đ�ݰ>� lP��>&�OV3�$?��)�!��>��ђ�f�>���>P�C��%?G>6H���>�"&��$?�֧X��>vM��)��>h;�ճ�>.��2a�>����!�>Xh~8%?i �8��>TO#�$?h�ߍ8�>���>dt�ȫ��>�4���$? �>�/ �>�=�r%%?E� �K��g�$?/�hM9��>��X�;�$?ИF1 �>�Lx�%?|��1KҖ>�x�l %?�M�6�{�>�'�X]�$?h�!72�>��� %?Kl��'�>$���,�>�쩤O�>-Y�7�>�2�,�8�>"���^d�>�����ų>TO�z��$?L�fb���>��}��ʲ>D��C:n�>�,��%?}IKd�g�>p��U�>�Z��Ke�>\ �o��$? &�V�>��rZ�>,��Y���>�:�K��><�f��><`CG��> ����>'Æ�u�$?��"���>ф0��%?oϟ��>��\`�$?}�Z?@��> ��A�%?(Ŧe�>r��M%?ߠ>����>�q+�%?�bk��8�>�v "���>�Q����>�顽�$?�K�@��>�n�:��>(��EǴ>�(����$?�Q��ť�>�A)&?�$?�����Ӯ>���f� %?��7y��> }��$?�c���>�S�� M�>��]�-�>~��F %?�|�+[�>�%�N%? �V�9�>,���!%?0���>����$?m�s�-��>�1�Q��$?��&cp�>��-o2�$?$��*�T�>x ��D�>\pM_j�>�*!Q%?�ȇ<�ӊ>�J���$?N����>%�9�:�$?��~e�%�>�[�w�$?��_Y��>V�ҁ�$?5���5φ>3�����><3�" �>�Gc���$?M��V�>J�n ��$?�e q�@�>������>Y�W}.�>�����>�� N��>T��u���>� ��N��>%&����$?o���͓�>�IL���$?g�#�N��>���}%?v{����>��%?zE�t�F�>W��%?�r�w}F�> N�&'}�>�B��VG�>��9(�ҙ>���)�>!_�4�>Qsc- �>,Ր�$?����A�>F�1m��$?ʰ��`�>�p�&<�$? ��tY�>�-ُ%X�>adω�>����$?��*aH[�>�pS�+�>�%���o�>��~�Q%?��g�J�>_�ȁ %?�O6+��>�c'� %? (�4�>\X�/��$?��~>��>���$?��N�㝪>_��_���> �|eV��>ln����$?( Y#̢�>Ś�4#�$?P^�n��>j��x��$?�N��[��>�KӤ�$?T�l�g��>p0�G�>����o�>�謹�%?N_�;ZP�>���,�>�k�q�-�>�r�*��>�������>�1��‚>��_����>��m� ��>`-�l �>s����%?���� �>p�Q��$?�8�$��>�J�?�%?�,��D>��Uc�>[:r��>D���n�$?LBI�܇>z{��%?�s�AZ�>�ǒ��$?��U8Xd�>�XR�& %?���n��z>�$��x>dC8XDS�>�'��!ޗ>�n[hq��>�P�:�$? V��U�>�aú��$?���,�/�>����=%?����¡>��\O I�>G;�hb�>ؚB��$?��+Q'�> )�]��$?�/�ye�>�} ���$?���ʔ>ɓ>Ȗh�>ڽo�#��>$��w��>��#˵>�>�lm�>�$?���e �>��_m��$?� ���>�;v���$?�&�|X��>�ؽ��$?���c�{>���@D%?r�r��W�>�gϚ%?o�����>�R��Bx>�����>i���;�$?V9��b3y>��%?�xyZ��v>X�b���$?_` F�>'�M��$?��; 6�>#�)���>��}L|Bt>���>�2~�>��� ��>e;�(Gv>5�6*z>"X�Z���>c^�/�`�>=s��>H>�I�$?u8@3�a�>j#?��$?�R?y`2�>�Т�$?zAJ\�S�>����m�>��Mf��>���2��$?=� O�x>���C�$?�q�lH�>�Ñd�%?J�k/���>�����$?�ʚ���v>��X�~�$?�q��?v>�+c���$?F@@�7|>p�[_��$?$ø|�H�>��/��>� r�`{>��(�.X�>a=�sY�>������$?"��)/]�>dV��U�>�8�;ݍ>���k���>�JG�v>�G/P��$?�S��Ä>�-~�SȄ>Y�&a�7�>��q2%?��w�܃r>�y�%j5p> G�P��>�G���$?����I�>�t}%%?ƹ�'M��>�T�Q�$?��mΕo>J;E��w>� %n ��]�$? ��y��>�;���$?��3yV�>����$?Mk+��>�Դ p>�E��-N�>����$?�C<֑�>����Z�$?�;�v$��>��ħ'�$?�:`�j>���$?$yP9A�y>�볕�$?5�' |��>��PD�$?`���l>+]�.�$?��sT��>�fQ`�$?��V��q>�rB$�$?� ����>�k��t>g� DB��>(c7��"�>rS�6,�>tNZ���$?��˺:��>�'��~�$?�S ���>~�����$?&�E�ō>:�:��$?~ps0�?�>Tjbfp�$?�!$�k>H -m��$?,�4=�>� �Z��$?�H'\�i>E�B�~D�>h��Ym=�> �쮉[�>r^�;�e>&��$<_p>p5(˿>������$?p��Lr�h>=o��5�>|B��d>��k+��$?�=���>�:�^��f>��p2}j>\{����$?c����l>e_�t��~>~#��ž�>�v��<�$?&b:5;f>?q�/+�$?q� h�>B&$��$?�Y6�>)�T�$?J�m��u>��8��$?73���}>,5N��>ح>\�&v>*�$?��>x2��><�^ ��$?@S9�j�>�A���$?!gZ��I]>�����y>}���c>������$?O���r>���Z��p>Y?}�&w>�jV%Ta>���q,y>������$?LuhKx>֒�g��$?��$8*�]>�^k���$?m�b��z>�ϝc��$?� �`>���o>����]>����6�$?X�����>�G= �_>� ���>b(R���$?��(:� {>�:��v>�z۽�y>�5���$?�̄W�a>"�����$?^�*~c�y>�;pӟUa>�I���_>X�m �$?Zh�@�n>n8- ��$?�.�QY�m>�t$���$?�`Z��3b>N�E��$?$� �JaX>��@b��$?����G\>�h����$?�:f�|jb>b��{�$?� �klt�$?�;��Wpt>D8nd$�$?�_��lOy>����g�$?�$��Pj>BN��1�$?�$��q>�s��w�$?���@›S>�ʎsU�$? :Mr�W>݅���s\>(��q>Z�d/�h>^��(��r>DA�5��$?��n�c>Ӗ�a�$?�t:��Ls><��*�q>a�M�2n>�p��|�$?�l��y#W>��*O��$?zQ�7p>�#M8DP>�ZP�7�c>�Q��*�$?È��ѧT>J�����$?2��_Yn>�>mO�O>@�?q��T>X1�z�$?T%�%pHf>� P���\�$?�UTi.Mn>�X����$?f���=CP>�����$?�L���Z>��d�$?�=�D��d>Ȏ����[>7޿F�;i>fσ��Bf>j�EH�UM>�0�,{ n>�97�xuF>7e:Z�;M>�����l>����]>���5��N>4�H$3�$?��&�'D>���$?N��8I>�$M��$?�<�a&E>Xk���$?�Ѹ#Q>���̜�$?�֞��F>�ۜ���$?h��R�Y`>Of{�d�$?�E]*�'B>c�Nt.T>��M��[B>��� F>Z��̯ �د�M7>�v:�9�5> "v%��$?v�����7>(�T��5?������>�?�<�{2?�;$�:�>�HB348?#���\�>�(~[�\-?t�s���>�%~�0?��A��>�Z,b4?�ㅝ&�>����b�6?hbG����>z����3?�͗b�?�vƋ)9?�#R�jq?���6�9?s��^���>̆I�Ç4?0����?"���q6?�E����>�,0?���Z��?: ���1?�| +��>y�␁p5?�^|�b(?`�y51?�ؠkP�?rG��X�7?\{�>��>�eu�n3?ژ�<�l�>ok��S.?��#�|��>����1?Xo�bO`?X����H1?�86X���> �p9[�+? 5M�]�>����/?��?���>r�8�1.?<�G�j�?�*��ӟ8?�.���?����~5?�S����>O� �L6?�n�}"�?��H!�7?æ�&�?,��P�4?x�%3b�>�>o�i4?�%z��>3�S�1D0?8�W��M�>D(�6ʎ+?`�A[?\����+?~�� wC?�~��T)3?�!DU/��>�q]�.1?5}�fl��>xǍ�h�2?/V��R?�O8�Ñ2?А�lU��>Zt!�q7?�)Bj���>�S~$?7?���d���>̒���t8?P�)��>�J���9?���� *? �DPL�,?��E>?��U���7?f� h��?��)�-?��՘�>|�d�sB7?��r����> �0W0,?u*�F.�>5 ��9?�o���+�>N��o�l/?����g��>�`��C�9?�b.'���>�gZ�&�1?h�8��>�����F9?ĿR�?#��7?:븕Q��>�ͭ�#2?4w�M�5�>D��7�6?���+�Q�>~1j�0?:�qE�>R��C-?=��a�>���[8?�9�]?"q�?s1?���?Z l2�8?�����>xCnS\�.?��L�8�?~\`.?ʋ�P��>�9bR�9?�X��?�!Km�8?k�Q �#? xмV�0?S>�?����=9?�� �J�>�(Z9?�oR�u�>lp�� �0?��9�Z?� �Ӗ 0?�;X�w�>��]�6q1?}+�+���>���}i5+? ��H�>���� `0?����y�?d�Y�5�.?w-h�FQ�>:�:�1?^o��O��>AOU�M+?��j_���>J� ��"8?�L7��>bp)PǺ7?��/����>�0v�X,?�,WcK��>��q�y�9?޽d���>���K��,?=x��,�> ���7J8?���)���>tlzT�s0?��bT��>ԙ�.?������>�7r���/? �4?�vg��-?^� �?*Y@���9?����yj�>�N���8?~/�yn��>VJ��8?�_��>��>� �C�0?"bi�x�>��'c1?@ ��U�>7TE�7�0?�U��>=%��0?���N�~�>�V�++?] ���\�>�8�#ޅ/?%�Q:#�>�9 �?�-?l�h�E��>�4�L�21?����g��>P �6��0?�j9��C�>�s1?�0���>@��Nd-0?����� �>�,nj��0?F���-&�>�'���/?�����>� @$�,?4������>�*%�R/?��(W �>�P� K�-?Y~�/p3�>G���8?�UE|�>x})e5�8?�B�e��>�$8n��-?r�uC�>�8�Y�+?��C���>�i)�h0?�i1(�J�>̽�m��9?�4 ���>���m�,?����>��Ud!�-?n,B&p�>��9��.?��0�>@��"=b9?4w�yR�>m)4�/0?�Hun7m�>��k���.?�6*�B�>���o��9?�ȏ(���>F��S9?}��9ڂ�>y%s��9?�l�|ʲ�>o�L��0?��� ��>j��eՄ/?��~�!�>��H7WP9?Z%��>J7��<�8?X�M� �>̚/��0?ú�Ys�>Ȳ�ա5-?��Vr�>�N��{9?��d�e6�>�P�O��.?XD04t��>4^��P�9?��P���>-X[��40?�9�;M��>�= DX.?��؄�>.Q����/?`�VV���>8�B��0?$Za�>A[��s0?�A2��>5�!��.?S�[@���>,� v&�9?5�����>UX�U&�/?\��/�>+G}�;0?L�B�b�>����.9?�3��a��>MGvֳ:?#3�>�>\�w ��-?�<73a/�>�q����9?�T�k2p�>N2JWW�0?�Eo�Z�>׉״~k0?-\����>�xTU^x9?B�2���>�ʖ>�.?�j��]��>��I�D.?��(y�>|,U�.0?��V����>>��=��/?��V����>��vK{�0?O贁N�>eu���9?8����>V�\ �0?|�Q���>"��-? �"�>!���kG/?�!9F6��>�*�� /?Z7 0�J�>�E]6�n/?��͹�0�>�w J0?f��X�>]��TT�.?�}��e�>�i���9?V!�çM�>SU��E0?���A7!�>{�7x�.?xF����>�L�q//?�>7B��>� �}^�0?� >"`�>�͍A�:?��7�n��>z�t"��9?�o�x��>���c��9?���� ��>�M{:?Nš �g�>�ѥĵ/?f���{�>�f�M/?0�T��>z-��:?������>�RA��/?��E�v�>����_0?�Z����>����ņ.?‚��E�>����6.?_s�����>�͘M�.?�_����>�%�9?/g8�N�>%�(�s+0?�O��i4�>pyم/?oHP���>���ܝU.?���H��>���1�:?�V�̫��>��c�/?‘A��>&����9?���r���>4��%<:?��#����>a]o���.?*�2|��>}c���9?ڙ��� �>=N���9?��0���>Rc����.?zj� (��>�ak�M0?%�j�̰�>5W��װ/?��S�*��>�=�Q�/?Q�[ɝ��>ƣ�w 0?)�� ��>=�(uE;/?sܨpĆ�>����E0?�_�'4�>�����/? �vs�b�>�$@pIT.?� N��>�X�g�*0?|L‡��>�a�x'z/?V�h~�f�>/A&�*&0?�DN\�>��%Ơ0?0�u����>[�Hц�/?��“���>v��*�:?”l��b�>�:����.?�,>��>J����/?�����>�@�'��.?��\E�X�>bm�W��9?F��f��>H��z&�9?���6�>{a9qc0?���H�>���t.?�*c��>�Љ��9?� �$��>�v���9?�zNw6��>�,g�ª/? ˇK»>�g�#��.?� c �Y�>��H �.?�e�� /�>xS�v��9?��R��I�> �uj�F.?s�w�%A�>���R�.?}�E (*�>�q�m0?�lH�i5�>��� :?�TR �>^� 5߮�5d/?0f����>�B%�_/?u����>*��6!/?�G�$�L�>��(&:? eg's;�>Fz,+�9?��M��W�>HEe #%:?Ӥ�m�>k�~3/?u�����>~��C�!/?�O��r��>��h��9?���K�>��΃�9?�1��V�>�5�^�9?%����!�>�?:?\��7��>,�j�y/?�K�S��>�BV�e'/?��C�ָ�>妞��9?��g����>�iv :?=�|���>G�`��.?h�0g�5�>�9/�/?�ϲ�BQ�>T��?��.?�w��}�>w�=�/?R�J�Iq�>9�Km��/?�<�l ��>".���/?Ų�ǖ�>�O羥�/?B��*�}�>���0?rؼ�$c�>��"��:?�>p�f��>���9?�uRj�X�>6@��Q�/?�݃R���>R�Jv�.?���2L��>"��0?W�p����>�tZ-FO/?�� Y���>��)��/?����>?�=� /?�rwc+P�>`��� :?Y�x��>�N���/?���@��>6D3$:?8�I��9�>��_/?�*����>l6 XK�/?���3��>ҭKE�:?v_����>�"��{A/?FOJM:�>������/?O#�,݅�>� ��S4$0?���#�>T��V:?!;��>�-V�r@/?�mͻج>�b��{/?l� 7�Q�>8{R��/?� �oؑ�>8���f(:?@''F-�>˰���.?N����Z�>�i��\�/?������>~�����9?�5�k4,�>~�Q_m/?0��]��>LZ�6:?� �^"�>m�����/?6�<՜P�>X`�e��9?�/ _�>d�$I+:?�hV�4"�>V ʃ��/?�f�$�>�ǔ}(}/?��2Q�º>�A�j/?�0���>��x%x/?���R�>� ��:?�EiN�ɤ>��]�J:?9�[�nN�>��W�i/?Ԯ:-�>�V�4�):?)��[ �>���C1*:?U)E��>(�5T�:?�$� ��>�#ޭ%M/?�W�_�s�>���/?j�Ê��>���/?PSL���>�6�/�/?��s*��>l'B�D//?�V���5�>��xlX/?���Zέ>v`zj:?*�����>�՛L��/?�����>���. :?c!�1�>��vl�-:?� p{��>�:8, /?X� ���>��q?/?u!�.�>�-.�B�/?��l���>v>�Z�//? R���>`g�p/?��@���>Z���/?Z�/�8�>N1]E;;/?�z�ۿ��>�t����/?�p��$m�>i�8_:?`� ���>P�3�:?.�Ҫ�>����|/?�0���g�>~�6��O/?��Թк>P!{(��/?��W����>�E�T�/?%�]��߶> ɲ�]/?�?z�1��>�uK�9/?�km� m�>&�(&0^/?�a0k�>0P��S�/?C���ZH�>�Vgg-#:?�V� �`�>t�� H/?H��*��>6oto�/?� �t[�>ǟXR/?�}mM!�>J8v3�/:?�{睨��>�+�r�\/?�7*^д�>s�Aw�m/?^E���>�>EW��#{/?�U��>4���R�/?�$L..,�>�K9��/?�0��>����q�/?Y"G水>z�r-�/? ��܎n�>X�6a+%:?J�d^p�>�Y1�0:?��H��>X;���h/?4ȯy��>�ܽ�.*:?�� n�>] �,��:?{���_�>AC��r-:?��Q�ћ>pk��R�/?���ti�>t��e2:?��.�"7�>��~3��/?�[��U��>.k��:?������>�J��$:?�� �3�> 8�m/?�[E�k��>a��8$:?��9!�W�>�аC�:?�8l)�I�>%���~/?��ݍ�>�>��'��K/?Wٹg~�>�Fp)e/?�l^"�<�>�O��E�/?-ޣ�S�>����g/?9���^�>��ū��/?d�)�Xr�>\cT-�L/?�;5\Ъ>�~Y�V/?�AM}�>n�O52:?��2�I�>�!�&�/?�� ���>�.��/?�@\?��>E�bq/?�.݊ú>`l'��S/? �H�8��>�����O/?��Q�Z�>����1:?˃B^r�>t�/?I��p��>җ��xv/?�)�.ڨ>B�%͑/?(Z��^1�>����n(:?Y�Ju{�>�;/�"�/?��%�)l�>��bp/?�o��2�>.WX:?�v���g�>a�M*�2:?�?+�im�>�^�[G*:?��O��(�>�(�ե�/?�ظmZ�>�"���a/?|�v9K�>u{� ��/?��]��>�/���v/?��V,N7�>J����^/??��Y��>RD���F/?4�]���>�e^�/v/?����,J�> �(:?���F�>M*ށ��/?�)l�n5�>��ΈX}/?�NP���>���$f/?�V&���>N��z`/:? X��IJ>�ڎ3:?Q� ���>d��/s/?֫D��̌>>�*Z/?}���θ�>��� �]/?.� Iܓ>��t/?Z�l�7�>v$y�P|/?f�loEM�>�a�W/?�����>�Gѳ':?AM-M�>u}L��&:?\$L�e�>s\��U-:?[:Q�Ƨ�>zة5@�/?�����u�>����.:?�H��8�>�&�k/?խ�?P��>���~�U/?�J�; ��>Q ��f/?`�S�0�>���3:?԰�.��>��-A0:?ږؙȍ�>Hه� b/?�}p۽�>o����/?v��B���>¸�9�/?&zSJgۄ>�'�1?j/?�h*�˃>M��E*:?V(�^?�>4R���/?_=�'X�>*��zz�/?~YL�-D�>ʚ�C�/?�*�a�?�>��A��/?�2�M�П>�)��f/?���*�>��f*0:?�J���*�>`��ኅ/?zy�G�> O �cw/?H&�6�>L�� w/?�%�4˸�>�B�I3:?,�Ҹ��>Ȥ��q/?ȗ �bZ�>�� �4l/?;��[�>��uQ�k/?&a_ˠ>�:k�%m/?ƲF ��>��g?�x/?P��-��>r�r q/?���6�>׸�[r4:?=�����>l��I��/?@+9u�E�>*[{I�4:?s8����>���+:?� ex5<�>�ܪXh/?��8���>�����a/?���AD��>`����/?����ۀ>�$�$4:?X� ��>9A�u2:?^bA>�ݜ>�K�[/?%��|��>��>|Y1:?�K6��> J(��a/?�d�v��>��L�t/?�^�7V��>�-�ߞe/?uȹ��'�>�5LFo/?���;�+�>%bI��/?F��,"�z>��}�|/?~؃*��>`L-�1:?|�渍�>4t� :4:?'�D�g�>D��m~/?��8b���>R�� �/?.]M�D�>v��IDw/?@���~�>� ��.:?]H4"�z>��6 t/?0�D�]�>�HQi~}/?������>��`-t/?����n|>6'�0:?�{�~�u>�V�1�p/?�C�|�ʖ>䊎��4:?=r{+휃>0�S/:?��,h�>�)�{Im/?��R~-�>��]cj/?ʥ�o*��>/)x�2:?�$�7�&�>0��G�d/?h1�:��v>?��|�5:?�=��G�>�����o/?�b>�(x�>�%�L4:?ԕ|A�>�����z/?p�����>@=T3\h/?��|�@+u>-8�W?v/?Y��˜{�>��,2i/?�ͨ���>:3�:�k/?*$��S�r>�"n-�/?BZf��>����rp/?��kzv>x���/?��U{,��>pؕ�ny/?P*�`vu>R����v/?�Y�|>��%#2:?��l�2Vn>V�>��z/?��r��>��ĩ�l/?"����>v!*U3:?�M��ܖ�>k��3:?�� T�zy>�:���y/?�>���>E���q/?�D��?�>dZ��rx/?x���Dž�>}�^5:?c;|ַ��>s5F�C5:?H�۲ ��s�.u/?��H��(�>-�)L�1:?!�ZN4ҁ>ޠ��Aq/?����r�>�ť��5:?�M� �>B9C��~/?_����m>dL4\%|/?Q��t2cl>u ?�@5:?����[q>�yFQ s/?5���˒>���[�y/?~�}�Dʄ>� �/?�Ә߻>�9U:q/?� � ˔�>bz�;4:?�{pS�r�>�W*�2:?GbU��@y> NK$�q/?�|���l>�,��m/?4)�֋�>䆙��m/?S��3�Nq>ܣ�bw/?�~Z��"�>�h��t/?_2��Nk>�4;פ{/?*b�υ>��Ou/?���}�>��`56:?J9�ʑ�>�Q�#s/?�C�]Qm�>��524:?w�U枂>��x�5:?^�H���~>���k�z/?}���ylz>��LJw/?C�%�m>��?I�4:?Xtџbb>�F�t�4:?p���Д}>���q/?�h(��>���^6:?l%o���>�+ix/?�]��6�>`Q�0o/?İ9�8�{>j�;��t/?D�csY�>�Q#�u/?� �e/�>r�06:?.e����n>��:�y/?V�\�D�>N�Y�Y3:?��uOi> ���v/? �<�>B���Wv/?�>>]>�r>�Q.��p/?���{^ g>�V*�o/?��jFQ�n>�p0�as/?.h��j>��R,y/?��Jtg>��"'z/?�� 9�h>L���x/?�Ļ0*k>���0�r/?���*Q~>�qT�n/?�l��^Z`>`�1�,4:?$���N�j> �~�5:? ��&z�>4�{��t/?�}����>F��e+x/?��d�?�w> ��v/?��U���b>��E/u/?����s�w>����l6:?�Q$�Ez>�a� '5:?e���v�z>�t� x5:?��(A��d>7�L�w/?c�m�Ҁ>�/��4:?zW����s>�7� 6:?J�n���u>��!�q/?��ܯ_�[>��&w[6:?>&�����>��k��q/?l}�v>]�Vx/?mY�\>K����s/?ݝ\�H0v>��}��s/?'�;Qp�> ��E>6:?� �a��_>�'Z�Zt/?.R�)V`> �� �u/?�&�N�{>z�10w/?՗X��Y>U�UJr/?$x1/��a>( v#u/?���X:�~>`�7Aw/?�C��pu>�d�S�r/?6�����s>�B^�5:?���ӳyv>֝�Eu/?�X���c>� �u/? g�wj>��y6:?j%�l�q>�k1��5:?/�hk�Q>mToFks/?'���v�Y>�c�Mt/?v���s>",�5:?�>��@p>e*/cW5:?`vO�S>C��5:?�L�d>h�ޟ�r/?W#�nTGl>R'D7t/?����W�h>Ʉ#c�u/?�AK9S>xt;?�v/?���R� f>HZW��6:?p��(�%d>V�o�|6:?/�F$�vR>��Cu/? >���fv/?��M��T>2k �r/?��/z/�N>���u/?骄���V>� �C6:?j�}}�5h>���Q�s/?a��B.I>�IL�-v/?�Dc2j>�>�v6:?���߲lZ>E6��s/?����b> �� /6:?���slJN>�F@�t/?�s��:�e>�V�\t/? -Űn�M>�{!ݞu/?�5U`��c>�X�v�s/?�I��uX>��%�t/?��;�K>2Ț��u/?���N�]>��V�6:?(�qE�NV>ҩi�t/?��I�b>��P�6:?l����MH>�߂��u/?�1Ǿ��B>~�+�Hu/?��Q�#E>�i���t/?B��q� X>|.2�6:?��!�o�>>;A�yu/?�hy�NR>��u/?<��jE>u|��6:?KQ�*�P8>-�M�t/?��'�8>vtxedg�  !!""##$$%%&&''(())**++,,--..//00112233445566778899::;;<<==>>??@@AABBCCDDEEFFGGHHIIJJKKLLMMNNOOPPQQRRSSTTUUVVWWXXYYZZ[[\\]]^^__``aabbccddeeffgghhiijjkkllmmnnooppqqrrssttuuvvwwxxyyzz{{||}}~~����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������!@�-?�!@�-?G"�_A?G"�_A?����N?����N?��l$GX?��l$GX?�T�b?�T�b?X%�o"j?X%�o"j?c���or?c���or?�ǤR.�y?�ǤR.�y?�APF��?�APF��?� �9�?� �9�?M"I��^�?M"I��^�?���i�*�?���i�*�?�IB��?�IB��?4�a+�?4�a+�?�]��W#�?�]��W#�?���c =�?���c =�?nuũ�~�?nuũ�~�?�F�Fp�?�F�Fp�? ��� �? ��� �?/�����?/�����?�P8�c��?�P8�c��?ho�zL��?ho�zL��?`i����?`i����? ��Ӿ��? ��Ӿ��?�?�:4� �?�:4� �?��i�'�%?��i�'�%?��z�+�3?��z�+�3?�AV'??�AV'??�h��`UG?�h��`UG?��VZ�P?��VZ�P?J���0 X?J���0 X?�����`?�����`?�וUg?�וUg?�@� sp?�@� sp?0mE1��u?0mE1��u?�H~?�H~?^�^i�?^�^i�?�������?�������?�3y�/̒?�3y�/̒?�q{�bw�?�q{�bw�?E�5_�<�?E�5_�<�?� yL6R�?� yL6R�?���> ��?���> ��?;6c�Q�?;6c�Q�?��FѼ?��FѼ?�xy�x�?�xy�x�?�:�O�?�:�O�?p�&���?p�&���?` �� �?` �� �?��[I��?��[I��?c�{��?c�{��?n�٪��?n�٪��?�Z�XS\�?�Z�XS\�?2�S�'�?2�S�'�?.0��>]�?.0��>]�?�-R$eO�?�-R$eO�?�T5��?�T5��?H�x�_��?H�x�_��?("�M���?("�M���?�� `[2�?�� `[2�?a�4h�?a�4h�?�i����?�i����?y�QГ��?y�QГ��?���l��?���l��?�1}J���?�1}J���?)zo����?)zo����?�5��o��?�5��o��?͒����?͒����?m�&����?m�&����?~��r��?~��r��?�š���?�š���?j�E���?j�E���?��⧈��?��⧈��?� d����?� d����?k���h��?k���h��?�?nbs8�m�?nbs8�m�?���dG��?���dG��?F�Ľ�J�?F�Ľ�J�? 2#Y���? 2#Y���?�a�&�H�?�a�&�H�?近aO��?近aO��?������?������?��͝cz�?��͝cz�?�z+I ��?�z+I ��?�?Qxۣ��2?Qxۣ��2?�P��nF?�P��nF?W���S?W���S?~�� ��^?~�� ��^?i�k+g?i�k+g?���?�p?���?�p?5r���w?5r���w?t��턀?t��턀?��j̆?��j̆?��=�?��=�?����K�?����K�?���Z_�?���Z_�?el���?el���?�Ѥ�}�?�Ѥ�}�?�Ia���?�Ia���? ����? ����?mx��?�?mx��?�?�ˊw��?�ˊw��?�Kn� v�?�Kn� v�?�>_���?�>_���?L�j ��?L�j ��?�v�-���?�v�-���?�h!�?�h!�?�?;**<3��?;**<3��?��9@���?��9@���?��˩ܣ�?��˩ܣ�?�?#�_�{�?#�_�{�?�����?�����?�������?�������?��`P��?��`P��?m�}��?m�}��? Mb��? Mb��?��C��?��C��?�} �B��?�} �B��?��S����?��S����?�5$X�?�5$X�?�?�N���?�?�N���?�A(��?�A(��?���b�U�?���b�U�?�� ��?�� ��?ڛTΤ�?ڛTΤ�?:��H��?:��H��?�˜���?�˜���?�Lā��?�Lā��?������?������? �����? �����?w+��;��?w+��;��?v]^d|��?v]^d|��?������?������?�?X�!ؐ<�?X�!ؐ<�?6�s�R��?6�s�R��?WD���!�?WD���!�?��l�s�?��l�s�?�K���_�?�K���_�?����|P�?����|P�?�|��S��?�|��S��?� $�w�?� $�w�?�>����?�>����?�?;����?;����?�j���5&?�j���5&?�r����3?�r����3?ʮ��b??ʮ��b??^�����G?^�����G?�s�Q?�s�Q?���;JX?���;JX?�/m_a?�/m_a?�d�y.�g?�d�y.�g?V�Bȷ6p?V�Bȷ6p?dg�Z3v?dg�Z3v?��I~?��I~?T"�� ��?T"�� ��?�������?�������?�ߓ��?�ߓ��?Sʨ����?Sʨ����?>�]! f�?>�]! f�?�p���?�p���?$���lկ?$���lկ?��n�ք�?��n�ք�?~&{�?~&{�?���a��?���a��?!�❲��?!�❲��?�L����?�L����?���� =�?���� =�?�*vR��?�*vR��?.z�5���?.z�5���?��쉱�?��쉱�?Azz�l�?Azz�l�?�¡��!�?�¡��!�?ӫ�*�e�?ӫ�*�e�?0����U�?0����U�?5�<_�?5�<_�?$o8�܊�?$o8�܊�?k� z4��?k� z4��?u$��D4�?u$��D4�?]6��i�?]6��i�?�}�Y��?�}�Y��?����Z��?����Z��?��o����?��o����?'u�1��?'u�1��?|����?|����?�(j���?�(j���?kO�Z*��?kO�Z*��?���g���?���g���?��Rq���?��Rq���?�^��*��?�^��*��?�7���?�7���?�0�ڎ��?�0�ڎ��?ky����?ky����?]��Wj��?]��Wj��?�?�!@�-?�!@�-?G"�_A?G"�_A?����N?����N?��l$GX?��l$GX?�T�b?�T�b?X%�o"j?X%�o"j?c���or?c���or?�ǤR.�y?�ǤR.�y?�APF��?�APF��?� �9�?� �9�?M"I��^�?M"I��^�?���i�*�?���i�*�?�IB��?�IB��?4�a+�?4�a+�?�]��W#�?�]��W#�?���c =�?���c =�?nuũ�~�?nuũ�~�?�F�Fp�?�F�Fp�? ��� �? ��� �?/�����?/�����?�P8�c��?�P8�c��?ho�zL��?ho�zL��?`i����?`i����? ��Ӿ��? ��Ӿ��?�?��tri�   �#$�$%�&'�"&��$��%&��%� �����#�� �� �� � !!"�� � !!"##���  '(�()v)*[(v���� � ����'�'��������������� ����������� ������������� � ����{��{�{������d���������� ����� ����������������{��{��{�� �d��������������� �dv�v[�)[vvd�[*c+7c+,K*+c-. ,-3,3K-�3. �- 7<c7+K<[c[k�d�����d�����������������R�d��R����R�������R������R��[<k�&�k&��R����������i���i��i��i�&q�\&k<\k&�� 7K7< 74 K<X&\q<X\i�Di��iDqD��\qX\DqzDzzDxzDe �;X# 4� 4��  3�434K/��/��0��0��/0�./01�23�12�1��2�2����������������� �#�  #4�� � #�;;]]e;XDexyzxyzye=xx=y=y=e;]]e�5;�#55*;*;=F=FF9F�**5#�5�� �� ����*�5�99F'9�'9���!'��'�!��!�������������������������!�!� ' '� �� ��� � �������������������_���������3O�O4R5AR45R34O56A67'6A6'ARCORO_O_��K�_���K���K��m��m����������m�����m�����m��������m�����������m��K�_|�|K����K������������k���k�K��K|�_|COCRr0�r||r�0k��0�k�����k��k0�Dr��0f�f�0XfDXrX0r3<C3C<D<C�'���'A7�'8��8�9��:�9:�78�89�;<:;��;=B=@<@B)M)lsb/slbs)Bl?blB>l<=@=>B>?lb@�?@b@A�AB��B��C�BC�DECD�F.6E6JUJ.Uf%r%t}fot%uW%fUo%WuWfoHWoWIuUHo.GUF6EFG.GHUHIWIJuLM�JK��M�KL��L�NO����MN�����N�����N���a�����^_ ���b�����ab�OP�PQ�Rbc�_`�`a��O�\]� ����_� ���������������P��`�`������ �QR ��� �  �� ]��� ^ �� �� �� �]^^�QQ�R�  �\\\�����������c~������������������������ ����������������������������������� �������������� � � ���������uJ�����K��K�����������������������������u����������������������Y��Y��g��g�����������~���Q����g���g��Q�����������g�����~����������������������������������������������������������������elmem�S~��S�mS�~S�gCbfblfgb~c�d��de�cd�eflij�high,g,Ch,i�I���|�/ImmI�C/bb/ll/mS|�Sm�|S�|��Q��Q���Q�����������������Q�����g�|��Q��������������tu�t���Y�����������Y��t����Y������Y��������������|(��h����������(|��(�h��h����t^}^t����^���(���h�h��(��(���h����^��}^���Z��E}��P�ZP��_�_Z��Z�_��Inw�w�M�nCM/MnIw�I/n/CM,C�,��,�?`N�`�awaBwM`�M`n�wwB��Z_B_�PE�PZp-EPZ�p�_j_BjBaj-PpE-s�Es�@�J�@VE�r�Vr@JVEr}Vfrr%}VfJV.�6�.J�6E�D������������+"�>T"HHT-T"@H+�>�+�">"�@H�T-Ts@�HT�s�OpO�jG-pOGpAOjaAjN0a0Aa2??N`�Na�2����2���0 LA0L2 ?? N 0N-GGOAOG�A1  L� 2�AL�2���� �  �L�:�11:�8:������"�+>�+�+����������������B�A���A�������������q��qb��q������������������������������������v�v�����������v������v�v�$�v$����������������$�$�)����$�)����������)������������������)� 8 88�:�1:)�1�)1�8 ��� ������������������~��������������������������U~�oj�opj~n�n~��������������������m�mn�lm�l��k���k�kl��j�jk�no�pqQqrHr8pQjQqYQ1jqHYr8Hs8FQYF1QUn�nU{I��I���I����I�����j1{Uj{jU�~U�~���������������I��I��;�;����������������������������������������������������`�����/bq�q��`�`���`�/q�;������������������;�;���;��y��������`�`���`��/��������y�����}�yT��}�}w�w��w��u/�cu�wc�w}�T�Ty�}��T��n���n�nE�1E{En{����y��y��n�FYHY8"H"Hs"81FgE1g�EgF#g#F"s(#�gtG�GiixzG�izE�tEt�z�zT�xTzTx���T��}�cwcup�xp�^c^cVWV�h��M�MhWVhWuWhsW/uh)s/WsBMM)h@@����� ��5�J,Z�,5,VZ,�VVZ^�p�9pxi9xZ^S^�9SppS�G$i$9i�LP�PtPGt�#�"�"(st(�#L#-L#�-�(4-2LP2]L2PGP]$G]S9oZ^S^$�99�o[SoS[JZ�[o?[�?[]a2]�$a$]a(t4 �4�--�2�-t 4�  a�2?�\\�a=?=J=�J�>J 5>>,J5,> 5 �� �� �����������������������D�e3�<�3<�Df��fd�XdfXDed�X d Xe� 3 �3�.ed. e NdNd� .������  �. . NNN�.� ����� ����������������&�%%�&�&%%&�TT�S&�S&SUT�TS�VU�U���U�V��W��W���Y�W�WV�XWYX��XY�Z![Z�ZY[�u�[��[���Z!�!�!6��+�� u�  �6� +�7�6�7!�6���*��*�����*�7� *���� �� � �� �*>7�=* >=??\ \a�+ + :\:\7=6: 6:�+� tu �+utb=bi=ikk q=ubYXqcpX3p!cp33XY Yq!�3�w1x!wx1NV0N>@"$>N0V1Vxc!x\cxV,x>$@0@0,V,\x)4X4Fq\)cc)p)XpX4qFkqF=k<u=<=F)�4�<F4�Fu<�<��)��4�)_��_��0,�_�,0)\_\,_�0@$�@�$'�'+�+7�78��$��+��5��8�EE�O�E�5O�8G5�GEOZ�EZ5%OO%Z��Z%5[GU8#B8BG5U[5GU$"'+'9+77#8#7+9'"9B#C[�BGU[%[�%KZK�ZK%^^%��K�K^jKj����^��BPBCPW�WgPgW&��&�j^�j���������j�j��&������������������������M��M�&t�WDt&Wt-DgI-PDWgP-gCIP(6C(I".:69:9":#(C69#(.">>AANN1aa1v�S�vw�!��w!�v1w�!�3`�3Y�Y {i kH ib2ibtl H{�Y�Y{�z3�`3z`���`�`z�z��`������z��z��d�{���{�d��{H�Hi�2bli2��H�H��tslf2l2J�������d/�/�����/��/d�d������������;�;��������}S�S}�a?~*a~?v�?avvS�S��Sv�*Na*AN.>AA*Q�.A�AQ?|~Q*e|e~|?�n���}��n��}�}��?}�e*~}?�}���;��;�����L����L���L�����;�������L�����L�����������T���/�/���������/��T��T�sflJ2fJT�fsyJf�fy�TJ��T����o��o��������������o�o������������o�������L���L����������n��u���u��������������������u�u�����n������u����� ������ ���� �)�)����) �� ����������n������������ �� � �� �  0:0P���0 �0���� �� �  ���)����������������������������������������o���o������������T��J��syyv��x�vw��w�vywx�yz�~d}~B9~d|}~9B }BE9d} �|{|�z{��{� BCB9C�9E9�C &�&# C�#C #&�z�z��xy��y����������������1�##1#�&�&�������&1�<#�1<�HM�RHM<HMWMRWFRb_gF/__/g/FzFbzR�b?g~.IOI�OD�I?�D?g?D.I�.+DID�FS_SF_FRRW�<�1<8W8W�8�FSS�P:�S:S8P�88P0�: :�0P�+�+ +D+I�������������������� ����������� $�. �$.O?V^V?~O�^�?^/ gg ~o/�zl�b�l/z�blzMHp�MvMpv�EH�v�Zl�lZ����l���l� /o V~o�� oxLo�V xoLxL���Z�=q�qZ��q�v=�p=vH"pE"H=pup"uq��q=����������q�Zq��Z�Z��Vx�L�xL�x;��x�iV�'Vi'\^V'^\O^O\$.$N� $�$NG\tt]�y��]i��i�i��]'i']tGNG\\'t;x�L�L��;���;������������4����4��Y���4�4�������=u{�=�={�"Uu"EQ"QUuU{{Y�QEdUQ�{U|Y{�{|��s����s��Y�����������������������4���Y�����4�������������[���[�����;��;�������y��[�����[���[����[��r��r��ry�����[�������������yr��r��y�r��������������������������������������������������������������������������������������������s��s���s��������������������������Y��s���Y�|U�QdQ���|�������|������|��Q�����������������V^Gb����6�-������^_6 H�-��-4FSFU�_F4U%=W<=� ��� � <NZ0 6-�77@�06=<WG�L��L�7E�-77EZNbN<\@7M7�M@SFS�6L%GL%HQ=%Q6HLH%L��M�@M_cV�Y��P@�P4SXV4XU4\<\PVXP�VW<ZGZb@PXS@XU\4V`G%Z%WZ\4`VY`��^�G^NYc_NcYN`N\`N_b_^b�eceY�ecYe�/��/$�9AF ��/�1:��1A/�: $9�5/:&AK&�A H&5�9 91:AK=KAF1A:E:�E&K=K=QHQ�������������������������������������#�������#����5�*����#2�#8��1�#2�&8�/2�2#�8&5858������*�*������� � �  ��$*$*��������������������r������������$�������������$�� �  � $�������������������0�0 0�����������G�������t��y�]���GtG�N��$��N���� � �����������e�|���|����������������n�n�����|���Qe�e|��.��Q��R��6��:�6:.�:I(R�(6(�R-hmDm�-IhD-m�]�t]�tD�M��M������������M�M��M���������������������r����st�s]t]��r�����r���������r�����������������r��r���������r���������������%��%������%����%�%6�%6*��(����������������������]�]s�]��s���m�I�h�IRh�mm����m��h�����s�s�s������������������������!�(��(����(�*6>*>��6-6>-�6*�3*3>�-h��h�->a�h-�5-ah�!33�>�!(��!�,3K�KT!3�3K-5a��a5�T5XaX�aX5c5TcTKe7KK7eTeTcXc��X����X��w���w�cA�c�Aw��w�������wA}w}�`�Ac�`kk7n@27eke7k!!,�,�����������������������,�,�@jJn`Jm2jn2@72nJ`kJknA��`���A�}A�����}�}��}�����}���������������`�`m��f����f���f�������������������������������������������������������������������������������������������������m��f�f���f����m��Jj�mJ��2@2�jj���m���j��@������������������m��������������'�.� ( �(�����������.� "��� �  '.' ," . (;�.��������������������"�"".,>��>������)B����!�'> �+',>�(+��( +! +��'BD �+�!+;�B(�;, ;�>I,B,;B>O�[]IJ[�?C� )�����D?R�������� ��T��?��I�!� !����C?)CD3OI3J3IO)?DB)D �C) CDO3DR��a�JT��[�I[I>OJ3T3RT?�TR?T�]a[J]�]d�dJ�a]Ja�d]�d� uq~/�xsrcom.femlab.xmesh.Solution[ʏQ�qSxpwuq~/G�C�C  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~��������������������������������������������������������������������������������������������������������������������������������      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~��������������������������������������������������������������������������������������������������������������������������������      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~��������������������������������������������������������������������������������������������������������������������������������      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~��������������������������������������������������������������������������������������������������������������������������������      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~��������������������������������������������������������������������������������������������������������������������������������      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~��������������������������������������������������������������������������������������������������������������������������������      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~��������������������������������������������������������������������������������������������������������������������������������      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~��������������������������������������������������������������������������������������������������������������������������������      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~��������������������������������������������������������������������������������������������������������������������������������                           ! " # $ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ ` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~  � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �                           ! " # $ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ ` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~  � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �                           ! " # $ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ ` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~  � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �                           ! " # $ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ ` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~  � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �                           ! " # $ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ ` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~  � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �       !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~��������������������������������������������������������������������������������������������������������������������������������      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~��������������������������������������������������������������������������������������������������������������������������������      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~��������������������������������������������������������������������������������������������������������������������������������      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~��������������������������������������������������������������������������������������������������������������������������������      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~��������������������������������������������������������������������������������������������������������������������������������      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~��������������������������������������������������������������������������������������������������������������������������������      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~��������������������������������������������������������������������������������������������������������������������������������      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~��������������������������������������������������������������������������������������������������������������������������������      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~��������������������������������������������������������������������������������������������������������������������������������      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~��������������������������������������������������������������������������������������������������������������������������������      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~��������������������������������������������������������������������������������������������������������������������������������      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~��������������������������������������������������������������������������������������������������������������������������������      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~��������������������������������������������������������������������������������������������������������������������������������      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~��������������������������������������������������������������������������������������������������������������������������������      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~��������������������������������������������������������������������������������������������������������������������������������      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~��������������������������������������������������������������������������������������������������������������������������������      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~��������������������������������������������������������������������������������������������������������������������������������      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~��������������������������������������������������������������������������������������������������������������������������������                           ! " # $ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ ` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~  � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � !!!!!!!!! ! ! ! ! !!!!!!!!!!!!!!!!!!! !!!"!#!$!%!&!'!(!)!*!+!,!-!.!/!0!1!2!3!4!5!6!7!8!9!:!;! !?!@!A!B!C!D!E!F!G!H!I!J!K!L!M!N!O!P!Q!R!S!T!U!V!W!X!Y!Z![!\!]!^!_!`!a!b!c!d!e!f!g!h!i!j!k!l!m!n!o!p!q!r!s!t!u!v!w!x!y!z!{!|!}!~!!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!""""""""" " " " " """"""""""""""""""" "!"""#"$"%"&"'"(")"*"+","-"."/"0"1"2"3"4"5"6"7"8"9":";"<"=">"?"@"A"B"C"D"E"F"G"H"I"J"K"L"M"N"O"P"Q"R"S"T"U"V"W"X"Y"Z"["\"]"^"_"`"a"b"c"d"e"f"g"h"i"j"k"l"m"n"o"p"q"r"s"t"u"v"w"x"y"z"{"|"}"~""�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"######### # # # # ################### #!#"###$#%#&#'#(#)#*#+#,#-#.#/#0#1#2#3#4#5#6#7#8#9#:#;#<#=#>#?#@#A#B#C#D#E#F#G#H#I#J#K#L#M#N#O#P#Q#R#S#T#U#V#W#X#Y#Z#[#\#]#^#_#`#a#b#c#d#e#f#g#h#i#j#k#l#m#n#o#p#q#r#s#t#u#v#w#x#y#z#{#|#}#~##�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#$$$$$$$$$ $ $ $ $ $$$$$$$$$$$$$$$$$$$ $!$"$#$$$%$&$'$($)$*$+$,$-$.$/$0$1$2$3$4$5$6$7$8$9$:$;$<$=$>$?$@$A$B$C$D$E$F$G$H$I$J$K$L$M$N$O$P$Q$R$S$T$U$V$W$X$Y$Z$[$\$]$^$_$`$a$b$c$d$e$f$g$h$i$j$k$l$m$n$o$p$q$r$s$t$u$v$w$x$y$z${$|$}$~$$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$%%%%%%%%% % % % % %%%%%%%%%%%%%%%%%%% %!%"%#%$%%%&%'%(%)%*%+%,%-%.%/%0%1%2%3%4%5%6%7%8%9%:%;%<%=%>%?%@%A%B%C%D%E%F%G%H%I%J%K%L%M%N%O%P%Q%R%S%T%U%V%W%X%Y%Z%[%\%]%^%_%`%a%b%c%d%e%f%g%h%i%j%k%l%m%n%o%p%q%r%s%t%u%v%w%x%y%z%{%|%}%~%%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%&&&&&&&&& & & & & &&&&&&&&&&&&&&&&&&& &!&"&#&$&%&&&'&(&)&*&+&,&-&.&/&0&1&2&3&4&5&6&7&8&9&:&;&<&=&>&?&@&A&B&C&D&E&F&G&H&I&J&K&L&M&N&O&P&Q&R&S&T&U&V&W&X&Y&Z&[&\&]&^&_&`&a&b&c&d&e&f&g&h&i&j&k&l&m&n&o&p&q&r&s&t&u&v&w&x&y&z&{&|&}&~&&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&''''''''' ' ' ' ' ''''''''''''''''''' '!'"'#'$'%'&'''(')'*'+','-'.'/'0'1'2'3'4'5'6'7'8'9':';'<'='>'?'@'A'B'C'D'E'F'G'H'I'J'K'L'M'N'O'P'Q'R'S'T'U'V'W'X'Y'Z'['\']'^'_'`'a'b'c'd'e'f'g'h'i'j'k'l'm'n'o'p'q'r's't'u'v'w'x'y'z'{'|'}'~''�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'((((((((( ( ( ( ( ((((((((((((((((((( (!("(#($(%(&('((()(*(+(,(-(.(/(0(1(2(3(4(5(6(7(8(9(:(;(<(=(>(?(@(A(B(C(D(E(F(G(H(I(J(K(L(M(N(O(P(Q(R(S(T(U(V(W(X(Y(Z([(\(](^(_(`(a(b(c(d(e(f(g(h(i(j(k(l(m(n(o(p(q(r(s(t(u(v(w(x(y(z({(|(}(~((�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�())))))))) ) ) ) ) ))))))))))))))))))) )!)")#)$)%)&)')()))*)+),)-).)/)0)1)2)3)4)5)6)7)8)9):);)<)=)>)?)@)A)B)C)D)E)F)G)H)I)J)K)L)M)N)O)P)Q)R)S)T)U)V)W)X)Y)Z)[)\)])^)_)`)a)b)c)d)e)f)g)h)i)j)k)l)m)n)o)p)q)r)s)t)u)v)w)x)y)z){)|)})~))�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)********* * * * * ******************* *!*"*#*$*%*&*'*(*)***+*,*-*.*/*0*1*2*3*4*5*6*7*8*9*:*;*<*=*>*?*@*A*B*C*D*E*F*G*H*I*J*K*L*M*N*O*P*Q*R*S*T*U*V*W*X*Y*Z*[*\*]*^*_*`*a*b*c*d*e*f*g*h*i*j*k*l*m*n*o*p*q*r*s*t*u*v*w*x*y*z*{*|*}*~**�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*+++++++++ + + + + +++++++++++++++++++ +!+"+#+$+%+&+'+(+)+*+++,+-+.+/+0+1+2+3+4+5+6+7+8+9+:+;+<+=+>+?+@+A+B+C+D+E+F+G+H+I+J+K+L+M+N+O+P+Q+R+S+T+U+V+W+X+Y+Z+[+\+]+^+_+`+a+b+c+d+e+f+g+h+i+j+k+l+m+n+o+p+q+r+s+t+u+v+w+x+y+z+{+|+}+~++�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+,,,,,,,,, , , , , ,,,,,,,,,,,,,,,,,,, ,!,",#,$,%,&,',(,),*,+,,,-,.,/,0,1,2,3,4,5,6,7,8,9,:,;,<,=,>,?,@,A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,[,\,],^,_,`,a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z,{,|,},~,,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,--------- - - - - ------------------- -!-"-#-$-%-&-'-(-)-*-+-,---.-/-0-1-2-3-4-5-6-7-8-9-:-;-<-=->-?-@-A-B-C-D-E-F-G-H-I-J-K-L-M-N-O-P-Q-R-S-T-U-V-W-X-Y-Z-[-\-]-^-_-`-a-b-c-d-e-f-g-h-i-j-k-l-m-n-o-p-q-r-s-t-u-v-w-x-y-z-{-|-}-~--�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-......... . . . . ................... .!.".#.$.%.&.'.(.).*.+.,.-.../.0.1.2.3.4.5.6.7.8.9.:.;.<.=.>.?.@.A.B.C.D.E.F.G.H.I.J.K.L.M.N.O.P.Q.R.S.T.U.V.W.X.Y.Z.[.\.].^._.`.a.b.c.d.e.f.g.h.i.j.k.l.m.n.o.p.q.r.s.t.u.v.w.x.y.z.{.|.}.~..�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.�.///////// / / / / /////////////////// /!/"/#/$/%/&/'/(/)/*/+/,/-/.///0/1/2/3/4/5/6/7/8/9/:/;/ /?/@/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/[/\/]/^/_/`/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/{/|/}/~//�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/000000000 0 0 0 0 0000000000000000000 0!0"0#0$0%0&0'0(0)0*0+0,0-0.0/000102030405060708090:0;0<0=0>0?0@0A0B0C0D0E0F0G0H0I0J0K0L0M0N0O0P0Q0R0S0T0U0V0W0X0Y0Z0[0\0]0^0_0`0a0b0c0d0e0f0g0h0i0j0k0l0m0n0o0p0q0r0s0t0u0v0w0x0y0z0{0|0}0~00�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0111111111 1 1 1 1 1111111111111111111 1!1"1#1$1%1&1'1(1)1*1+1,1-1.1/101112131415161718191:1;1<1=1>1?1@1A1B1C1D1E1F1G1H1I1J1K1L1M1N1O1P1Q1R1S1T1U1V1W1X1Y1Z1[1\1]1^1_1`1a1b1c1d1e1f1g1h1i1j1k1l1m1n1o1p1q1r1s1t1u1v1w1x1y1z1{1|1}1~11�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1222222222 2 2 2 2 2222222222222222222 2!2"2#2$2%2&2'2(2)2*2+2,2-2.2/202122232425262728292:2;2<2=2>2?2@2A2B2C2D2E2F2G2H2I2J2K2L2M2N2O2P2Q2R2S2T2U2V2W2X2Y2Z2[2\2]2^2_2`2a2b2c2d2e2f2g2h2i2j2k2l2m2n2o2p2q2r2s2t2u2v2w2x2y2z2{2|2}2~22�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2333333333 3 3 3 3 3333333333333333333 3!3"3#3$3%3&3'3(3)3*3+3,3-3.3/303132333435363738393:3;3<3=3>3?3@3A3B3C3D3E3F3G3H3I3J3K3L3M3N3O3P3Q3R3S3T3U3V3W3X3Y3Z3[3\3]3^3_3`3a3b3c3d3e3f3g3h3i3j3k3l3m3n3o3p3q3r3s3t3u3v3w3x3y3z3{3|3}3~33�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3444444444 4 4 4 4 4444444444444444444 4!4"4#4$4%4&4'4(4)4*4+4,4-4.4/404142434445464748494:4;4<4=4>4?4@4A4B4C4D4E4F4G4H4I4J4K4L4M4N4O4P4Q4R4S4T4U4V4W4X4Y4Z4[4\4]4^4_4`4a4b4c4d4e4f4g4h4i4j4k4l4m4n4o4p4q4r4s4t4u4v4w4x4y4z4{4|4}4~44�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4555555555 5 5 5 5 5555555555555555555 5!5"5#5$5%5&5'5(5)5*5+5,5-5.5/505152535455565758595:5;5<5=5>5?5@5A5B5C5D5E5F5G5H5I5J5K5L5M5N5O5P5Q5R5S5T5U5V5W5X5Y5Z5[5\5]5^5_5`5a5b5c5d5e5f5g5h5i5j5k5l5m5n5o5p5q5r5s5t5u5v5w5x5y5z5{5|5}5~55�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5666666666 6 6 6 6 6666666666666666666 6!6"6#6$6%6&6'6(6)6*6+6,6-6.6/606162636465666768696:6;6<6=6>6?6@6A6B6C6D6E6F6G6H6I6J6K6L6M6N6O6P6Q6R6S6T6U6V6W6X6Y6Z6[6\6]6^6_6`6a6b6c6d6e6f6g6h6i6j6k6l6m6n6o6p6q6r6s6t6u6v6w6x6y6z6{6|6}6~66�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6777777777 7 7 7 7 7777777777777777777 7!7"7#7$7%7&7'7(7)7*7+7,7-7.7/707172737475767778797:7;7<7=7>7?7@7A7B7C7D7E7F7G7H7I7J7K7L7M7N7O7P7Q7R7S7T7U7V7W7X7Y7Z7[7\7]7^7_7`7a7b7c7d7e7f7g7h7i7j7k7l7m7n7o7p7q7r7s7t7u7v7w7x7y7z7{7|7}7~77�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7888888888 8 8 8 8 8888888888888888888 8!8"8#8$8%8&8'8(8)8*8+8,8-8.8/808182838485868788898:8;8<8=8>8?8@8A8B8C8D8E8F8G8H8I8J8K8L8M8N8O8P8Q8R8S8T8U8V8W8X8Y8Z8[8\8]8^8_8`8a8b8c8d8e8f8g8h8i8j8k8l8m8n8o8p8q8r8s8t8u8v8w8x8y8z8{8|8}8~88�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8999999999 9 9 9 9 9999999999999999999 9!9"9#9$9%9&9'9(9)9*9+9,9-9.9/909192939495969798999:9;9<9=9>9?9@9A9B9C9D9E9F9G9H9I9J9K9L9M9N9O9P9Q9R9S9T9U9V9W9X9Y9Z9[9\9]9^9_9`9a9b9c9d9e9f9g9h9i9j9k9l9m9n9o9p9q9r9s9t9u9v9w9x9y9z9{9|9}9~99�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9::::::::: : : : : ::::::::::::::::::: :!:":#:$:%:&:':(:):*:+:,:-:.:/:0:1:2:3:4:5:6:7:8:9:::;:<:=:>:?:@:A:B:C:D:E:F:G:H:I:J:K:L:M:N:O:P:Q:R:S:T:U:V:W:X:Y:Z:[:\:]:^:_:`:a:b:c:d:e:f:g:h:i:j:k:l:m:n:o:p:q:r:s:t:u:v:w:x:y:z:{:|:}:~::�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:;;;;;;;;; ; ; ; ; ;;;;;;;;;;;;;;;;;;; ;!;";#;$;%;&;';(;);*;+;,;-;.;/;0;1;2;3;4;5;6;7;8;9;:;;;<;=;>;?;@;A;B;C;D;E;F;G;H;I;J;K;L;M;N;O;P;Q;R;S;T;U;V;W;X;Y;Z;[;\;];^;_;`;a;b;c;d;e;f;g;h;i;j;k;l;m;n;o;p;q;r;s;t;u;v;w;x;y;z;{;|;};~;;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;<<<<<<<<< < < < < <<<<<<<<<<<<<<<<<<< <!<"<#<$<%<&<'<(<)<*<+<,<-<.</<0<1<2<3<4<5<6<7<8<9<:<;<<<=<><?<@<A<B<C<D<E<F<G<H<I<J<K<L<M<N<O<P<Q<R<S<T<U<V<W<X<Y<Z<[<\<]<^<_<`<a<b<c<d<e<f<g<h<i<j<k<l<m<n<o<p<q<r<s<t<u<v<w<x<y<z<{<|<}<~<<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<========= = = = = =================== =!="=#=$=%=&='=(=)=*=+=,=-=.=/=0=1=2=3=4=5=6=7=8=9=:=;=<===>=?=@=A=B=C=D=E=F=G=H=I=J=K=L=M=N=O=P=Q=R=S=T=U=V=W=X=Y=Z=[=\=]=^=_=`=a=b=c=d=e=f=g=h=i=j=k=l=m=n=o=p=q=r=s=t=u=v=w=x=y=z={=|=}=~==�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=�=>>>>>>>>> > > > > >>>>>>>>>>>>>>>>>>> >!>">#>$>%>&>'>(>)>*>+>,>->.>/>0>1>2>3>4>5>6>7>8>9>:>;><>=>>>?>@>A>B>C>D>E>F>G>H>I>J>K>L>M>N>O>P>Q>R>S>T>U>V>W>X>Y>Z>[>\>]>^>_>`>a>b>c>d>e>f>g>h>i>j>k>l>m>n>o>p>q>r>s>t>u>v>w>x>y>z>{>|>}>~>>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>????????? ? ? ? ? ??????????????????? ?!?"?#?$?%?&?'?(?)?*?+?,?-?.?/?0?1?2?3?4?5?6?7?8?9?:?;? ???@?A?B?C?D?E?F?G?H?I?J?K?L?M?N?O?P?Q?R?S?T?U?V?W?X?Y?Z?[?\?]?^?_?`?a?b?c?d?e?f?g?h?i?j?k?l?m?n?o?p?q?r?s?t?u?v?w?x?y?z?{?|?}?~??�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?�?@@@@@@@@@ @ @ @ @ @@@@@@@@@@@@@@@@@@@ @!@"@#@$@%@&@'@(@)@*@+@,@-@.@/@0@1@2@3@4@5@6@7@8@9@:@;@<@=@>@?@@@A@B@C@D@E@F@G@H@I@J@K@L@M@N@O@P@Q@R@S@T@U@V@W@X@Y@Z@[@\@]@^@_@`@a@b@c@d@e@f@g@h@i@j@k@l@m@n@o@p@q@r@s@t@u@v@w@x@y@z@{@|@}@~@@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@AAAAAAAAA A A A A AAAAAAAAAAAAAAAAAAA A!A"A#A$A%A&A'A(A)A*A+A,A-A.A/A0A1A2A3A4A5A6A7A8A9A:A;A A?A@AAABACADAEAFAGAHAIAJAKALAMANAOAPAQARASATAUAVAWAXAYAZA[A\A]A^A_A`AaAbAcAdAeAfAgAhAiAjAkAlAmAnAoApAqArAsAtAuAvAwAxAyAzA{A|A}A~AA�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�A�ABBBBBBBBB B B B B BBBBBBBBBBBBBBBBBBB B!B"B#B$B%B&B'B(B)B*B+B,B-B.B/B0B1B2B3B4B5B6B7B8B9B:B;B B?B@BABBBCBDBEBFBGBHBIBJBKBLBMBNBOBPBQBRBSBTBUBVBWBXBYBZB[B\B]B^B_B`BaBbBcBdBeBfBgBhBiBjBkBlBmBnBoBpBqBrBsBtBuBvBwBxByBzB{B|B}B~BB�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�B�BCCCCCCCCC C C C C CCCCCCCCCCCCCCCCCCC C!C"C#C$C%C&C'C(C)C*C+C,C-C.C/C0C1C2C3C4C5C6C7C8C9C:C;C C?C@CACBCCCDCECFCGCHCICJCKCLCMCNCOCPCQCRCSCTCUCVCWCXCYCZC[C\C]C^C_C`CaCbCcCdCeCfCgChCiCjCkClCmCnCoCpCqCrCsCtCuCvCwCxCyCzC{C|C}C~CC�C�C�C�C�C�C�C�C�C�C�C�C:/��;3���D6W@�h���;3�r�*66W@6k���;3�o�A0�5W@�9;��;3�km��d5W@�*��;3�]P|�d5W@^���;3��-�C5W@���;3�F�|;�4W@MyYL�;3��/�Ր4W@�EKv�A�h1}����Ut@v�A|J#}�����6pv�A�� |�����t@v�AB}����v@v�AC�}������Xv�A���{����Њcv�A�|`}����k�@v�At�#}����Sb�(Թ�"H+8�e�l[�(/�����e�9������9��ny:<�G���pU=ki|�;3��VA�D6W@�M�;3�rƃD6W@��;3�g�s�D6W@[���;3�.|D6W@r[Q�;3��DvD6W@bc��;3�gi!nD6W@7L�;3����cD6W@�5 �;3�uUjUD6W@� � �;3� ��BD6W@óK �;3�9��)D6W@�T�;3���~D6W@.���;3�됥�C6W@����;3���ȢC6W@m�S��;3��B�VC6W@Q���;3�o��B6W@MH��;3����pB6W@A ���;3���?�A6W@4u���;3��/u�@6W@"K���;3�~��?6W@����;3��Ã>6W@��)��;3�N��<6W@�C���;3��h��:6W@ҳ���;3�ԭ �86W@�����;3����76W@o+��;3�2��D6W@���;3�GK�D6W@T��;3�ɦ�D6W@a��;3��2�D6W@����;3�-� �D6W@�{��;3�Ɵ�D6W@�Ny�;3�K7ȇD6W@ (C6W@II���;3�� �EB6W@i�#��;3��%h�@6W@<���;3�w�@�=6W@�4��;3�2���86W@����;3��%��/6W@�i��;3����� 6W@�Ly��;3��@W� 6W@ѷ�x�;3����%�5W@��?r�;3����\�5W@���o�;3����5W@� q�;3����s�5W@�D�u�;3��߀��5W@12�}�;3��/�q�5W@d���;3�"����5W@b'ٕ�;3�]}bl�5W@�*;��;3�h�k��5W@�����;3��z�N�5W@9y��;3�6��-�5W@1� ��;3�`��p�5W@����;3������5W@��5��;3��)���5W@�x��;3����{�5W@侫��;3��)B^�5W@ l��;3���K�5W@^��;3�Z��@�5W@^,���;3�gQ�9�5W@Q���;3�� �5�5W@��>��;3���#3�5W@ha��;3�L��1�5W@Zt��;3�i�0�5W@nl~��;3�.�c0�5W@�P��;3�2jo�46W@����;3��J��-6W@����;3��B0�6W@�g��;3��n� 6W@Ѥt�;3�G�j��5W@��]�;3�A���5W@$��E�;3����z�5W@p�e'�;3��(�5W@�v���;3�{���5W@u���;3��wõ5W@�I��;3�!�ڃ�5W@����;3�`s�G�5W@b��;3��؋�5W@�|���;3��T�´5W@�ڝ��;3�IGJs�5W@I*��;3��q�5W@��<��;3��{���5W@j�į�;3�Y (+�5W@���;3��k���5W@?���;3���Ա5W@,d���;3��t�5W@�JC��;3�$>�ί5W@��(��;3��7Lg�5W@�e��;3�5ꀡ�5W@)7u�;3��s�_�5W@KѰh�;3�E~�{�5W@���Z�;3��D��5W@T&jK�;3�fǞ�5W@�G�9�;3���u��5W@���$�;3�M�U]�5W@T�) �;3�6��5W@����;3���w5W@�a��;3�u�B�d5W@��T��;3���?�d5W@��z��;3�����d5W@��6��;3�PZ��R5W@�?'��;3���D5W@m�Jq�;3�MNm�95W@���^�;3��>NJ15W@��O�;3��$ZQ+5W@ &C�;3����&5W@�)8�;3�����"5W@��.�;3��!� 5W@^�&�;3�� ��5W@OJY�;3���uC5W@5d��;3�����5W@�;�;3��\��5W@�q%�;3���(5W@9.� �;3��H;f5W@����;3���~�5W@����;3��$�i5W@t����;3� )� 5W@�����;3��u,�5W@)g��;3�@��v5W@\!���;3��d@;5W@DHm��;3� +�5W@Z�7��;3��G�5W@�����;3�2P�5W@��0��;3��8B5W@�!_�;3��a�A'5W@{�29�;3����35W@uc*�;3� ⩢�4W@�����;3���>�4W@5l��;3�{�[��4W@ !���;3���XǤ4W@�Rh�;3� �0Ɨ4W@U%�R�;3�t9�B�4W@�����;3��^C5W@ֈ���;3� K�B5W@�_���;3��+�A5W@= ���;3��ˮ?5W@�����;3��K<5W@�e��;3��Y�65W@pgs��;3�D�{-5W@^t���;3���5W@�5���;3�h;�5W@����;3� ��5W@���;3��O��5W@�Ǯ��;3��v�H5W@��Z��;3��'�5W@�O%��;3�����5W@R��;3�S#�5W@�ڙ�;3��t�5W@2�8�;3��x� 5W@c���;3�tq�r 5W@ʻl�;3�^��5W@u!�;3�_�ME�4W@Q��;3�^k��4W@���;3�pIм�4W@�A�;3� ԫ�4W@q�e��;3�1̎�4W@�-d��;3�O�C^�4W@A}��;3�pϪN�4W@{�Í�;3�5Sګ�4W@P��o�;3��LJ�4W@�(�V�;3�H�Y�4W@�h A�;3��Ԯ�4W@�D�,�;3��@g�4W@2��;3�j��a�4W@Q��;3�s)��4W@39���;3�vPI�4W@!����;3���n��4W@EN���;3�����4W@=M[��;3���h��4W@�0���;3�[r�4W@�U��;3����]�4W@ ���;3�s P�4W@�% ��;3�ߠG�4W@�jG��;3�|pnB�4W@G�9��;3�;WV?�4W@�?���;3�v�=�4W@��D��;3�ɫ�<�4W@����;3�9S<�4W@R���;3���;�4W@��;3�vc�;�4W@S��;3��O�;�4W@�y��;3�꺀;�4W@���;3�\m};�4W@�J1��;3�>�=�4W@�����;3�5�A�4W@�O��;3�٫hE�4W@�"ө�;3��0$K�4W@�����;3�pg�R�4W@X����;3��D�\�4W@����;3�sasj�4W@�蟯�;3� pV|�4W@BuF��;3�f����4W@+���;3��J��4W@�9��;3�4c�ہ4W@"�&��;3���a�4W@!���;3��+�V�4W@~v@��;3�� ��4W@{�D��;3��;E%�4W@۟��;3� x_��4W@Q�=��;3��[}x�4W@����;3�ݧi�4W@�!��;3�L�\��4W@�d��;3�fi� �4W@B� #�;3��z�ȉ4W@�Y1�;3���̋4W@�1�=�;3���4W@���G�;3��C��4W@Uʍ�;3���.�D6W@*e�;3����D6W@_�.�;3�T��D6W@����;3���:~D6W@Dv��;3��@ yD6W@� �;3��}rD6W@�7d�;3����hD6W@=�� �;3�Z`w\D6W@~�u �;3����KD6W@�� �;3��t6D6W@}�K �;3�LID6W@���;3��~�C6W@,\�;3�Pf��C6W@���;3�/��|C6W@��%��;3�=��$C6W@�����;3�Ѭk�B6W@I�o��;3���B6W@���;3��g�ZA6W@����;3��E�c@6W@t.���;3��=a,?6W@*�E��;3��v�=6W@�����;3�$���;6W@��L��;3�`��96W@�y���;3��C$�76W@��H��;3��Fmd66W@K.��;3���D6W@`��;3�\��D6W@b���;3���D6W@����;3����D6W@�S��;3����D6W@���;3�\��D6W@�G��;3�=d��D6W@��g�;3��\��D6W@NB3�;3�O�*�D6W@' ��;3��R�D6W@��6�;3�gԄD6W@{�.�;3�+�?�D6W@W1� �;3����}D6W@|< �;3��1�vD6W@z�H�;3�8{�kD6W@T�;3�C�ZZD6W@9�b��;3���?D6W@�+\��;3�b��D6W@c�|��;3���\�C6W@P�K��;3��mC6W@����;3��'#�B6W@����;3�d�$�A6W@�}���;3����l?6W@ ׸�;3�̃��;6W@h���;3����46W@oK���;3�=��(6W@iU��;3���;M6W@�ŀ~�;3��w�6W@z�Lu�;3�`�u�5W@�T�p�;3��I+�5W@��o�;3�2����5W@���r�;3��a��5W@�Y(y�;3�2{c��5W@����;3�ە$�5W@o���;3� 2�5W@�)��;3���0�5W@}B0��;3���i!�5W@����;3�H ��5W@�W���;3�.�&̷5W@�;K��;3�8�)2�5W@b����;3�Qd <ж5w@���;3�yc���5w@fs���;3�[sil�5w@�zk��;3�vo�t�5w@�л��;3�{�f�5w@�p^��;3��j=�5w@����;3�w��7�5w@��#��;3�s�r4�5w@|q��;3�7a[2�5w@vk��;3�<�61�5w@��y��;3�lߖ0�5w@s����;3��,j0�5w@� ���;3�� ��56w@e����;3�k�o�16w@��ժ�;3���m�'6w@��&��;3�l�y�6w@�z5��;3� ����5w@x j�;3��|�\�5w@�t�r�;3������5w@��7�;3��,�}�5w@����;3�� "�5w@����;3�*]��u5w@ā��;3�d� �5w@����;3�a����5w@�!t��;3��z�c�5w@�c��;3���}&�5w@��k��;3�u��5w@e?���;3�ud��5w@�h��;3����c�5w@�n���;3��x�߳5w@�x_��;3��c}i�5w@ ��5W@�DJz�;3�� }�5W@Ꝏn�;3�{o��5W@_Àa�;3���5W@��R�;3�:�RQ�5W@��1B�;3���F��5W@5p�.�;3�κ�w�5W@?�7�;3�9y�5W@�n���;3�,�H~5W@�NU��;3�$�� n5W@f,��;3�(}~�d5W@����;3��:�d5W@x����;3�uq��d5W@>"��;3��g�d5W@��@��;3�<'��[5W@հ֖�;3�~��K5W@l��|�;3�|I�'?5W@A�Kh�;3���55W@�D�W�;3�_�r.5W@7��I�;3�j�a�(5W@�>�=�;3��v�$5W@݂�3�;3�@���!5W@G*�*�;3��� 5W@Z�#�;3�l�5W@�H�;3�b��5W@Y76�;3��ǃm5W@���;3��e}5W@`�� �;3�C�t�5W@R��;3���u"5W@q)��;3�ɥ�5W@%�a�;3��o�;5W@* K��;3�XAW�5W@�݁��;3��JI�5W@3���;3�`�\Z5W@-����;3�`/�!5W@�/g��;3�E!�5W@^'��;3��F��5W@)ny��;3� E�5W@���;3���zS5W@z�t�;3�YP�45W@�LK�;3�?��5W@%ڏ&�;3���` 5W@�����;3��?;Y�4W@GL��;3�o�� �4W@�:���;3������4W@?��z�;3���s�4W@�"\�;3��E��4W@K�N�;3��n81�4W@�ƛ��;3��πC5W@B|���;3��bC5W@�~���;3�f�DB5W@�����;3���@5W@�����;3�u">5W@�S���;3��ž95W@$E��;3��XI25W@�ܶ��;3���b&5W@�jh��;3�O�>5W@��w��;3�8���5W@�� ��;3��|r�5W@J�T��;3�`:�x5W@O����;3�c(#5W@�����;3�àsN5W@�`-��;3����=5W@�?�;3�V��5W@��8 �;3��j�h5W@Rsr�;3��C 5W@���;3�|A�5W@��(�;3��; g5W@~��;3����#�4W@����;3��n���4W@����;3��XV�4W@���;3��k�g�4W@7��;3��텚�4W@�J ��;3���Bʰ4W@�3ȟ�;3���-��4W@�>�;3��"��4W@j�c�;3�yUr~�4W@��zL�;3�ۜ�|�4W@܇7�;3�^��4�4W@�#�#�;3����ރ4W@�M��;3��_ �4W@t���;3��R���4W@�t��;3���< �4W@�����;3���kف4W@�y���;3�"mϥ�4W@�y���;3�7����4W@�ڔ��;3�ѱ�g�4W@�� ��;3�W�V�4W@t�g��;3�V�K�4W@���;3�Â�D�4W@u����;3�6��@�4W@����;3��b>�4W@X�m��;3�p�=�4W@��*��;3��A<�4W@���;3����;�4W@����;3�G�;�4W@����;3�.�;�4W@����;3�e��;�4W@����;3���~;�4W@����;3�j�|;�4W@�� ��;3���<�4W@s}d��;3�T:�?�4W@g�ۨ�;3��HCC�4W@��y��;3�KGH�4W@�J��;3���N�4W@�]��;3�Bk�W�4W@��Ŭ�;3�9w�c�4W@�Y���;3���ks�4W@���;3�-3��4W@�o���;3�����4W@z�η�;3����ǁ4W@L����;3��4���4W@��p��;3�;�k4�4W@����;3���b��4W@�����;3�!���4W@q6���;3����p�4W@wߴ��;3�s ��4W@u����;3� p��4W@\�*�;3�w���4W@w��;3��qT�4W@�5j�;3�� Q��4W@�H�*�;3���F֊4W@��8�;3�)��4W@fp�C�;3���J�4W@�S@K�;3�����4W@�Kv�As1}����:gJv�A�D0}����ۢIv�A�V/}������Hv�A-e.}������Gv�A�f-}������Fv�Auq,}�����Fv�AH|+}����y;Ev�A��*}����lDv�Aڡ)}������Cv�A2�(}������Bv�A?�'}����"jBv�A~8'}������Av�A�&}����|Av�At�%}�����(Av�AF�%}�����@v�A>%}����ݺ@v�Aa�$}����Ü@v�A�m$}����։@v�A($}����@v�A��#}�����x@v�A�#}����hu@v�A\p#}�����s@v�A[E#}����{s@v�A�7#}������Jv�A�0}����{Jv�Ai�0}������Iv�A�u/}�����6Iv�A�.}�����HHv�AF�-}����AGv�A<�,}�����OFv�AI�+}����BmEv�A}�*}����Dv�A>�)}����Q�Cv�A��(}����r�Bv�A`�'}����n:Bv�A� '}����"�Av�A�L&}�����1Av�AK�%}�����@v�AH%}����)�@v�A�$}����yb@v�A�`$}�����X@v�AQ,$}����_@v�A�$}�����g@v�A8�#}�����l@v�A�#}�����o@v�Aj�#}����{p@v�A�o#}����p@v�A/#}�����n@v�AÃ"}�����l@v�A�!}�����j@v�A�: }�����i@v�A }����Vh@v�A�%}�����d@v�A��}�����]@v�A�/}����.J@v�A�}�����)@v�A]�}����@�?v�A�c}����R�?v�A\�}����K�?v�ApG}����V�?v�A�}����q�?v�Ak? }����D(@v�A }�����@v�A��}������Av�A�h�|����NCv�A���|�����kDv�AT��|����_$Fv�A�&�|���� Hv�AC�|����#�Iv�A�>�|����t�Lv�A!B�|�����XOv�A���|����n�Sv�A�ĭ|�����_Wv�AD�|�����wv�A6��{�����t@v�A�c#}�����q@v�AZ#}����gn@v�A�"}�����k@v�A}� }�����h@v�A"�}�����g@v�Av�}����l@v�A��}����@s@v�A}����v@v�A �}�����% v�A�p2}�����u@v�AF�}�����s@v�A)}�����p@v�A'.}�����p@v�A�}����Yu@v�AG9}�����{@v�A�,!}�����@v�AW�"}����Y�@v�A��#}����ݎ@v�A�#}������^v�Aĝ�{����x�Nv�Ad�p|������Lv�A=��|������Iv�A�7�|����L�Gv�A�1�|����O�Ev�A���|������Dv�A�E�|������Cv�A��|������Bv�A?��|������Av�A���|����>.Av�A|n�|�����@v�A�}�����2@v�AR}������?v�AA }������?v�A܋}������?v�A�p}������?v�A^�}����$@v�AM}�����F@v�Aq�}�����]@v�A79}���� j@v�A�f}����jo@v�A�}�����r@v�A�^}����eu@v�A�G}�����x@v�A�� }����E}@v�A��!}������@v�A}�"}������@v�A�{#}����m�@v�Ae�#}����҃@v�A�$}����h~@v�A &$}�����p@v�A�9$}�����^@v�A G$}����=V@v�A�f$}�����h@v�A��$}������@v�A�8%}�����2Av�A�&}����l Bv�AGT'}�����Cv�A_�(}�����tDv�A �*}������Ev�A-}�����Gv�A��/}���� vIv�A�2}�����oKv�AF5}������Mv�Aƚ8}������Ov�A��;}����� Rv�A,�>}����+�Tv�A�A}������Wv�A�C}�����Zv�A4�J}�����I^v�AۂT}������]v�A��R}�����5Zv�A��J}����:)Wv�AIyE}����|WTv�A�wA}������Qv�A >}�����tOv�A��:}���� JMv�AϾ7}�����MKv�A��4}�����`Iv�A�2}�����Gv�A}�/}�����&Fv�AGi-}�����Dv�A�y+}������Cv�A_�)}������Bv�Ay_(}����Bv�A%E'}����{�Av�A?_&}����#Av�A8�%}������@v�A�'%}�����@v�A�$}����A�@v�A�f$}������@v�A�$}������@v�A��#}����،@v�A��#}����ϋ@v�A��#}����n7K@� BŐ��E>1 HX@�3��Apt>/d�b �����5d�Ӹ˰v��>a���3q���p���>NA��Yz�%Ո�T�>����ł����}��>Bg^�c����!�M���>���::����K��p��>S ��댕�r���]��>��CD}��j-P���>\>�W"j��w p�Ku�>oj3�桾�<�V9��>���^����؞: �>R+��\��Dwi���>~�������6i����>��?�N������ܖ�>�乕B����B��>�+�������M��>�/(|1���8,E����>z�H���������>e��/����Ӷ��z�>"���p~��#�P�?m�\���z��DuN� ?C�ćMzx�᎐��?�BCdw��;�U��?�Œt!v�� �?��� s�rX�/+"?>I��3�j�9l��$?��K�F�X���h�%?ct�b@l>H���'?�[ F�>�a*�"(?����>�.��/�(?�eL���>���:<)?\6�[�t�>�9�G��(?�,��>.M����'?#��G��>t��d�%?����ߙ�>�4�}@#?@E�κ>{Q��� ?i�k����>��>U<�?í���}�>���0j?s_]���>�����?'��.�7�>C�1D�'?�is�Y��>x㥟� ?y\�u��>oHK�ª?$o�� E�>��Ow}?;y0���>խZ 0��> A�l�>F��6Q��>���H�>5 ��>�=���G�>��^u�>ф�ߎ��>���N�>{'��%� >����_�2Po�Y>���t�Ua��'C} ��Ŧ�DY>�U�/�v�q��Ff����uQć��H����T�oQݻ���^��y5�����M�����Ʀo��7���� p�h��/��":���lђ�o � ��N ����cG3�� �i�����'����sj~�H���=��Y�]�k &8���q�ZB�(����pZ�����=��`�������n{r���!� �A��90)��}6y�{>��F8�'�7'���>���e&�i!����>� }���$�{�v �>��h�"�ɷ���> � � �;•r�>�F�O��&m5<�Y�>��Pc�����ݵ��>hT��V ���Z�>�Ƶ� 6��ؘ�a�>���Z�����R��> �������"�B�>u�z�C�����0�jO�>��g&��������>� e��G�O�X���>F�5��<B�[�>��>"���m�j���>d50&U����n�>?�lw��|���س>Nm��TF���x����>�\��2:�s��s��>qjT؃���3 4�U�>#��R��ᾩ��H�X�>{�kcܾ\5��r�>������վl���f�>�E�W �Ͼ;�ӗ;�>b���Ōƾ�{*����>�.���ɾ��j�](~>���#�賾���\�q>�JїW���ۓ�\!b>�R��,��TkM��D>�c�M�����>YL@�<9pp�5> ��tc�2���S��+g>T�R�L�F|�,X�>�cU o^��.V:f�>�@S*�Nk�$#�t�>Q�$��u�\7|Nǧ>������خJ+Ԕ�>�����C������Ը>r�S��؍��P�8�>Hmƥ�B����o����> K�������!Z�`�>�):���_��{�>��d�͠���ޑ�>a����¢���8�F��>K�9������M��_�>_�,�?�4����>s-�<\j�����R`S�>�tE��o���cD*�K�>���d1嘾���_�x�>�7�DÒ��X�V��>u��������}�F�>��|kL��� �W���>*'�1逾T2��(V?��jz|��� .�{?o��`y��U$€m?� ~a��w���:�?g�� �v���"�?�Q�t��h8� ?�� �3p�^[�#?�Q l�&`�+R��=�$?���M�V>���[#V&?W8�R d\�ˑ'?9� y�N�>Gct�(?�����>�Q�w5)?�i- ̴�>˶�|��(?*��LO��>]��k"(?L�&t�>������&?+h�9DF�>�)d��j$?����c4�>Ěg.�"?.F��ÿ�>k�$�d4?2Oa)�>�gL0��?_��e��>�� �w?&��<_f�>6V����?&1q��>��� �p?_w݋g�> �o2 ?�%3%\��>���q�?�sJ����>�_xE�?4�dj��>S��~:��>ܞ_�}�>��v�+��>HC��2�>=�=�[l�>n�廘ɑ>��Ҥ���>*q��֖|>׭��N�>���I�{�=\��_A=C�߈gv��>� �tc�Z ��.��2C��X>�:˓��D0�bY>%7�j/vo�4���'f۾D��s���m��O��s��浝��"�n?����M/�7����{Ne ��G�=b�b��l�,���H�iÝ�_h�V��v�����Di *� ��߸_= e�L�N#���؟�k���[KBH����$QC�=#.̙���"��D���8J,������Y �А'���S|�b �"� ����'$��j#%��a;pǪ�X|�9d'����6O��[�)�?)�cQ�������#Ly*�4��~┾Dt��*��B�ҙ��f��q�*��8}@S�tIǡ�)��H�Vr>~�s �(��\/�N8�>e��4� '�{�d�X�>]s �0�%�(Z��>��̨�#�J�˶~i�> ����1��ҟ���>%�f�W���-o�>�������x,]��> � �q� ���f:%�>�*5���›qcuӖ>k�G_����'��>�[Pz����NܭH�>�=Y�0\���++��>����޶�l���A�>9�!x$'���d�γ>�����?g�u�>��p�=��݅��>|Ls�z��B�L��>D7F]����,qKİ�>��@�8@쾲Ւj�3�>E�Gj��%����>i��+,��=���6ץ>u7�� ྟ�/�r'�>���پ6~w0�)�>��o���Ҿ�c�7Q�>�bD�B˾}��攋>�vv]��¾?�ń�݂>�c��X���:n�mx>��cxٰ��=�(�k>�1 �া[t�q&HW>V�X�͗�$���_�4>���H�v�Pf5��.>�r�%@y�>0{4_ �E>�,��>�F�"��?> �����>�w����>�=�X���>��Rz�?>�=M❺>t�A��F>�O��&��>�b��6%>a��$�Ρ>b�;3� m �D6W@Y�V�;3�"��D6W@Wx�;3��M��D6W@��M�;3�J���D6W@�i�;3���F�D6W@e�X�;3��Z�D6W@����;3��h�D6W@����;3�ޘ��D6W@?��;3�g�=�D6W@n��;3�SĆD6W@�d��;3�8���D6W@0���;3�/|��D6W@~YK�;3���|D6W@��l�;3�}��uD6W@)j�;3�d�nwD6W@B��;3���}D6W@5U��;3��'^pD6W@}�Q�;3��+�gD6W@�� �;3��KgD6W@i� �;3�B TtD6W@���;3�k,\HD6W@yI� �;3���MbD6W@6 �;3��jnWD6W@�� �;3�F��FD6W@X�� �;3��b1D6W@�X��;3�Я� D6W@p%��;3����D6W@����;3����=D6W@?�l��;3�>���C6W@�5���;3��+H�B6W@�4a��;3�����C6W@�}��;3��='�C6W@�<��;3�w���C6W@Ks���;3�ALzcC6W@�D��;3�ۭ� C6W@қB��;3�U�R�B6W@I`���;3�1<��@6W@�����;3�����A6W@�����;3��� ?6W@䉻�;3�����:6W@�݁��;3�1?��A6W@�����;3���:A6W@gS|��;3�P��8@6W@��O��;3�M�# ?6W@�kb��;3�I^}�6W@����;3��=r�46W@'����;3�%��'6W@K�v�;3�ɐ�U�5W@�ܲ��;3�� ��6W@]��q�;3���",�5W@ā�o�;3�du�J�5W@$"�q�;3�it���5W@"�sw�;3�w9���5W@P�B�;3��{��5W@'mr��;3���K�5W@W ��;3���;Z�5W@$g��;3�()��5W@{W���;3�P�Lu�5W@||���;3����-�5W@1���;3�Ͷ5W@$>)��;3��'&z�5W@)����;3��m�L�5W@�]��;3��"�$�5W@*����;3�#{@�5W@J���;3��03�5W@�=���;3���#�5W@�Rt��;3���'�5W@�����;3����5�5W@v�Ľ�;3��5�b�5W@�P���;3� ���5W@Il���;3��j2�5W@����;3�j"�5W@N�r��;3����5W@e����;3�kˈ��5W@.JN��;3������5W@,���;3�܎f��5W@�r��;3�ޒV �5W@�#���;3��[z�5W@�A���;3�CA�5W@���;3�r���5W@��Ϯ�;3��P�5W@\�Z��;3������5W@j����;3��GrY�5W@�G���;3�|���5W@����;3����y�5W@����;3��B=��5W@Ylj5�;3�W�� �5W@Z|�X�;3����2�5W@X9ff�;3�,���5W@՛vq�;3�����5W@�t�}�;3�<>�5W@Q�F�;3��$ (�5W@��E �;3��|wv�5W@��[�;3��و�5W@'���;3�Dgh�s5W@t�e��;3����j5W@�-��;3���i5W@����;3���B#=6W@�����;3�p�נ;6W@F����;3��A�96W@"�y��;3��/�R76W@����;3��R(66W@�����;3�k��Y56W@�e��;3��#�%6W@R�,��;3�co06W@�0��;3����6W@�!d|�;3�5s���5W@h��a�;3���[�5W@��M�;3�;K���5W@=��;3�@���5W@���/�;3��4Gh�5W@��a��;3����=m5W@�$���;3�Y5!Im5W@�-��;3�^��&m5W@�>z��;3��Ļ$^5W@RS��;3���[5W@?��;3���jJ5W@��?�;3���4�5W@�e�;3�\�d+5W@23� �;3����4W@����;3�Z�0�4W@$��;3� � ��4W@�Dv��;3�Oi逩4W@j� V�;3���9�4W@�Yq�;3���T�4W@5VL�;3�TԐ4W@KB�I�;3���N�4W@pB�;3�c��Ύ4W@�̂3�;3����-�4W@l'�;3�t�L�4W@�U1�;3���rM�4W@����;3�[���_5W@�X��;3�ۥ@R_5W@����;3�j��5P5W@ ��;3���DP_5W@KX���;3����B5W@���Z�;3�ֺ�/5W@ց"$�;3��zY5W@�G\,�;3�"P�p5W@��G6�;3����Q"5W@寜?�;3��� Z%5W@{��K�;3��^��)5W@Q��l�;3��l��75W@�!��;3���#�5W@����;3��g��5W@��v �;3��C^�5W@���;3����5W@9�2�;3��B:45W@Ȥ��;3��1�5W@�����;3���5W@�����;3���5W@����;3���(U5W@|�T�;3��W,W5W@����;3��#k5W@@���;3���y`5W@�����;3�n���5W@Ph���;3�(�UX5W@��6��;3�#s�/5W@�^���;3����5W@��Z��;3��R5W@lUP��;3�Z�"�5W@�n��;3�4]��5W@Y���;3�(6K45W@��S��;3�~�^R5W@� ���;3�]� <5W@�ň��;3�Ɉ�I5W@x���;3�]x;Q5W@*���;3���5W@���;3�Z仪5W@N���;3�:�@5W@,���;3�[;O�5W@�t�;3��CIy5W@J����;3�9�ˤ5W@�W�;3��\�� 5W@J�� �;3���F^5W@\Kl�;3��}3�5W@�Af�;3��5W@���;3��B�2�4W@Iyt �;3����}�4W@���;3�����4W@�؞��;3�6�E�4W@vh���;3�.����4W@���;3��X��4W@�Ԩ��;3�`JA�4W@wY���;3���U��4W@  �;3�E�͆4W@� ���;3���)ͅ4W@�����;3�_-��4W@S����;3���`�4W@�Y�R�;3�H���4W@ �i�;3�'^4D�4W@�=�(�;3�)^� �4W@ә�:�;3�6 Z��4W@]/��;3�k\�K�4W@�;���;3�1��‚4W@vU/��;3���5t�4W@�g/��;3��<�4W@�We��;3�dh���4W@��W��;3��O��4W@�\��;3��ܣ�4W@'y��;3�����4W@}<���;3�����4W@Ѩ���;3�ͅ�<�4W@n�߶�;3�����4W@-���;3�0�n��4W@[~��;3� ����4W@-nխ�;3�bO�l�4W@#p$��;3��"<��4W@�A ��;3������4W@��|��;3���q�4W@'L��;3��;GK�4W@�֦��;3��*�X�4W@�K���;3�6� ^�4W@I���;3�`��U�4W@��Z��;3�C')`�4W@�GV��;3���&G�4W@�R!��;3��I�M�4W@�b֨�;3�^/_A�4W@DP��;3�w�G�4W@��=��;3��Z4C�4W@N�{��;3����?�4W@Ս��;3�4c=�4W@��$��;3��W=�4W@ҙ���;3���GB�4W@" 3��;3�A�=�4W@?q���;3�ǗA<�4W@9Q��;3����>�4W@����;3���<�4W@[����;3��N<�4W@ (�;3��a��D6W@���;3�^�D6W@��;3���l{D6W@u��;3�1|��D6W@�.�;3��#�D6W@uc�;3�O�D6W@,Є�;3��p��D6W@ert�;3�l�݅D6W@��}�;3��+b�D6W@,���;3�QG�D6W@�=�;3�3*�yD6W@�\��;3��J�rD6W@!TN �;3��%�eD6W@~���;3���xD6W@p���;3�@2LD6W@?>�;3�{ҚrD6W@Yߛ�;3��$lD6W@5~� �;3��_�MD6W@�I� �;3�_K�dD6W@�h��;3���D6W@~7'�;3��!�ID6W@{'W �;3��pYD6W@��b �;3��v KD6W@��5 �;3��R�8D6W@f8��;3�?�D6W@E_��;3�h\6�C6W@?����;3�U(ZD6W@.[��;3����C6W@4���;3�D�#=B6W@�wj��;3��6�C6W@��w�;3�N��C6W@f��;3�Hޅ�C6W@�}g�;3��k%pC6W@/0���;3���"C6W@����;3���0�B6W@����;3���I?6W@�����;3��>>�@6W@�7���;3�8%}�=6W@��;��;3��P��76W@q2��;3�Ы;�A6W@�Ԟ��;3�]ա6A6W@�af��;3�Y���@6W@P3���;3����?6W@Q��;3�w�96W@��ʮ�;3��N��06W@����;3��I%�6W@�ڵt�;3���_��5W@��|�;3��4��5W@ɖ�p�;3�o ��5W@ (�o�;3������5W@��br�;3�����5W@|hx�;3�DX�S�5W@,���;3��?��5W@69��;3��8Oƽ5W@k Ǜ�;3��4�J�5W@�G��;3�+W���5W@)w��;3�� ��5W@f����;3��I�5W@�ce��;3������5W@����;3�MH�B�5W@�h��;3���5W@�Mw��;3��<�5W@�����;3�q�5W@�W|��;3�P��5W@%٫��;3�72V�5W@0+��;3�瘐�5W@O���;3���#�5W@�ؼ�;3�E��P�5W@�<���;3���{��5W@Gm��;3��o�5W@�]���;3�m�!�5W@�g���;3���E��5W@����;3���2�5W@l5���;3����5W@ �q��;3�����5W@��.��;3�\�k �5W@�(��;3�3/Vp�5W@V���;3�� ��5W@� ��;3��R-��5W@��ŭ�;3�=!Y��5W@Q~|��;3�R�V�5W@xf���;3�k�S"�5W@�4��;3�ݞ�5W@����;3���1$�5W@�%���;3�m^6Q�5W@�O,1�;3������5W@ԁ�V�;3������5W@h��c�;3� ��a�5W@�3�m�;3�)fԨ5W@�ǭ{�;3�s�ث5W@S��@�;3�ңd�5W@��t�;3��v��5W@�k���;3����{5W@�܇��;3��_�4p5W@�� ��;3���T�n5W@}d��;3�+�Ed=6W@�_���;3�p�I<6W@ ����;3��t�h:6W@����;3�B��z76W@�P���;3���o!66W@��׮�;3�<�#+6W@i|O��;3�qrl�26W@�L��;3�ҧ@�6W@ibك�;3�-ۮ�6W@�)�e�;3��E���5W@��tU�;3�_�V��5W@�m2�;3��8lY�5W@��O8�;3��D)��5W@z3 ��;3���+�u5W@�R[��;3��zDu5W@�rͮ�;3�N=�CW5W@��q��;3��a8�R5W@�|;F�;3���5W@��k�;3�s�zv/5W@Bӡ,�;3�?i��5W@u��;3��՘?�4W@�u3��;3�I�h#�4W@�Zq��;3�p&�E�4W@�fjY�;3���7��4W@ϲ�z�;3����4W@ #OL�;3��)�ϐ4W@_,$G�;3�E�:��4W@Ǡb6�;3��LU��4W@]X�+�;3� Uۊ4W@���;3������4W@ Sq��;3��n!�Z5W@0����;3�ʡͣY5W@�ئ��;3�'��M5W@�p��;3� �M)A5W@)t?W�;3�d]&4.5W@��!�;3��Ǿ5W@q}�)�;3�r��5W@p{4�;3����!5W@�7Y<�;3��e�%$5W@���G�;3��L5(5W@E\ch�;3���u55W@�%�;3��)F�5W@^��;3��V�5W@8� �;3��?��5W@��8�;3����a5W@�O��;3��5W@����;3���z�5W@�R���;3�����5W@����;3����5W@M����;3�L'�e5W@�d��;3����E5W@�"<��;3��J8`5W@`����;3��A~n5W@ʈ.��;3��|��5W@毥��;3�ڄ]i5W@ꌾ��;3�o�G$5W@_E��;3�ͽ��5W@y����;3���^5W@k����;3��zw�5W@�P���;3����5W@v����;3���%G5W@����;3���`d5W@��;3�DH5W@<*���;3���Y5W@�H���;3�#�;a5W@����;3�:YL'5W@�R���;3��Kr�5W@�Jh��;3���45W@U~A��;3�ѸV5W@ �4W@� m�;3�A�0�4W@cJ��;3����Ȅ4W@����;3��e�4W@~�fO�;3�b��ފ4W@%ٕb�;3�P��C�4W@� �%�;3� ݩ��4W@��<5�;3����^�4W@j�?��;3�f�s�4W@�*+��;3��fԂ4W@t����;3�7J���4W@C��;3����&�4W@LK��;3�����4W@[����;3���܂4W@ �4W@M[��;3��b?�4W@����;3��rC�4W@qWk��;3�<�m?�4W@�^��;3�ފ=�4W@�9q��;3�I��?�4W@�� ��;3��(�<�4W@"����;3�@��e�5W@��_�;3��(�D6W@��Q�;3���D6W@b��;3���q�D6W@=2D�;3����D6W@jX>�;3��%��D6W@��o�;3�%���D6W@;��;3�Xh�D6W@{Z��;3�L���D6W@���;3���;�D6W@�a��;3�,���D6W@�^��;3���N�D6W@���;3�fR4|D6W@��;3��V�tD6W@�]��;3�dRgzD6W@�`�;3�M�D6W@��1�;3��0VtD6W@����;3�Z�mD6W@�R� �;3���~dD6W@�M �;3�x��rD6W@�O|�;3�)K�AD6W@ >^�;3���,^D6W@(� �;3�q�|^D6W@=� �;3�^� uH��;3���YG�5W@�h���;3��nƲ5W@�>���;3�;��A�5W@� K��;3�4x��5W@ ����;3��!!�5W@<e��;3���Ʈ5W@����;3���5W@(8)+�;3����5W@pp Q�;3�ܠ�Š5W@��s_�;3�����5W@�Zk�;3��,M(�5W@�ax�;3��/��5W@:M=�;3� ���5W@}��;3����5W@![S��;3���\[y5W@)�*��;3��FD�j5W@�����;3�*���i5W@je`��;3� ���=6W@_ ��;3�_��<6W@[���;3����:6W@l����;3��=86W@����;3��,�66W@_m��;3�)��i,6W@{�[��;3��v�36W@����;3�}J��6W@>�h��;3����r6W@5 qm�;3��u��5W@��Y�;3��.��5W@s �;3�() 5W@}�+�;3�0�[95W@0A#�;3��vB�5W@o?��;3��8Y�5W@�;���;3�(z޳5W@�ф��;3��柀5W@'p���;3����Q5W@����;3��V(5W@L ��;3��%�5W@.F���;3���p5W@gH�;3�"͐�5W@ox$�;3�Rni�5W@� ��;3��Ǯ� 5W@����;3�(��5W@��;3��o��5W@µO�;3�CQ���4W@e�#�;3����"�4W@�(�;3�?�4��4W@��%�;3�*����4W@ O��;3���1��4W@�"��;3�����4W@aKw�;3��y��4W@[���;3�6�0R�4W@o��;3�^����4W@m�<�;3�qn��4W@��q�;3��s�b�4W@����;3�w �4W@�1O��;3�� �D�4W@�-HH�;3���'��4W@3B�\�;3��x3��4W@%fw�;3�j^Ȋ�4W@)�0�;3�e��4W@5�T��;3���U��4W@{D��;3�����4W@U����;3�!��4W@!�k��;3����>�4W@g2��;3�G����4W@�:��;3���Pk�4W@�����;3�f8�˂4W@L� �;3���j�4W@:6���;3�k(ց4W@|f���;3��S� �4W@�)���;3���Ӂ4W@����;3�����4W@#jб�;3��^ď�4W@�vޮ�;3�u*�u�4W@�%��;3���Ā�4W@RZ���;3��榁4W@�xg��;3��+k�4W@FⅪ�;3�Ʀ�I�4W@��Ӭ�;3�C7&V�4W@$aS��;3�_�-Z�4W@ ظ��;3�B��Z�4W@Wc&��;3��^�f�4W@p)���;3�WJ�4W@S����;3���tQ�4W@s����;3��KA�4W@޺��;3��wCF�4W@1 ��;3�ĸB�4W@��o��;3�\lb?�4W@�-��;3�6 =�4W@W�!��;3�-gN=�4W@k��;3��mD�4W@�,��;3��9�=�4W@����;3���?<�4W@?\���;3�垁@�4W@y"��;3�#K=�4W@e���;3���<[�5W@�=Hv�AM�-}�����iGv�A��,}����4Fv�A�R+}������Fv�A ,}������Iv�A�/}����CJv�A�'0}����%|Jv�A�}0}�����Iv�Ay/}�����Iv�Av/}����\�Jv�A��0}����r�Dv�A *}�����*Dv�ASO)}����|hCv�A }����Ru@v�A](}�����}@v�A��#}�����z@v�Av�#}�����v@v�A�s#}�����t@v�A�L#}����Jt@v�A�I#}�����p@v�AF�"}����Ws@v�A�*#}����>m@v�AwY!}�����j@v�A��}�����h@v�A{E}����zj@v�A2}����gs@v�A�>}�����o@v�AU�}�����u@v�A }����tu@v�A�}����[u@v�A9}�����u@v�A� }�����r@v�A��}���� t@v�A*@}����oq@v�A,�}����(s@v�A��}����x@v�A��}�����~@v�A �!}�����@v�A��#}����f�@v�A�"}����d�@v�A��#}�����@v�A��#}������@v�A��#}����b�@v�A� $}����(�@v�A�]$}����Fu@v�A�(}�����t@v�A�?}�����t@v�A�E}����6u@v�AK}�����v@v�AWK}�����@v�A��}�����@v�A��}�����{@v�AL}����p{@v�Ar�}�����w@v�AdB}����9v@v�A)=}����c�@v�A��}������@v�A}����r�@v�At�}����]�@v�AV�}����R�@v�A.}}����$�@v�A�&}����قDv�A���|����_nAv�A�j }�����Jv�A�h�|������@v�A�W}����JlAv�A�� }����)Tv�A�+|������@v�A"�}�����%Lv�A��|����h�Av�A�� }����FBv�A��}�����Qv�A� C|������Dv�Az��|����ձAv�Ava�|����CCv�A�\�|����d3Fv�AW��|����4%Dv�A��|�����Ev�A-��|������Hv�A1h�|�����bBv�AR:�|����4%Av�A���|����e�@v�A��}����*F@v�A� }����@v�Al}����@v�A�}�����@v�A��}�����@v�A�u}����>@v�A�A}����BZ@v�A�#}�����b@v�Ag�}�����p@v�Aq�}�����l@v�A"7}�����w@v�A��}����.s@v�A�s}����k�@v�Ab#}����@v�A"}����7{@v�AZ!}�����@v�A��$}����"�@v�AW�$}����l'Av�A��%}����dwAv�A�.&}���� �@v�A��#}�����@v�A��#}����+�@v�A�1$}������@v�A�$}����n�Av�A��&}����t�Bv�A*/(}�����CCv�A�)}������Dv�A�(+}����Fv�AmF-}����Λ@v�A��$}�����y@v�A�u$}����+�@v�A�c$}����@~Av�A,`&}����C�@v�A�A%}������Fv�A��.}�����Hv�A�^1}����RJv�A�&3}����D�Lv�A~�6}����Cv�A �(}������Av�A�'}������Cv�A�*}�����&Iv�Ab�1}����|�Fv�A�&.}�����Ev�A�,}����_?Pv�A��;}���� aNv�AY:9}������Tv�ABB}�����lRv�A��>}����xNv�A�9}����a�Jv�A��3}�����TLv�A��6}����pxQv�A��=}�����Wv�A,hE}����-WUv�A�A}������Wv�A��F}�����LSv�Ai�?}���� �[v�A-�O}����0�Zv�A�L}������^v�A��T}����4o@v�A�� }������ U�a�'d�>$��>����n��^�� �>Q]�& }����T�>�Vn�\�w�����q�>c��S�c��l���V>:�a����e���N+>X@{7�!%�x���S�Y>Q��0.�D�Қ�6~x>ӭ�%QU�`� zI�>����ֽ����D# >Ž.�޽��]���>ݫ�����~�8�>�J|��l�u�E�>s6��2N��m�����>��>�uG�Y�b��w >�=�Gֽ��4�4p>��e�3��w�7���=�l�����4B(�>���1�� �z��>S�ҩ�t���Sde�>^�` bo���[Yor�>�?�ٞe�������>���[r��=�[��]�"6� ���=C.�� N��y����=7�oX�T%��p��h >����3�8���T���/�p �a�>��Φ����s��w7�>3�}q�U���j� �>�&����ۂ�4��>Q���嚕�ym*JQ�>��`���>��׺y�2��˺��>Cv��E��y�rz">0���7P���B*>.2'4�W��8�hw97>DT��v�c���]`V"����DT��>b ��8������w��>�j�4�9~�v�.�Jb�>ऑ���u�����m?����F.>�A��U,Z�Q���F� > m�3�O����\�F/>�Ȝ4m]�['-0��#>.��XN[�i�j<�i���@G�??w=/��o��N��~?�9c��h��<����?�U�� f��ٙEy�?����-h�r���?���CR�;�Έ ?�E�Ϯ e>^K� �"?�3Ғ|�~>�$��-$?�6[X�g�>⠶ }�$? ֹ0T �>@�.��&?�TiGu��>�y�%?���="��>W> ^&?�� T|9�>D�Iu#?�� Mر>�����$?B�4��>�XE_�.?�$�i�̷>�Kp�?��vW�&�>�Y8�p!?'Ŕ)�<�>�3��_�?��qN��><�/R�?�|^ �>��֓�?R�Bⰰ>C����V ?N��YW��>,5Z+��>���w>%�>��y���?cV���Pj>.�Γh�>�����)s>�$(�=��>zK�Լ�>l�8�t�>S*6�h�>Ne��;�>�c�����>%|��fW�>�nP��u>?FSe�>��((r>7��n�>�����k>n7V���>}�nǏ�l>l�ݬLr�>b;�5�U�>�v� �A�>h�.�mh>�O�P��>H>��yr>V��&{�>5�Q��q>���#�Z�>ԭV�r>��œd�>΄��.s>��߄�~�>K�A�r>S�y\q9�>��@[r>5�?=IC�>V�8��Ws>�M�|Qs�>��4�x>�Gi���>*��$ˇ\>��նO�>�kT��b>]*����>�RG��l>P�b��W�>{N/85�e>ҿ�B�6�>_��^��p>�MA��>�GZd�2^>mZ����>�;Q�P>A�n+���>�����;>��J.��>�̋�">���CL�>��e��>�6�?Py>^#�v�*>@�S{�>���D>��@�{�\�RƋu�#>y����y�5WC��r>p{�;rق�W'�� � >rr�����B���k>��\e�}�7���8�5>��WC����J*r�U>���AF�뾮�T$��R>O<�Wzپ��^��V>�Rxt�P���0�@!�L>�)��Bq��q�� �3E����$���L�h^a���P�����%|�d�'Z��1v��׾e�B�Z�;�v�Rᾱ�3 =�'�(H�����<�P�q 5�B��,��|6e�;��<�20+U>�Q�8��=�t��濕>���� �>���%���>d��24>(��dG�>w�@%"J>��@�&�>�J����N>�"h���>���B/���. �[�>���Â�`��s���_?��) �e�^=�',V�>~�ɾ�f�#ݦ[���>�˺�V=]�� P=�>-��r��g��� ��>�_c�� ��t&On>3����(�2��I�>}2w���8�ų�%�/�>/|��P�3��<�����>���1uB�׷@����>+�Ԧ��<� � $<�w>���%���I׫{���;H��� �U�� 1��t<����#��M��3���o��L���u� ���z��7��O8�)g �I����z��J��C�_ӾIAc�ߡZ�{��8�پ(��[sY�8��Ȏھ�x��[KV�o!'t%ھ6�8��X��a ���߾�Fп�P�&x�&�־��Ʋu�G�����ѾD�5 �b���h��ྰ���gW`��զg�ھ����c�l����۾%�v���]�P*YY־ᲁ���^�T�SԾ�!DWSb�#�<�v־�/I�x�e�ƌCŗ�Ӿ��py��f�h� ��׾ �U*�����.P�f��N�P"�d�ֆ5V�:ؾ�~I�2a�R����EѾ u+R�u��9�f>���{�|�X�;}��ʾ��$W��/����� ��C Y�g���x-Ⱦ���� \����Q`2ʾO��^�q;Yku�I1뗧_��q!� ̾(h������ g����V��_��������D�p��� ��6��z_�������hR�"lW��՟� �Eك �R���8���S��8��&#�|ɦ�r�߳���� I��ȇ����_`ժ�9 d�� �%6 `J��B�����"�T�ر ����#�LJ%��o�I�E��� -�$�ddB !���AJr((�D������p'��=����������H'�'�@���s�3���U%��Î���4>�׀%�Ē��Upy>f*y�� ��r$��n>�1��F"�+JRBPz>���:����l��>�R�����zIL�>��E�4 ��oa��{>fF�Jda ��x��{>�Ͼ������T1E�b+W��|>.��b��6���C�ځn>���iK�A���^$��v>��c��E���; �{>��g�; �>� R�#'���9��>��Lp]�Ұ�T���>�͞Ҿ�����Bι��>�;{I*��2R�UJ��^_� ��>w���$�> Ij[>?��A*6<������r>��[K�,��x��|Nc>��I�r}���_S>�7u�>�w!�o��� Z"�"�>%E/w��E^�W��>�(vB-T��Z��>�q�א�B ���>P��bu�đ�P�J�b�mT>Q����� �7&R�(�@>�L3��� ���q��B>�ʢM�������">���.;��>���v�5꾟b� �> G>y d�1���g��>��ۤ�Q�AT�����>�~%�O۾�cX�>@��%˛��e�>f�B���*k2E&��s�����da������!��>��R����=O*f/B�X`��,��=�>x�3B��=� ��>��4e2ɾL��͟��>���놽վ%�wϣ��>օE� #ѾQ�]�o��>�ٙY������v��bj>��υʣ�0��gw>���/����t�{�>����*��[x�'��>�y�=����z�W>hw�Y��;(��f��=���--�&����x��>����OF����5>�g�v��u�C��|?�_�b�ٲ���>]4���nl��t��>F��W{v�����˩>�T#+v�U_U>e�*W���@B��A>��Y��#��Ǜ�M>p҆塚,���E���`>�Z����H�P��^��{>m�X��nU�{��R�+�>|�V�����G�� 0>��G�H��e�����>�+gF|���:&�`�>��[#�ˆ�w Gڻ�>2~?\��ڒ�/F>_"��Z0�Ե�vJ�/>��S�����D�{0>˙������o�J>൚_[�����TN�>^�e�g���F��z��>3�`�痾2(p� �>.kq�9��g�(.�>C��6���=W���>J ���>?ɩ��\YF>��:�?�;�i죍U�&>��!)�P�����#���+%���>��7��难�؊i��>�50fA4���g���5�>��e��Շ��U�'���>�i��p͏��D��&�>�InU�Z#> ��!��N�a�Xf�5>S����a� N ��@>2�E��k�!1�m��G>�p�I�s�� �:rT>�4mX ���z������U�>w-��3z~��#�>! ��w�h QA@�>�⠷�l��'WF��>v� ̺K>�7��:v�K�����@>2�ވ�m�Z�8��P>g�Ŀ��{�|ٮ0D>ꫴ�u����:R��,hې�>�܉uX�����%�>)|���G��h:&�>���xЇM�%i���?�=X.�O�0e��$?祛wUXC>�X+k�S?��O��v>Q���~?Չ"���>��."h%!?��U�W��>=�Z�L� ?��f+N�>�w�8#?�4����>�ח�A1"?���q@�>y�y�9�#?� ��f�>愮�L!?h2�1�>47.���"?ݮ&Q�v�>{��L8?�{�*c�>��*9�?�MR� �>Z�b4?�< ��P�>%;��R4?\ A�!��>?h9L��?C����>J£�({?�/m��>V��lZT?�K���آ>��� Jm�>����L�>1'�.e�?�eYg x>+<����>;����>/��>k��Q�Y�>/�Z���>��{�^�>�K4�N��>�F/ZNJ>��19�>PO��YY�>�w��|�>3��l�>�CpKmQ�>3~�Iy>�e�>�>��K�O�x>c1����>e�\cل�>� �o�>:�W ��v>�(\@8��>*0/5�}>�U�S�>����Q�>hf��>8�?{�>�!eW��>�7h�W�>�%=����>!D�c��>2/c���>�=���>[,_���>n% �f�>2l�[�%�>i�����>��B�f-�>�k�)��g>OJ��i��>qy&!CCq>�#��n��>s�L?�y>�s��r)�>}��Q�@s>�U��f��>���2�\~>�A���>=?�r�h>��s�e��>��3�8�[>AsuIe�>mg뭌dB>)�Q���>��!�%+>]W�)5�>��S�4>%p'��˪>����3>�I�]0�x���@�K�F>��!g�Y���� ��:>���Y�?��5�C�[KA>�1���l���d7>� ? 7���t�OgCa>]�0�������\>���{�྆��"�_>�^�Oȗ��?:ұU�Y>]\ �9a�X&W;�tG��g-tQ��zA���g�$2����U@D�Hk�7��l�b�1L�l7�h�����q�h���B���ٰ��V�[p2� <à1 ����z��>�����Y>y0���?��WٝW>�m�%p[�>�a���*>�΀�+~?�K�0��d�s���� ?���r=4o��.��d?ͤ��߹p��!X d�>;�윾m������5�>��=�1r�7� I(�>9��M�@���F/���>�c���Q���+Q�>%�[�-0P�����>��#nQ\����08ҥ>���@HW��ʱ�^��>�ĝ��!�P�:�k��.Z��u� �-+ʒ���W�ŭ�6���~+�м��J�K,I�i���}|Ҿ.6��W]�P�����c`-��m��f� Q+��0k���������g�Ʉ����뾠k����k��c�N����.��b�:�CQ7�龑O��R�Y���c��侑��(�t�#t5���V5�) q�|�2�:����vat�6�*�7��g����9p���!����e('�p�n��-������ls� �����F��,2v����.侼��12`x��,� �#龬Yi}^����lj1���gx��u�*M��U�辐P�Tc�q����w/�ᾙCD�����=fF�뾚�OC�j���@)ܾ>d�j6�����<���Uj�E .j��)fz+پ� 4�W�m�)�]k�۾��=4���o�h���b��Yp���M��ܾΞыB����i,Ӊ���a+��L@XD��b�+NR������,����"��E��?�.�V��d ����sg��p� �Ւ�կ���E|����_��!��� ���!�����H����v�A�R��B������ېP �#��l`���^Lj? "�y"�%���%5�B#��l �֤��5<�n�#����Ǹu�����0z�%���T-7��;�0��$�.B�������U!JF$����qo�@��N�l!� BQ{�9�m�J'{!�z&ν:q>�gJK-�A�`�c>�H��,93c>6�Y "��A�ʭr�t>�PCEn����x_f}>E����o�3��R�%b>����+�$���5d>/ I�R���Q�G.�a�h`���>�� �%0O�,���k�>��y�]��< ��ƒ>8�n@�8a�0�:���>�$w��>�q���Z�ZjRJ�>kL�b�e��^�E�&�>ἥ�O�ww�A���>���`� ��4�6H�c�⏇E#�>�[C�?�QU��y>���^V���β��>�� ���H��̣lA�>#�껇(;�y���q>H�b��>ZNB����c/^�>�3�}��� ��>�=9+���\0��!�>����@M�QW�{Ķ�>��g��T澒\��7��a[/^o>m޳��J'��"���^>���v|%�‚�|W�Z>�x�a� �kG��8>3=���̧>3C���⾤lK���>ۚ�{��r���R\�>U��l#��wd�>�Ӣ4SoӾr�hR���>{Eo�o�׾� ]�v�>�Iz��޾�$��V�=9R�U^b4���y����n�d�ܽL�²��>�jC�M��L�V��>�omW��B�d����>�t���Vþ>=��T��>$���Ͼ^���>�"/�GʾH�NP}>�����@^�b>���טҚ��މ�� q>-DH2৾G�Q/4$>fyE�JL�r�w��|z>�=���R����c |K>�T�������KH��>�{7� J����\~>�UT �Z���) h�>\z|��?=Mףj�g����>�>f�L���s��eQ?��>����3ށ�od�E�>�>(��)�W}��X5HI�>]�Ըl�?��$>�7��x���l���2>N��k�m6��&�*?k> �n�P�>�q�(��>�g�G^��� g, �>�UM:�� ��t'�q@>����⩊��֝*�>���h��ݧ�C�S�>l�>؁咾뀤T ��>z�/%nj���}�}�t&>��N����7 ��>�`u��۽H��J�>qtd$��;�%u�$>H��™��*� ��Z�>�M��,���� ��>fiĘ�|���>g��䜤���X�����>Uŷ]�~�=E�T�$*����_9��=�hWx��'GE<��=JBD�X!�Bs��> >�PA(�5��}�w�P�����/��>���R��� ����>����Ø��ʜ��>����������>͸ �oԓ���T��>�����>�ڈh0�0R�=��>�Jm[7�E�`nt�q'%>x���KR�GTV�9->���7pY���K��:>=��t�f���L�w��*�i���>��T������D��>��h(��{� �M����>p̢5�t�t��.)?�V�3�E2>�邷�_��Ժ>�p%>z�ʒ�R�����MN4>�7�=�/b��@�R�T'>��-�X�J>�n9rh�>@����?7Iz�lm����pJ?o+>�K�g�p*"o: ?[-֕\��A���8?Н�Ild�M3��[?��ԋh/7>��n�� ?]�h�u>䵨�J2#?��.���>&kj�b$?ä�z���>�Dc��v$?0Ť`5�>��n��%?�s,�x��>�EB%?%�e�ª�>Z��N(�%?�n��y�>��v�!?�E �#�>S���^�#?��öAJ�>����!?Q��3�>ы���?��9 �>���쮐?���� �>5��хD?��Q�5��>�%:�f?�J��)�>�u�?d���ı>S�]��w ?mƶ:Ǯ>�-�Ǔ�?�ت�\��>(ĊK��>U���f�>�Zwl�?B��A��f>�ڦ���>1��=�p>����P�>>>S�gΝ>��ͧ��>�Zz��ޖ>踠���>�S�j�>l�'��>��ܳ9�r>�K��D�>C�{��0p>��"��y�>�ɔ1(gh>x�LU��>�+ք � ���>{�M�Ս>��� ̗�>|�^ť�d>7]Ma�5�>�-��;�k>A�=[�)�>N�Lm>����%��>Ξ�_אo>� �L�>�r�B�p>@a��n�>�z1�oLp>�����>!����n>;��� >�>�h���Ip>p?M���>��eٱ-u>�g l��>�?O��T> T�9��>,x/Na]>s�7d{u�>]�Mn�f>4Ӂ����>jr����a>���M��>�� �ok>�����> �+/�V>��d�D�>烾��EF>� ��A��>�:.>ro�#�>hG���V$>Q1����>"HfL�#>O�G R�>;�W��>�a,~�`�s�iL�*>؍k���x��jzӸ>?��W�a�U�fi$C'> s�?F����d�� �>~ߤ�nw�� �V>y�8s�t��m:x�M>`��H�+ξ� ��u�W>��^M Y���Yٶx�Q>���ְ/��,O�>H�$)D{��`�v!�(W�d��9#��!k��w�c���W�mf�#��V�G\��`��U�*>��C��BU�`s��qcs��S.��i~t��؋3�$���2�+ ��jv&4�>�+wܮ>pl��P> �]F�>3�-c�G>z�z��>�y6p]v1>���H�>�����V��8\��A?���w�d� �̵;��>���h��e��|���>�9#ϲ�c�����8��>��-k�f�!��?�>TD����A�w�mO�>f�S��1��.<����>�����/�K�%PWɉ>U���l;��>��"7�>��{k�5�m��S�Wv>��%u�� ��p�c5��鎟=˒0��6������J��؇���b��1�wu�A�:���^ɾ��U�Q�O�7� پ���,�`��#h��ݾ]Me̦^����O|#߾KE���[�k���� ߾�w�?�y_�p1"b�D�c9���U����Ėܾ�ѶIgP�Dt��{ؾk�hdf��Lx���|wsCc��F��b޾����f�?���(߾�F_* na� �U�0پ����a�9��5�`־�j�&�e��5��پ(���Čj�[~+Bt�׾��"G��i����Hoھ���B˓��q�%��� )��g��$����ھ����݀c��4�&?Ӿ�Ѽ���|��Z]7��辅U0�[��I���;tߨ{# ��-������~v��\�ιkB�"˾�Cr]tl`��>��3ξ/RΜ����l��%U4�d�K�����Ѿ��cQ/��n]^m��� .Hܥ��(��L����+r����‰��; ��؀�� �����A����Q��H���:a�'���M����0O| �b��^ -��z��?���������0�Ն��/�B�����2�"�mv@��a�9-$����SC~����wT�&�>� #/��{:H&�>5�w����w5��N�(��߸E�ě��P��#�'���n7����wYg'��.r�b]���{y�N%�?���]Ef>"ٿ�$�>�4=�}>p��1S ����Z�u>��G ��!�jշ_uJ{>&JР>m�� ��sՀ>*:��D�En~B�>S�DB{�,�*��W|>�.��?��VÇ�#|>I��M�E���.@�MirU��w>l3��t,����ymyc>��\r�=��!xS��r>��@���@�8��!��u>g"��e�>���ʶ��1w(��A�>A��'�@�9��+p�>���";�L��)v�>%�wdW����� ��E��רtl|>�%�)7�(�V�Y�:a>��-CG7� ^F& o>����-�⯡�9d>�a��v& �3��U>$ �����>ұk�S�o9޽�H�>?8�\�����١>QNĖ��6C ��> |�L����W�4f�>�l@�o�� �)�����d�,�P>z����5��=:d�G>I��u$ ���@>�:�@�����?��v.>&[7]�Ѯ>(��)2��L���4>�>4���#g�zW�|-�>����� 澇%�r�>���jv׾�y�����>t-��ݾ~r��H��>���CZ��v���rԽX,�m�\�=֏b����>���>Żc�&�=jFh��� ��� ���=�4݋ ��&� A�>�;_��ľ�"�@�>Aש�9oҾ�I�R�ߓ>GJpz�̾2¾��2�>�s*�����Gb>jJEn�,��#G*�EXq>�U+l�Ѩ�E�p6�=V1QB�ڽ���o��{>��G�����o���H>�M�#�����A��=v-e�mK�B�y����=��ԏ���4ro��>��d�I?�K��@I>|����z�_��a�K>�C�Ԑz~���xUH�V>����������V4I>_�*UR|�DЬ'4>8�M�g��\dx�+>�D+ ~o`����"1�>� �;}N���=� .>9 RCa�� 1�9+>���T>]�:��q>x>>�bW6�N�^�4J�=֜%.��"����P�U>'m�5�l������s�[>��uo��m�-Q&b>�HZ�^`����M�MsK>�'P��T~��$�x2�5>�X��Nh���(�A�J>��Y�}��D��D;Z>'��:���*l�L ]>���ߙ�R���c[>�����ʔ���O!)�L>��AB��I�d@�0S>�~��씾�:>X�Y>�vrҍ��b�%ib>5��ʕ��B�Y�a>1ɥW�”��6��f>�R=,��Z��� D���2 ~����a��>� y��{��\H��.7S��#�� ��t�eʼ9W�|�g}$���\����X�w.��}D��B�bc>�k�k�ߙ��X��k>vnDTe���\��Jp>� ������k�Y8�q>����-뮾6���Wu>�:�� ��z�[c�aK�,�r=zTþ����uV�0 $�p�������<���ѻ�Oþ���߁4�Q�����ξ#�J��o>������M�]�e>�8�d����)�w��i>�N����6����`>�����z���w杪���gv׾��`��,�6�]';׾{'9U���-��پCw��9�"٫�;TϾ'���U/��h��N־Y��|�G�����E�ʾeL!�S�bH>Hþ�mK�Ϳ_���i'N��*��-vo���kUr����U�@Pp�†Ұ-��/�P Vw��[�Q���>��� vn�m����>��ù�bi��]�Tԧ�>��@.go�f"ї��>&T�w�S3>�WԝJ��>�9���T>�;A���>q�>! f>-y�Qt��>�o ���n>��d$7��>� <~/�k>@� �z��>6/ww�4h>�~�J �>Lu\�e>�Ȋ;*>�>��V3c>mN鱗[�>h��ӹc>�=��sV�>� �� � >y�|�k�w>k���(�->��ŀކ>�0�;(�j>�'���C�>��s\h>ĺ�2��>79���m>r�a����>�40��2>lYf�>:�>��O�V.>h��Æ>�sA�_�>��YJ�w>�m����>��Cm�qv>.�� nb>�H�z �>�x�*X$>N�--R�{>0l-ȩdS>�r,b���>��@8�*>�Ł�1�>ڴ�� *>*��Y>�>�Oԑ��,>�� ��>�f ���->Vè�e�>��y�24>��p��>�Mp��3>/. 6(��>Xt�mJ�<>jk�]��>F2�S�.>�����n�>NNӉ��&>E ��3��>���g?�3>kW�j�>f<�0��#>K+��;z�>11��&3>^�[���>�%�A�%>� s7��>�c��C+$>�SRV�z�>�,V�-d>�)Z�� �>(�=�=nA.�du>5��A�=��.��b>�.䎹B<>D��ʹ> _�&o�T>�A�/1����f��@�X>�jJ)�ž����~L>�w��k?����[��>>3��]N��+�hf)>>��.���G����>��7�+��[^��`��Wq�5��z�r��>T�B�Y{����2�qO��~��*�d��z0>A\y��=��zl���P�-�(������_�;���1�*���ؓ[��>א9��6>z��^��>�1^t�r>���T�-�>�~J\��>��1����>�G)�rb?>C�{��۸>Cj���M>�z?Ϯj�>hP��UIC>��j���>V�G2�� >��xb�>sHL�g>�۷$gv�>��@.�Q� �e���>5�ą�>A�����>OxNEt!��&%��ԗ>.R.1�'�A��vC��ɲ�'E��,a�챾4`y�����{�pNW���eT�b�0>'4D���n��!�Q�H.�ݬ����2�>�e f�u�{�A���>>xh�d����B���I\>�!���ľO%r��xf>��877ɾ&���s>ɃJ�о\��&ht>a.ޭ�Ǿ��5t7B>�xכɓ�>A���/!>�}��HW�>�Ri���=�;Qx|�>z�]g1J�=�)U��0d>�f�|c >�ކ���>�váW�>��4ݛ>�U�ӹV>�����T�>����A�>�����s�>ƫ߫N(>n �#�>LDK�^� >�m��5�>�~K,��>�b!U�>���P>~��v��>��/cP�#>c�]HA�>R�\���>j�HD�;�>ŋ���>�O%E͐>�\?���>��Ԡ�>\�;�N*>�|z� ��>� K4�>� �"~2�>�� c�~*>�k$��b�>��^�-�#>P���`��>�����m`>8�="��>�]��� >�4����>�(F��>rdu�΃�>hi�R�\>�9O����>U�m�>����A�s>���q�`> �Y�_��>T(+ g >����R�u>U���>&����e�>��?}��X>���XnI�>ME�;�->��J�B$�>��� H�Y>���@C�>(�:��c>��eK��>��'=�c>*a�����>g�j�-]>}�t-��>���9`a>7<��*�>}��h'5^>n�/�_!�>�z�=Fa>�)�����>h n[�GL>��7֟T�>���s��5>#����>�.v]�G�@��b;,�>�¢G9h�3;�:���>j*{#�'X�?�,T��> x�k�8�A�s�>�[;C�k���M M����|fi��a�""���.�+K]�c3��þ{48]�H��"�3��ξ����S�V��nv��̾Wc�Fo#.�4A�|7پ�/����:�7�M�)о��͆�'��zT�E;>@�x����,+���ؾ�⯩ ���-��vmؾ~ �cn}>�����ɾU�2R2pv>�vR%�ܾ��e��]�>�4�c��¾e6�i�>M��1fIľ����s�K���~V ʾ'Y}$�r;�����4ʾd�`}2Ta��������m�l,Y�#k42�ľ'�`���>� �$U�ž��Í��y>��䒝$��M�Na�>��L���� +(1}�> ��a�;��8��`>�y>u���C���%p!u�g�����/Γ�Oٗ��e��Mf��Q����6m�f�?�P�����@R��V'�D������i��&�{a� P�$Lb���� �߫x>L�h��Q���߉�mr>`��/!���X �]s>�~�!lJ���i�>�g>�߃pd���;b>CK��`���Ծ�KidN>�1CnEѝ�跋��xd>�v�o!����u�Gg>+�@��T���) �?�o>; p ����y���g>� �H������xa>*4]������4Ċ��e>��M�0���݄m�Y>[p�@�~�����ʁ`^>�RD �A���'h���_>�k�M��p��z=�e>��a.)����J |a>� �]������m�Y>�{w7�����'�l�G>�IKּ�z�G��`hK>�Q6Iu���5�w�mQ>n����^�������K> TtGϒ��;�&�97>� �F �r�~l��FA>�|��f�����3V$>�u�0=�d���O &�(>)'���j���� �W>|k= ��������Q��Ӟe>�D��*��S�j�JXX>F�G���]��qA>0h�0~s�WK��5>��FaԞi���%*>�A��kb_��Zy�z>>�`1q�m ��:>+�����l�J�( >���#�<�-s��Dbd>��4�b����\��j>�&X�-n��LM�U€q>P+n�_��m��q=X>���5���<�qK�C>Ec��)Zu��J͏VX>�� ���%w� ��f>Z�Lٙ��W� P(|k>��1٨��{�:V!k>� �x�w���X�c�[>�]J������h'�zc>R�i����%y��g>���仙��)��#c�p>Dh'��ࣾ��i=�p>�Z�憣��u��vAu>�츥C0��V�ģs~F���ѫT᫾��y�D:>3��^�a��[�ho��Z��V�l�2�����]��^��؟Ck�¾Wj�(s`��2�R�����l���r>��K�-���^��8�z>kΙ�Ӱ��;fGQu~>�c��շ�+���2��>��B{��v�>� __kľ��=ZR��7��DҾ���2�*[����}Kо�U{��yF��+����Ѿ0�X%6<���D4K�ھ LG\�}>C ���¾1�MD �t>��kϨ����\����y>�;���ʾ�Fa �9r>_3�c̍ɾq�G�)����-��Z��Pó3��nj��iᾅ�9H#�Y�\���R�����Q�Ĭ|�aھw�E3�D�X�2�7bᾅ4 �P�[��L �־3�9bi�b�K� �˾�p``�r��،=����ē������b�{�>�]xђ���8TV��>O�p#�u���b�]�>���y{�i�x dX�>q���;q��{>���>�xFk�x��wN��9�>�$��SRb>�=W��>��"�k>`^8}<�>����z>{��WF��>˓�(�b�>���O��>�;��F�|>�r�>t�-��y>̘�sJ�> ��(w>p:�b��>+#���s>���ˏ�>���̖Ct>�bR9��>%�Ky��=>Fx"����>�2���J>t��_�>�6�+`�z>�f��j>�>B/|�t�w>��E�H��>���fs>\o�6L<�>0^dr3�P>= |U2s�>JEIGL>�j&V��>@��^;>���s ��>~�T��C>��?-_��>ġM�~s>�8&@��>sU�x��>>�9@J��>�Y�2\>�V�T�ݳ>��W0�G>���[=p�>�W�N>�G>'*����>}j�̍�H>��BG��>� ��I>PRTb'9�>o_:��bQ>S+9�;�>�2h�Q>�8/�~�>��yJ� Y>��y���>C�MQ�+I>����F�>�F��>�D>e#���|�>�A� deR>́#v���>+>̷A>4�F"�Э>D�U���P>� 7h��>�a���A>�1X��>Fh�\�?>�@6qTo�>Ƴ��=[+>#�H4�>����}*>�N���9�>�lI���G>%K��>�|aW4�d>��12��ɾsR�g Fj>�,Xe30վ�V�e`>Jk���.Ҿ;JT��BQ>�6���˾�ЇV�4>���'^����s��[�d�^��ɾ��O~��0>�D��T�þ n�z��PHڏ �ѾI:lp/`%�o�a�΁ɾ�WwD{�D�}�Fu����7F|rZ�J�>ȼ�:�>��jV�vS>�y���>�hݞC>^�O4�*�>������=>Y�<���>*����S>��ƛ4��>�̗L��E>d�����>���C�->�[Yƌ�>V���f�8�[-MF7��>)^?��2>�1����>�p7��Q>�I��.X�>NKY�zsK�)�=�fο����6�3#��ތ�;ξ^���.���ז�T�˾�n~o�G>��H�@ƾa��''��0����Ǿ������@>��R�7���E���L`>�����ʾ�8S�I�q>��m[�_վ�!\|>G��n �ھ%��cԀ>�A�%@�Ծӝ�둑?>_�g?�>��u�m�>'o$t��>"��� >�0�K��>�[�z��.>"ԇ���>ݒ���8>�)�֥��>F��@�9>��V��>����o;>ʲ0][˵>�\���9>�����ַ>��Z��E>ӆ�x��>�� ul:>�:����>�̃�?>�ߠ����>��U�%BE>�}�4&C�>�naM�<>���P��>y�7��@>T��G�̱>��OF�5>�6�_Fo�>�څ���4>l$}+�ä><���+;>ƒ���>L�kٺ�K>3z�o�)�>�`6��F>.����f�>7Ru�im>;�r)t�>j�¹DA>��� �>Ջ���i8>S��=�> ��o g>0Yk /�>�wCR�'>��U����>�8 �j�m>��@�\L�>�Lx��!,>�����n�>�#P���6>�7��>��I���d>��V����>7���H�J>���~��>��n9h>)��M/�>ఄafr>�-�X��>�H��|q>�����>����k>��&�i�> ];�p>���ü2�>j�G)& l�3��>E�& p>���۠�>�ޏ�\>�a~?���>^�9��H>�t�Ħ��>��t=T�Ŧ�a S�>(���I4r���T���>�m�ft~d���̢�>8� h u��*F��>Ұ���v��uY���>�)w���v�C���8�>�}�l�ts���������y#�i�����Ǿĝ��\�U������ؾUU�a��b�/��.��Ӿ��(��3�u�D��MN�I�I���hr/۾�� �;���8NpپV&��UZ-���H�����#�1�v-�]�e���>��0��վ�Ȑ�aV�>`���n˾`�����>��3F�о��e B�>�m�\Ѿ�Hd`m�X���ߩGe׾c*��=M��,��/>׾ �0��k�d��>�ʾ+�bQ�e��=�!��Ҿ��Pȓ#�>�b���cҾ�<�c��>���gþ&��CA�>��6���̾%��bD\�>�}�ʟƾ#m�8�t�>��s�����Bя��k�gN~�E���}4M��p�]`5n ����Tʜ4Gr����T����G�6�yk>�>������7g@V�U���!�4��_�w�!�>&��M�����eq�>�h!���R):±o�>_^B�V���G? �2v>��Y������NՈy>޺�D���������p>;ݯ\�ʴ�n^� UBx>���T˧��g�5��x>�O�V�����< �>����ι���.�4�z>�-h- ���G��-p>�\%�$e��(t>1���-̬����f]g>�]��V8���B{�k>X��X&\����"G��o>ma�-nϧ���Q�v>���dڰ�+�QF�q>��ٟ����xa�i>�>r/��2�a�V>�S�ڸ拾e+ cwZ>��*�a������� _>K�����'P�y��[>l�EW.��4q5��C>Kٕ�Hu����g��qP>�������s��3>l���f�t�Ɏj��V6���,Q��>@FKK��I>��ed��{�|�B�K>���02~�q�u�̵U>��B'd���ۦ��qH>~xpOa�{�W���PW1>�� �� d���Ѩ`�$>��Hg�X���Ꞅ�>7��j��R��oFJs0>k�"�>b�r���->gv�V�^��P���>U2�lP�4�.8��T>_�nSj���T~Y>!��d�4��܁���S`> 2�=����4[�(L J>�_��x�|�ŶÚ��3>/V� �if�.�bq��I>ҳt#��|�������Y>��j��ڌ��,n X>�&�k�f���J���W>6�+1���D*J>>��߆n=��&MX�M>)�N��ᒾ9�ULZ>�S��ɍ��g��b>���`h������x��a>"�`�'���7��d�g>�pw����I|,�J�l'$�p��������&�m�C�������^�S���.�iŸ��ע 3S��K�̀���=��V�'�ęӊ���9�<_�d>�� �q���a�5�m>$aPݪ���|�m(�q>y��E몾Yz��s>�.ZZi����),ډx>�ˤ0HZ��p8�I�2E�y�rQiþ�M��R��4������ėO�5�(�XMþ�5�&�,�ԯ��A�ξ-�ep�Wr>�ا�<��1��,xi>���ة��2�<���o>}J:�����#cQ/e>ӻ��� �`$�!�8��3��׾�m��a#�%��÷�־W���%�F�$�پ C��wC��i*��Ͼ����y8�s��ƌ־E ��P�'�qT�˾��s���Z�5�6}þ�b!ݰe��� �Di��?��vS8t�c��*����t�,��t���(M9�>V��#x0z��ܙ&���>��E p�<�::��>*&=$AIe�����&(�>�xWڿn���fv3��>��-�M��f��7�>jB�e�&Q>�ˎ�A�>�ۧ�P_>l�V[���>Z�-1u�k>t=����>��y2Br>&�����>l ֕��n>�2[b��>�� �)�k>��)����>�C=���g>`�և+y�>"Z�9��d>��c��[�>��{�e>5��q/��>4['o��>\u�Q@\q>�{���(&>��x���> q_�W�m> �/�>&G��qSj>~��*� �>��H�i>��J���>G����[,>� Z��>�GW!�(>A)+���>;mc�>C����r>I� &�>(Z[+4�u>��9�˜g>��k�Q�>��tD�>�O14�s>!_���>>O����>+7���:#>a��{��>N���ܿ$>+ޭ.�D�>�N�;(s&>�� έ�>��� Ѹ&>1���(І> "�[sN->MI%�:�>r��w�l.>4#?a:�>w5a n�7>�h�ܓ��>2_?.�$>0�p��>���_J�!>�H �hM�>����/>X��˫�>�i{�5>�I�Tsz�>�ȗ� k->$���>���/��>*Qc��>1yW��>��d�>�+aӹ� >~�3/v~>����$>$�={�6�>ƹ�%y�F>Q�����>X�Ib5Z>�z�Ё4����k��g`>���� Ⱦ��_��S>֣�+�ľ�f7ds�K>&5F���þ�N�V��1>a�� ���̹�ʎ_�j��%�8���➖i=>W���R���zkx���VD�s���I�1� )��)$`������?&%�YWg����$)fpJ-��ƍ���>ޟ���5>cp��ا�>ԍ�Q)�=ˍ:��>����/%>;�op܅�>QSX���H>�������>�Xi�D>3А���>�U��4>�L����>J� �!0��n���>�~��$9> �G[]k�>���<��8��xͦ>y$���82�|d0�f����%Q*0C�f㞉ձ���������G_�[��������'>`������?�E�ƕ� �"骾=��}�(>w²�>���Ҫ��N>��:$mɸ�RC�k�?`> )��8�ľ�]_dm>�Hk��̾�|o �To>�%[��]ž p\�'6> ?PC� �>MUnt��>��Fqʎ>����B��=7�v>���݅�>�.�d�]�> � %�>p�V�ֻ�>�`;V. >��mY�?�>:�/)�Y!>�2��ח>~�4׉�>{��]!��>:���)>#�C��ר>+H��>�Sl먡>M���#%>1P���6�>{V5��&>%�G�=��>U���Je>��-�O�>Nr�G�$>,���G��>#z��TY>\�"�>��o�t>p���A�>��S�H>�d�5T��>imTb1>��!�н�>�69+6�(>m���%�>%,��]>�Iz����>>�|$>�y��p�>o�޴v�>��h����>m0A۱J_>�L�y���>Kߺ�>�|���x>ph8�/_>=�� ���>C$m���>���=�7|>��0��>�0���>��bh��S>�K�?)d�>����êC>^Z���>� rgS>�\��^~�>!���{a>t���B�>�94���a>�{Nn��>�,��Q�Y>���?U�>��h��_>��o!�!�>R�o��J[>��=�FC�>MJ/B½\>�q'�M �>��0s5B>c����>��8��n �)�-Q`�>5D��pR���$�>���A 3i����l���>�R!L�[�ՅʈZ>�>��P�HJe�VB� N�>��Xl �*�n+f�� #����Ȯ�t^�c�OQ=�H�����Τ��U����X�þ�����@�{����ξ��΄7P��H� N̾B���j�"�rS�6��ؾk�im� /��h�o�Ͼ�"^�Rv2��L[�tf;�~:Ƕ$���E�ؾ�J!�<��m��ǖ8ؾC�{57w> E7��ƾA��8�r>�m �BS��M#�!t�|>u-����Y�%ŊЁ>dQ��:¾�E��S�P��Ô�ɾ S6�37�þ�Q�S*w>p�SCE���E|TQ�>�lJ '���=�o~>��q�֒���Z���w>��VI)��՘ b�f�+��S?q�������g�jޛ�u������k�����]����x�S�H>��u�3��E����X���Ij����}����Xw>8# �sv��b�r�M�q>�"�?�J��""���r>TJ������X�(x�g>��N�T��is� ��g>'Iloi��F�n2 Z^>;W1x ӣ�e��Ki>�?XI{W��� ���s���#��q>4!C���6Jy�+k>�;���,���!XAP�a>ue�}�Ƙ���;Q>�e>.���D��?�H��Z>�9r��’�S��ٟ^>����(|��!� _�`>+.�Ϟۘ�Z��� r�P�v��)��\b>��c6���UK�OZ>Y�&��ג�b��~;FG>*J���}�����K>�� �P��β��,��L>�M�F<���*$�-�3>�sR ��r�{`h�/�C>��fG���|'�.>I����o�X�"� ��`�r�>����;3�����D6W@��H�;3���D6W@v�;3����D6W@��C�;3���>�D6W@�7s�;3�7nDžD6W@����;3���zD6W@;�;3�96l�D6W@���;3�X]|D6W@V��;3��""zD6W@.)��;3��zD6W@���;3��9o}D6W@�[��;3�?��|D6W@�Y�;3�\disD6W@���;3��_�pD6W@� ��;3��pmmD6W@��;3��r sD6W@�m8�;3�t��tD6W@5{�;3����hD6W@#>��;3����kD6W@7�)�;3��f�eD6W@�u��;3��� D6W@�&� �;3���+LD6W@�� �;3� ��AD6W@UR �;3�~ۂYD6W@��� �;3�&��aD6W@"�� �;3���cD6W@޲ �;3��(�RD6W@m �;3�G�VD6W@鉮 �;3�;�`D6W@a� �;3�d�*[D6W@�.� �;3��LKD6W@��M �;3�� �:D6W@T�& �;3�8�ID6W@�n: �;3�$5�;D6W@S6� �;3���]CD6W@�gB �;3�I��1D6W@J���;3��?�D6W@�4�;3����D6W@�z �;3��-CD6W@�-9 �;3�g�T-D6W@��6 �;3����(D6W@x���;3�o=^D6W@b6f�;3��ND6W@�nR�;3�(v�D6W@�^��;3�N.�C6W@�yp�;3�}o�C6W@�y���;3�� N�C6W@DS���;3����_B6W@���;3�Cf�C6W@��I��;3�,��HC6W@���;3�iO~C6W@יr�;3�Ŗ�C6W@})��;3�����C6W@�� �;3�b4�C6W@9�+�;3��o�C6W@���;3�!��D6W@aA�;3����C6W@��R�;3�����C6W@����;3��R��C6W@w_��;3���{�C6W@���;3�V]i�C6W@EPo�;3�/���C6W@�Gu�;3�x�_�C6W@� �;3�03�C6W@����;3��$�jC6W@�F4�;3�A�\�C6W@����;3���}�C6W@����;3����OC6W@ތ���;3�=�pC6W@=>m��;3�~��B6W@`\��;3����$C6W@�I9��;3��h^�B6W@�h@��;3�$��C6W@M��;3����SC6W@W��;3��E�B6W@�����;3����B6W@]����;3���8A6W@ w ��;3����DB6W@%����;3�EO:6W@ �o��;3�JQ]�=6W@؁E��;3�^���A6W@ l���;3�b fA6W@;���;3��__B6W@��{��;3���5B6W@���;3�mME�A6W@9����;3� ���A6W@�Q���;3���[zA6W@��I��;3��,A6W@����;3�o��V@6W@� ��;3�S=�z@6W@�{��;3�qʅ <6W@����;3�����>6W@"���;3�q�9'?6W@^Kc��;3��� ?6W@N���;3��y�@6W@� ��;3��'�?6W@����;3��J��=6W@����;3��' =6W@��?��;3�_Q=6W@����;3���Y$;6W@��v��;3��!��<6W@�����;3�2�56W@�X��;3�:`��86W@��n�;3�_+s!�5W@�Ajo�;3��5��5W@��є�;3�W�R��5W@6���;3��P*��5W@٠���;3��'dE�5W@9h���;3�}��_�5W@\����;3�����5W@Û���;3�>�mݵ5W@�nm��;3��-Y��5W@�pk��;3� �޵5W@����;3���C�5W@�����;3��,^�5W@P}���;3�hg�$�5W@K���;3��x�5W@x�K��;3���VƵ5W@i���;3�EЃ��5W@q�D��;3�\�ܵ5W@_����;3��T�ʴ5W@|I��;3�JSLQ�5W@����;3�;[��5W@�n���;3���n��5W@%J���;3�J��z�5W@�#��;3�.a��5W@Q�*��;3�Y?�M�5W@�UA��;3�HY���5W@�%���;3�$%��5W@fޟ��;3�J">׵5W@D���;3��ѥ*�5W@�W���;3��e�5W@�9��;3�X���5W@ �E��;3����$�5W@�����;3� ��U�5W@<���;3���q-�5W@�M��;3��j�5W@�0p��;3��:�G�5W@�|7��;3�m �5W@�Z���;3� � ��5W@Gq��;3�3��5W@��>��;3��G��5W@b���;3�ŸZ�5W@�7<��;3��J��5W@���;3�)��ݴ5W@��;3��`���5W@����;3�,�Os�5W@��s��;3�G�D�5W@���;3�V'��5W@t���;3��K��5W@9q���;3�P����5W@�(���;3��Z߬�5W@����;3�Iׇd�5W@ru���;3����ص5W@�ƹ��;3�Q����5W@�9���;3�jǵi�5W@g&$��;3�����5W@P���;3�ЅI9�5W@�l���;3��挪�5W@m'O��;3��@�Ŵ5W@�Em��;3�(���5W@�2���;3�~���5W@����;3��FC�5W@b�n��;3�iT@�5W@��/��;3���%��5W@�����;3�[/���5W@��C��;3���ؙ�5W@��U��;3��5UX�5W@T�V��;3��fJ��5W@����;3�����5W@����;3�藿�5W@a����;3�YF��5W@U��;3���r�5W@6����;3��A�3�5W@G/@��;3� G�B�5W@۹���;3������5W@�=���;3��}쯲5W@'[��;3�pe�9�5W@����;3� �� �5W@�m��;3��s;�5W@�i���;3�1����5W@"���;3�u7S�5W@?,��;3��&2�5W@�~ۿ�;3���ĺ�5W@0M,��;3�? _�5W@��c��;3��ٴ5W@�n ��;3��5W@�q<��;3� ^��5W@��e��;3��}"�5W@��o��;3�@�6�5W@2�"��;3��8�`�5W@=��;3��@cP�5W@ܭ���;3�E��(�5W@ `���;3�r�H�5W@*ռ�;3�*��5W@*�2��;3�آ��5W@4|@��;3�"��S�5W@�H��;3���M�5W@����;3�p���5W@�����;3�ߤ���5W@C����;3�/���5W@��I��;3��L�5W@39���;3����x�5W@����;3���]e�5W@�����;3�7�6�5W@'b��;3��3)v�5W@P����;3��dwγ5W@m�s��;3���ζ�5W@��3��;3�l��د5W@����;3�R�.�5W@ �G��;3�]��ݱ5W@ -��;3��@�*�5W@:�ǥ�;3�~�Ȫ�5W@�e��;3����J�5W@1p��;3�牸Բ5W@n8m��;3����5W@:���;3��Tb9�5W@7�0��;3���ƴ5W@��l��;3��F��5W@]B��;3��RTo�5W@(���;3��^��5W@�:W��;3�����5W@kb_��;3��_�5W@g_��;3��5W@ _���;3���ŷ5W@?^c��;3�Σ��5W@ʴr��;3�Kr��5W@�Η��;3���V�5W@��Ч�;3���c�5W@�ռ��;3�� 1յ5W@`���;3�_Y�5W@����;3���3�5W@"�2��;3��� ��5W@)�ñ�;3�b��r�5W@�v��;3�����5W@�q���;3�.����5W@��H��;3���`�5W@���;3��ղ5W@\���;3��~.(�5W@�Z��;3���c@�5W@x!ۍ�;3��%�r�5W@5A؀�;3��[��5W@��q��;3��j�e�5W@� `��;3�� ���5W@J����;3� X6_�5W@4b3��;3���v�5W@6\��;3� ���5W@~g���;3�A�J�5W@nh���;3�ͧl�5W@� ���;3���}�5W@�2ģ�;3��7�S�5W@Z�n��;3��d���5W@��ޟ�;3�����5W@Z�#��;3��B���5W@-2��;3���Aŵ5W@H���;3�\#sV�5W@�GҎ�;3��� �5W@�S}�;3��0�5W@��r��;3�w/,Q�5W@�t��;3���N��5W@i�9��;3�p�=�5W@L����;3�!'�M�5W@z�ҝ�;3�|����5W@�5U��;3�����5W@�)E��;3��7�P�5W@�Xe��;3�et �5W@�{��;3��_3��5W@��?��;3�X�;g�5W@u����;3��=���5W@��{�;3��I9L�5W@�#��;3��-rm�5W@Y哋�;3��h~5�5W@�xz��;3�gYF4�5W@i���;3�Y5ɰ5W@��z�;3���Tf�5W@�B��;3��y�5W@Х���;3�Rf�˱5W@��V��;3��_���5W@����;3�'<'�5W@Mѕ�;3�4 ߸5W@���;3�8\��5W@�]���;3���=H�5W@N�O��;3���ó5W@�WC��;3��U�߭5W@[�v�;3��ُ�5W@�" p�;3����5W@�%�m�;3�[} �5W@�Z�Z�;3��+M`�5W@EV�L�;3��̿�5W@(��r�;3��ܥp�5W@���e�;3�ߑ� �5W@}�@�;3�8���5W@�� �;3���6o�5W@�$9B�;3�CI�Н5W@���`�;3����ѧ5W@�pnT�;3�뙵��5W@�)O�;3�VֶK�5W@�X�g�;3��E��5W@�.�i�;3�i�T�5W@J1�Z�;3��,:�5W@ڦ^~�;3��/���5W@W�}�;3�P!�v�5W@���;3�HNS �5W@8i�;3��5W@�'{�;3���ܯ5W@ğc{�;3��V7�5W@O����;3�35�յ5W@r4څ�;3�����5W@����;3�;���5W@|�^t�;3�<�d�5W@��jz�;3�[Jbݽ5W@+?�p�;3�Qw�I�5W@��p�;3�����5W@k7 u�;3��:��5W@��w�;3�����5W@_l$r�;3�3��'�5W@,�hl�;3�H���5W@�J�u�;3�����5W@1�`d�;3�e�w�5W@$��m�;3�M5���5W@�Oo�;3��o��5W@;tm�;3�c�5�5W@1ژi�;3�}cX�5W@�E+d�;3�%�U�5W@��`�;3�ؽ#G�5W@4^�I�;3��(��5W@�[Z&�;3���Ƒ5W@��i/�;3��=��5W@f �:�;3�:N��5W@�>KT�;3����è5W@;�VV�;3��h�9�5W@��$_�;3���v5�5W@��Y�;3� ���5W@â�_�;3��*�0�5W@�/�f�;3��k���5W@�o;g�;3�����5W@�0�i�;3��sg��5W@��j�;3�Ib���5W@��l�;3���*��5W@ml�;3�K3˸�5W@�om�;3��*��5W@u �o�;3�BB�5W@v�yt�;3�8�8F�5W@B�y��;3��I�W6W@s�7w�;3�'2���5W@&�m�;3�a�r �5W@�s"Z�;3����5W@���b�;3�n�u��5W@���M�;3���zǫ5W@�u�_�;3�;�F�5W@1k�U�;3��aܲ5W@��@�;3���'~�5W@��N)�;3�֐y–5W@����;3�2�_�z5W@��� �;3��`߉5W@��Q�;3���MΏ5W@�#tU�;3�1�EE�5W@�{dN�;3�mB�|�5W@���E�;3�Yz�2�5W@n��I�;3�N���5W@��/�;3�ii!�5W@���;3��n3��5W@��#�;3�Lw'�5W@�i%�;3���tŘ5W@�q�;3��cAk�5W@�c>�;3�K�A�5W@c�O�;3�N����5W@�-V�;3��B�3�5W@��+e�;3��ƍZ�5W@���^�;3��6��5W@ xee�;3�\�d)�5W@���;3���'6W@�v��;3��HS�6W@^���;3��;6W@ʢn��;3����+86W@�j=��;3��s'$;6W@7� ��;3��=�96W@U�~��;3���46W@�|��;3��96W@�t_��;3���m.76W@m���;3��!��06W@>�޲�;3��ٔ�/6W@��I��;3��f�66W@ڵl��;3���'�46W@x��o�;3��Ƃ��5W@��ed�;3��.�P�5W@H�yC�;3�p�z�5W@3�!�;3���;Ņ5W@>��.�;3�a�\9�5W@��,C�;3�����5W@Л�1�;3�aJֲ�5W@OٲQ�;3��p<,�5W@��y�;3��Rf�5W@��L�;3�׺gZ�5W@H�\�;3�9�� �5W@���9�;3�;6y�5W@$os5�;3�4�ʂ�5W@:���;3��ݞmO5W@�����;3���uA5W@E��`�;3��r�+5W@�W�6�;3�rܰ� 5W@�BY�;3�/s�M%5W@�D8.�;3�EC 5W@��E�;3�1�65W@@ H�;3����&5W@�v�x�;3�n0v�95W@͌b;�;3��L�B5W@e��!�;3�Q��k�4W@!��;3���H��4W@ W��;3���+��4W@�����;3�е�0�4W@��?�;3�6�l��4W@^��.�;3�Y/p�5W@r47�;3�ݽ�4W@����;3���i;�4W@[E'�;3�R����4W@n����;3��Yr�A5W@*�mO�;3��;n�4W@$%zK�;3��f�S�4W@"�Qf�;3�3�X��4W@�^���;3�h�1�4W@��ݙ�;3�0���4W@JB��;3� {/s�4W@��p�;3�e���4W@��T�;3����4W@@�&\�;3������4W@��n?�;3����4W@�0@�;3�F�܍4W@�KZ\�;3����4W@�JL�;3�*T�z�4W@�@�H�;3��\� �4W@h_�6�;3���Sd�4W@�s ?�;3�Bx���4W@X��9�;3�:�X�4W@���!�;3�r�^�4W@1�,�;3�K���4W@q��.�;3��WY��4W@�*�^�;3���j�4W@q r�;3�[e�4W@�QL�;3��~���4W@i^h�;3��F�a�4W@-}'x�;3�"���4W@a�҉�;3�n�.�4W@%���;3��}���4W@�(��;3�����4W@5���;3�UI� �4W@�"�;3�vS��4W@0�s-�;3�y!ϼ 5W@EO�;3��A���4W@�\���;3�lAۉG5W@��A|�;3���x�<5W@A�gP�;3����#5W@t�B�;3��U�5W@~�F9�;3�퍖5W@S�8�;3�}H�5W@:Lm>�;3��;��5W@o�k�;3�/7-z35W@�\�;3�ԥ��+5W@��Q�;3�"� d&5W@аߟ�;3�"F�O5W@��o�;3���C65W@�;��;3��^ �U5W@/l�J�;3���'<$5W@���X�;3��%P+5W@1@�d�;3�����05W@R��?�;3��b�5W@z�/�;3��,J5W@�T�)�;3�#�H� 5W@��/�;3�J,�5W@_�*�;3�ZqY�5W@��"�;3��gS5W@R1��;3�����4W@�{:�;3�����4W@��;3�Ƭ�Z5W@� <�;3�~R��4W@Y��"�;3���x�5W@����;3�n!��4W@�� '�;3�`��15W@��'�;3�"�R 5W@�Q�.�;3��%�5W@d{8�;3�_�;5W@l{�6�;3���M�5W@`z�-�;3���15W@��eV�;3�V�Z�+5W@bs/b�;3����15W@U�Ox�;3��)t<<5W@� �H�;3�3@\%5W@�E'��;3�Cz�E5W@K�w�;3��q�!;5W@K©��;3����SI5W@�`K�;3��Q��'5W@�@7�;3���W�5W@F8>�;3�8`h!5W@Θ�7�;3��1r�5W@ 9@�;3��~90 5W@��(�;3�����5W@ЌN!�;3�Ҭ^> 5W@!�#�;3��dt5W@�f(�;3�'���5W@�'21�;3��@� 5W@saM0�;3����5W@!���;3��ł5W@����;3���� 5W@I:H�;3��A 5W@H�+�;3��>�T5W@�p` �;3�����5W@^�"*�;3���_H5W@���#�;3�*-5W@_�+�;3��c.�5W@�r$$�;3�,Fd�5W@�"=�;3����D 5W@7�W�;3���75W@g�2�;3�~35W@�c��;3�P3�5W@����;3�@��$5W@�B �;3�8��_5W@�^�;3�S�X.5W@ �e�;3���IK5W@�0�$�;3�]B�5W@���;3��?d�5W@�ʨ5�;3�3��) 5W@���O�;3����e*5W@7}�A�;3��l�x%5W@� @�;3�w�o�#5W@�U&'�;3��P��5W@D�}8�;3�LJ�!5W@~�M�;3��� **5W@&��X�;3���.f.5W@�\�:�;3�m�� 5W@�8nB�;3�d��#5W@g:@U�;3��rQ@,5W@��%�;3����5W@K�.�;3����5W@w �;3��nW5W@��%�;3�pO�^5W@�5�,�;3�F��%5W@ P�2�;3����� 5W@�0�;3�\ڡ*5W@�F�,�;3�Z���5W@�A�8�;3�Q�z�"5W@y�T(�;3�_)ҵ5W@�T�#�;3���j�5W@=���;3�k4LH5W@݉ �;3����h5W@�;3�,�@L5W@�.\�;3�%~�l5W@v��;3��<�/5W@���;3���AE5W@���;3���o5W@�1� �;3��u��5W@�� �;3���*�5W@j��;3�s��5W@��!�;3��]jV5W@/#�;3� �� 5W@w�K�;3���5W@�|�;3��1;i5W@�f�;3��>�5W@7{��;3��}|5W@ x �;3�����5W@#e.�;3�� ��5W@��&�;3�p���5W@�ߚ#�;3�e�1�5W@z�;3�A��T5W@g�6�;3��7pa 5W@�^��;3�|@�b5W@r�;�;3�Ŝ��5W@�*S�;3�v�e5W@T�& �;3�)�2�5W@�x� �;3���5W@y �;3�Tm�u5W@0$� �;3��f+�5W@�%�;3�u�� 5W@����;3��m�5W@���;3� ��5W@��� �;3�`���5W@�1��;3��� (5W@)ٙ �;3��b�5W@OA �;3���X5W@g��;3�8�5W@�� �;3�hC�e5W@�>k�;3���a5W@=�� �;3� U9q5W@� ��;3����5W@��j�;3���P�5W@=�d�;3���e5W@����;3�l��5W@���;3�g��5W@��W �;3���A�5W@��%�;3�֞�5W@f��;3�8xM5W@����;3��K5W@� �;3�č��5W@����;3�>%�5W@c���;3���'s5W@�Ȏ�;3�4���5W@z]���;3��v�5W@�����;3�jP~5W@-���;3�c�m5W@H�-��;3�����5W@�����;3�� ��5W@���;3�|�`j5W@R���;3���{5W@!<)��;3�i� 5W@;mF�;3� ���5W@�a��;3�mOվ5W@@߮ �;3�߀}�5W@�J� �;3����5W@�y�;3�C�HB5W@U� �;3����#5W@�`�;3�[75W@ʙ��;3�����5W@��5�;3���I�5W@�Ij�;3�I�}5W@��� �;3�s�Z5W@��8�;3����5W@ R���;3�����5W@�� �;3�� !5W@}(��;3�����5W@bL�;3�p�*]5W@a����;3�T�5W@��~�;3�"a��5W@$X���;3�����5W@�2��;3���Q5W@̲j��;3�v�,'5W@����;3�k��l5W@#b���;3�C�f�5W@\����;3��E�V5W@�Ni��;3��B5W@�F���;3�|؎�5W@қ���;3���kV5W@r�[��;3��$5W@6f���;3�a �o5W@�q���;3� w�5W@ ����;3�^��5W@݋��;3�@��5W@f����;3���E5W@U�9��;3���5W@(����;3�ٜO�5W@�����;3���a�5W@ڪ��;3�'`5W@XCp��;3�6:GI5W@�0��;3�� ��5W@�����;3���{5W@��L��;3� ��?5W@�a���;3����5W@�^���;3�I��5W@�,�;3�}��5W@ED��;3�r";�5W@jw9 �;3�}���5W@�� �;3�a�wM5W@�M��;3��-��5W@y�M�;3��p��5W@�lo�;3��75W@13`��;3����a5W@�]���;3�^Uf�5W@�ȡ��;3�~w��5W@�y���;3����5W@��h��;3��CP�5W@m?7��;3�����5W@�n���;3��F�5W@�����;3�lE�5W@-s��;3�N��5W@ʦ���;3�;vRq5W@���;3�F��A5W@��\��;3�G�5W@MP���;3�V�w�5W@7����;3��� 5W@9�Q��;3���q�5W@sA���;3�r��5W@S�(��;3�"���5W@с���;3�Y��5W@L���;3�g��5W@�MG��;3�q���5W@Mި��;3��5T�5W@�L��;3�tlW�5W@u_���;3���C5W@�v��;3��~�5W@՗���;3�_O�5W@����;3�C?�5W@�� ��;3�9-��5W@xo��;3��u�,5W@����;3�*��5W@��S��;3��d�$5W@��u��;3� C2z5W@����;3�=���5W@|���;3��,��5W@��i��;3����Y5W@��,��;3��2:�5W@�T��;3�]�5W@�ʒ��;3�I�K5W@+���;3���s5W@�\��;3�tT�5W@���;3�q&� 5W@rF��;3�)qg=5W@L����;3�mD�5W@l/��;3�Z��05W@ �k��;3�0��i5W@�,��;3�����5W@�w���;3��2'�5W@z=���;3���5W@�6���;3� ���5W@�x���;3���҂5W@FA���;3���ހ5W@�l���;3����5W@�|���;3��݋5W@����;3��͵�5W@�Y��;3���u5W@@�<�;3���S��4W@�{ �;3�5�p��4W@d��;3��-P݇4W@ ���;3��k�Q�4W@꘦�;3��U�4W@\w!�;3�`�A�4W@o��(�;3��8TŇ4W@!j �;3�����4W@�`���;3�Fճ�4W@���;3���앆4W@����;3�����4W@:;X��;3�"ʯ��4W@����;3����K�4W@����;3������4W@="��;3�o�b0�4W@����;3��4F�4W@ʒ~��;3��Wm�4W@&����;3�q��4W@�W���;3�'B*߃4W@"щ�;3�uw�:�4W@�o�;3�U�4W@��H�;3�$�z�4W@��C�;3�J�]�4W@����;3��c�ك4W@�4��;3��ǃ�4W@�����;3��j�4W@����;3�2�_ł4W@i+���;3�'`�ʃ4W@��<��;3��!Q�4W@E ���;3�aKO҃4W@3��;3�,:�4W@�Fs��;3��b�\�4W@zL��;3���s��4W@�����;3�T>2؂4W@խ���;3���� �4W@ն���;3��y��4W@Ik��;3�7��M�4W@��#��;3����^�4W@'���;3�a�aG�4W@"�,��;3��?�j�4W@��8��;3�ɳ��4W@J�W��;3���+��4W@T�I��;3�R���4W@ejK��;3��9�(�4W@ıٻ�;3���k�4W@o$ĺ�;3��|�́4W@����;3�����4W@ ��;3��.�4W@J�H��;3����H�4W@����;3��meށ4W@�R���;3�K��4W@v���;3�S� ��4W@%�?��;3������4W@?0˸�;3���Eρ4W@K�Y��;3�"։��4W@Qo���;3�����4W@ʈ���;3��귁4W@H2��;3� '���4W@�z\��;3��_���4W@#嶲�;3�P�^��4W@o�*��;3�|����4W@�య�;3��f{�4W@� ���;3�O����4W@�QP��;3�n�dy�4W@�I��;3�D��g�4W@*mͭ�;3�[�j�4W@�6���;3��_os�4W@�IY��;3�E��4W@̈́���;3��t�f�4W@����;3��k>n�4W@�76��;3�X�摁4W@zY���;3���aZ�4W@tO��;3�?�S�4W@ܩ���;3��#P�4W@`���;3�� `\�4W@�Y���;3�R�Y�4W@ ���;3��-!]�4W@�!׬�;3�7|�c�4W@�Zۭ�;3��³k�4W@���;3���L�4W@v����;3���TI�4W@�Ы�;3���X�4W@ ����;3�1NP�4W@Ow���;3�:�|P�4W@J]��;3�v�|F�4W@v�j��;3�t��G�4W@��ڪ�;3��S�4W@G���;3��CM�4W@�:��;3�8�|C�4W@�W���;3����A�4W@� ��;3����C�4W@嬨��;3�I0aH�4W@��Y��;3��&?�4W@"N���;3�g��@�4W@Di1��;3�12�=�4W@g���;3�1���D6W@!��;3����D6W@� I�;3�����D6W@c�;3��t��D6W@|y�;3�3 �D6W@q��;3��r�D6W@�^�;3��q��D6W@�MF�;3��'j�D6W@ tr�;3�;�ԅD6W@�P��;3��wD6W@���;3�Ɩ<�D6W@ǚS�;3�A��D6W@�c)�;3�pnՁD6W@/��;3�r/C�D6W@+��;3��J�D6W@zf[�;3����D6W@A�s�;3��҅D6W@��s�;3��;ɅD6W@d|�;3��t>�D6W@Yf��;3��`�D6W@�<��;3�}���D6W@Ӑ��;3�{�E~D6W@��;3��<�D6W@����;3����}D6W@4^�;3�}e9yD6W@#ּ�;3�!7D6W@�H��;3���y~D6W@�Y�;3�21��D6W@���;3��>�}D6W@\���;3����}D6W@���;3��U{D6W@�� �;3�>�q�D6W@Y��;3�a]zD6W@b\��;3��F0yD6W@�c �;3�ͬ:�D6W@"/��;3�B�}D6W@�ï�;3�u�Q{D6W@$e��;3���zD6W@����;3�Ds|D6W@���;3��V�}D6W@B��;3��]~D6W@�I�;3���uD6W@�}M�;3�F��vD6W@�?��;3�Ɯ�zD6W@o@��;3�!oD6W@z���;3��8rD6W@<�4�;3���fxD6W@����;3�dZgyD6W@�*�;3��stD6W@:���;3�[ˇpD6W@؝U�;3���vD6W@3,J�;3�!�uD6W@���;3��;YzD6W@��W�;3��t�vD6W@s���;3��rvyD6W@\w%�;3�A�sD6W@��i�;3��z=jD6W@g��;3�$�InD6W@���;3��h�qD6W@�^��;3�c��oD6W@�h��;3�gr�lD6W@)���;3�'ZpD6W@����;3�'��lD6W@O%n�;3��Z�iD6W@���;3�2 [BD6W@�d �;3�I �?D6W@q� �;3��>D6W@�EQ �;3�G�FD6W@� �;3��.KD6W@x��;3����5D6W@!,� �;3�IGD6W@ �;3�T��4D6W@�q��;3�`D�2D6W@?� �;3��/D6W@�� �;3���T8D6W@�� �;3�w�9D6W@ЄC �;3�\��9D6W@�;W �;3���,D6W@��� �;3���1D6W@4�� �;3�9S~4D6W@�� �;3�/u�0D6W@S@ �;3�O��/D6W@O�� �;3��x 'D6W@�rL �;3�Tx�D6W@>>� �;3��&�D6W@b�� �;3�>��#D6W@ƫ5 �;3����D6W@Z�X�;3�g� D6W@�1��;3���7D6W@0��;3���D6W@*dc�;3�s D6W@ ��;3�T՛D6W@h���;3��]��C6W@#�S�;3�m�<D6W@Yt/�;3����0D6W@����;3����KD6W@�����;3����C6W@1���;3�>W+�C6W@~R���;3��R�C6W@<�?��;3�N<PB6W@�p4��;3�SE��C6W@�����;3�����C6W@W{)��;3�v[�C6W@�k���;3�m6�C6W@� O��;3��6�C6W@�P���;3��3:�C6W@�r��;3��ܰ�C6W@K���;3�~��C6W@C0E�;3�K�N�C6W@"ݯ�;3��1��C6W@+jL�;3��J<�C6W@�?�;3��QD6W@讆�;3�/��D6W@��;3��A�D6W@�r�;3��J)D6W@Ы�;3�[kD6W@ED/�;3�M>TD6W@"Lf�;3�I�z D6W@�(��;3�ȉs�C6W@����;3���C6W@����;3��d��C6W@�C�;3��U+�C6W@�0p�;3�>���C6W@����;3�� 9�C6W@N�$�;3��fC�C6W@"���;3�t��C6W@�b��;3�����C6W@"���;3����C6W@��n�;3��4,�C6W@@v��;3��v�C6W@��p�;3��W�C6W@߫[�;3���4�C6W@[�'�;3�����C6W@*�y�;3����C6W@�C���;3��Z}�C6W@^����;3�j��tC6W@/�9�;3�e�k�C6W@��s�;3�+�f�C6W@���;3�!x}�C6W@U���;3�����C6W@�ǘ�;3�#~��C6W@?�)�;3��c��C6W@��)�;3�Y�f�C6W@]-�;3�'e�sC6W@����;3��1V~C6W@@����;3�[|KuC6W@{7���;3��f�UC6W@�T��;3���AC6W@gZ��;3�Q~�C6W@��q��;3�B4�sC6W@ҹ%��;3����(C6W@��j��;3�\�S7C6W@OO��;3��YR7C6W@�U���;3�5�VQC6W@�X`��;3�t�&C6W@E[���;3���;C6W@��~��;3���WC6W@뮒��;3��`C6W@����;3��7IC6W@�#���;3��bA9C6W@�P(��;3����7C6W@�G���;3�k2��B6W@����;3� �C6W@�pp��;3��ʍ�B6W@|����;3��R��B6W@ii���;3�]m�B6W@e$Z��;3� ]�B6W@����;3�Q��B6W@����;3�@�B6W@�����;3����B6W@��_��;3��8��A6W@ڷ��;3�'L�B6W@ �I��;3��֐�B6W@�@��;3�X��OC6W@Z���;3����@6W@��ѻ�;3�ZG�96W@t$���;3��w>6W@�j��;3�ܾۘ>6W@�T��;3���@6W@�����;3�Cc~�A6W@����;3���/�A6W@�f���;3���+�A6W@x� ��;3�w�lSB6W@S9���;3��6��A6W@�����;3��VCdB6W@ؕl��;3�*�eTB6W@ֻ_��;3��t�B6W@,��;3����WB6W@ܣ���;3��s��B6W@����;3�rf�B6W@Z&���;3���OB6W@2e���;3��,5B6W@o;,��;3��`'B6W@\a��;3��i�A6W@#����;3�$ ,�A6W@ ����;3���,B6W@Sł��;3�֢��A6W@�6��;3���v�A6W@�F���;3��D�A6W@����;3�l�uA6W@R?R��;3�ʻ\;A6W@Z&���;3����A6W@my��;3�w�LPA6W@��%��;3�XW��@6W@.Ns��;3��6�@6W@`���;3�%��cA6W@^���;3��a�A6W@��Y��;3��T�XA6W@Èq��;3��[��@6W@=}��;3�im�@6W@�՜��;3�����@6W@��-��;3��%�@6W@�y���;3�`���@6W@����;3�$LK�@6W@)���;3�W�Z^?6W@ 1��;3����=6W@�Ǜ��;3���In?6W@^!%��;3�����?6W@$���;3���L/@6W@�[���;3���?6W@6����;3�� A@6W@�V6��;3��;�F@6W@>�{��;3��@6W@'�?��;3�) �K?6W@�����;3��ܨz?6W@�m`��;3�5t?6W@K ���;3����>6W@�2��;3��! ?6W@���;3�Od�s>6W@͵���;3�rHuy>6W@����;3��l,�=6W@m���;3���*�=6W@�r���;3�}��<6W@INN��;3�T,�=6W@ ����;3�� �>6W@w���;3����l=6W@~b���;3�vܮR66W@^e��;3�C�T96W@�f��;3����q46W@_���;3�=��;6W@����;3��&��,6W@�ש�;3�[!��-6W@\���;3��:6W@��j��;3����F6W@$��x�;3���ָ�5W@�w�n�;3�3���5W@gT�r�;3�K�f�5W@*!�n�;3���;~�5W@�p(p�;3�����5W@�but�;3��e���5W@��!r�;3�c��O�5W@�(�p�;3�Sm.�5W@;{�p�;3�H�b�5W@���{�;3������5W@m�#��;3��#5��5W@Տ���;3�]=��5W@��#��;3��>w�5W@�����;3����s�5W@����;3�.��5W@2n��;3�\��ܵ5W@�,��;3�b.5��5W@����;3�9M�8�5W@�O���;3�p�l�5W@��%��;3��)�'�5W@bX)��;3��SR�5W@w.��;3��]��5W@'�;��;3�/NQ�5W@��t��;3��:���5W@�����;3����,�5W@8�"��;3���R��5W@*y��;3�����5W@EUI��;3�Ø3 �5W@�;���;3�{||�5W@}#���;3�_���5W@��4��;3��)��5W@#���;3��CP �5W@@3��;3�m����5W@�)��;3��� �5W@�5���;3�U�h8�5W@�u\��;3��Z o�5W@�cM��;3�'���5W@�O��;3� 5��5W@�sV��;3�����5W@��{��;3�{1���5W@Y"��;3�˕�ڵ5W@S����;3��/(�5W@[�l��;3���Y �5W@�5 ��;3�U����5W@�����;3�:܋´5W@Fc���;3���=K�5W@�����;3���dh�5W@_h{��;3��b��5W@Fa*��;3�tc�5W@�/���;3�ƧnԴ5W@ztu��;3�����5W@�l ��;3�[1�:�5W@�+���;3���ǵ5W@}�5��;3�̹F�5W@|E��;3�[N�ٵ5W@� I��;3�bCeP�5W@�h��;3��sz �5W@�^��;3� �p��5W@e���;3�מj��5W@�����;3��z��5W@_&���;3���?��5W@' ��;3��h^�5W@����;3�io�^�5W@!����;3�j��$�5W@�}���;3�/8�5W@j&��;3����5W@a�<��;3��)��5W@�����;3�l�Dε5W@�"���;3���G�5W@Q���;3��x��5W@ ���;3�=���5W@����;3��k�е5W@j ���;3�e�͵5W@vC^��;3�,/o�5W@�+���;3�m�n�5W@:���;3�&���5W@�����;3�*��5W@ ����;3��S�Ƶ5W@�\���;3���ص5W@�����;3�I�}��5W@涜��;3���3��5W@�J���;3��U#�5W@L���;3��1�7�5W@��n��;3�Ui���5W@_����;3���w�5W@C��;3��_��5W@�5��;3�Fp� �5W@� ���;3�ి��5W@〘��;3�u��<�5W@����;3���d?�5W@��r��;3�Vk�^�5W@Jr���;3���c�5W@EF���;3��R:]�5W@�$��;3�,�zS�5W@��}��;3�T�o�5W@T|���;3�D�e�5W@Bb��;3�� �Դ5W@hM���;3�b��"�5W@Xv��;3����5W@�6���;3�t���5W@V� ��;3��X�ǵ5W@�t>��;3�~���5W@1����;3��|��5W@> i��;3�9�S��5W@Ϭ-��;3�@Ы.�5W@+&���;3��R��5W@�Ae��;3����õ5W@(�r��;3���F�5W@��Q��;3�����5W@����;3�(�P��5W@�2��;3�͏枵5W@�/��;3���ј�5W@��`��;3�-���5W@"k��;3���i�5W@By���;3���l�5W@�0��;3�k�wR�5W@�o���;3��R���5W@����;3�R9��5W@�I���;3�vbܵ5W@�i���;3�H��5W@�3��;3�!���5W@¬���;3���� �5W@M¤��;3�����5W@ݵ���;3����ĵ5W@�^���;3�~*��5W@� ���;3��୲�5W@mL^��;3���ɵ5W@GΚ��;3���5W@�N��;3�C]���5W@(�x��;3�b�Nk�5W@�����;3�ԁJ��5W@%FX��;3��`�ȵ5W@]�j��;3��(-��5W@�d���;3��z+�5W@�C6��;3���ҵ5W@Y����;3�� ֡�5W@� ���;3� ����5W@u��;3���/��5W@�Q��;3�:Mg�5W@Sr*��;3���7��5W@�E,��;3���T��5W@@t��;3�BD�ɵ5W@�����;3�m��O�5W@}��;3���.U�5W@����;3���ʳ5W@~ x��;3�E,Gô5W@�d���;3�n}�5W@�~0��;3�&-�dz5W@@�+��;3���d�5W@D����;3���A�5W@�����;3�L�$"�5W@����;3��ߋ�5W@�1 ��;3���ې�5W@����;3���Ѣ�5W@D<_��;3�Y�A��5W@��B��;3��7Yc�5W@�4���;3�ҹnf�5W@�QJ��;3�nj� �5W@�=��;3��&�5W@ߢc��;3��lK�5W@a:���;3�����5W@����;3���ϴ5W@)���;3�� 3��5W@&��;3�/���5W@�����;3�� մ5W@��S��;3�E��5W@U���;3���X�5W@��|��;3�Fī��5W@}`��;3���5W@z���;3�ˡ�x�5W@�bR��;3��^9^�5W@Y���;3�� ��5W@�7���;3�7J@��5W@&7���;3����q�5W@�B��;3�,�s~�5W@k����;3��� �5W@����;3��N=-�5W@q����;3�6�zȴ5W@�Z���;3��Y�^�5W@���;3�k(�K�5W@�ة�;3�_햲5W@����;3��n�M�5W@�����;3�Xu�(�5W@U����;3�K��ɲ5W@�r���;3� ��5W@����;3�->�|�5W@5����;3�:�;�5W@w+���;3�1�f�5W@W�*��;3���N)�5W@��¦�;3��ҖO�5W@I�ȫ�;3�q�Vز5W@D{F��;3�5��n�5W@��C��;3�U�Y�5W@�]���;3���\�5W@�KY��;3����u�5W@����;3�-�5W@��2��;3�ÕR�5W@�3���;3��Fs��5W@4����;3�?�iq�5W@r���;3��?Z�5W@��c��;3���l��5W@쉄��;3��_�ܴ5W@�)���;3�R�\v�5W@�*���;3�i�5�5W@�Zp��;3�N����5W@U�j��;3��n��5W@3Fs��;3�K�f�5W@̑¾�;3�D����5W@&(���;3�>*�5W@�;3�@���5W@�#g��;3���u�5W@E��;3�@_���5W@?���;3�} 8�5W@�8 ��;3��֩ߴ5W@4v��;3�C(<-�5W@���;3��xS��5W@�n��;3��M7��5W@]0��;3�9���5W@�� ��;3����d�5W@h�p��;3��anB�5W@����;3��ç��5W@]����;3�t� ��5W@X:��;3�h�Uw�5W@Z���;3�����5W@��G��;3��1ҝ�5W@+lR��;3���cL�5W@�����;3����W�5W@��W��;3�[�wD�5W@ ���;3�2Ѱ�5W@`����;3�V���5W@�N���;3���^ �5W@5���;3�^8���5W@����;3�BC�dz5W@��+��;3����{�5W@"H���;3�0H�5W@�K��;3�"�7�5W@�V���;3�̈́��5W@w����;3��z�x�5W@�+��;3�^�5 �5W@�2��;3� D�3�5W@^}��;3��1>t�5W@���;3��e�Դ5W@B4f��;3�1� ��5W@�����;3�qN�5W@� ��;3���#�5W@��O��;3��}��5W@���;3���橴5W@����;3�3Y<�5W@!ŵ�;3���q�5W@H���;3�[?��5W@˜��;3�n��ֳ5W@�^=��;3��^���5W@�����;3�N�!�5W@T���;3�(�C{�5W@ Y(��;3�&�9�5W@���;3��P�5W@�j_��;3��E�̴5W@�\ ��;3���DŽ�5W@�[���;3�Ï�.�5W@f�9��;3���L �5W@�Ը�;3�Wx���5W@���;3�(ȳ�5W@�����;3� � �5W@����;3�^`�z�5W@�q���;3���.�5W@�ݢ��;3���"IJ5W@0���;3�YǃY�5W@Ȃڢ�;3�5U���5W@�: ��;3�^�sz�5W@�ڤ�;3��+�5W@c���;3�S���5W@'k��;3��vu|�5W@C�H��;3���a�5W@��֙�;3��1�İ5W@�QW��;3�$Va��5W@ͦ��;3���?�5W@�lh��;3�te�5W@"�L��;3�?�@�5W@�DB��;3�>@E�5W@�C���;3���5W@�/��;3���&~�5W@�ա��;3�u�쿲5W@�&���;3�&㨱5W@�Š�;3�P���5W@"�u��;3�QX��5W@1W��;3���$�5W@��>��;3�W�ٳ5W@�z��;3��@W�5W@�����;3�ǜ���5W@���;3�ձ��5W@ ���;3�o�[��5W@�D��;3�]uQ�5W@�� ��;3�-����5W@�Ϩ��;3�j����5W@�9��;3��H�5W@\-ֱ�;3�k|�5W@�O��;3���$'�5W@�S2��;3��$E�5W@����;3�]���5W@�ƭ��;3��j9$�5W@y͹�;3��8��5W@&6ջ�;3����p�5W@�`��;3��3��5W@��=��;3� 9�5W@Dw~��;3�@-HV�5W@6��;3��a�ʵ5W@�;Ӿ�;3�v�ɐ�5W@��x��;3�� ��5W@6+Ӽ�;3�W={'�5W@0r$��;3��W�5W@�ԝ��;3��y �5W@��ط�;3�4���5W@\, ��;3��*��5W@E|���;3�Q��C�5W@�͒��;3��(o��5W@N�U��;3�_�׸5W@��Я�;3�.�}\�5W@����;3���5�5W@Z�W��;3�=� ��5W@�f���;3�7f��5W@�!|��;3� SŶ5W@{ ծ�;3����5W@�Zn��;3� �Į�5W@����;3�[ o@�5W@�ž��;3����5W@�ϱ�;3��,ݴ5W@�ΰ�;3�[pM��5W@�I���;3�yr7k�5W@��e��;3���4�5W@�3��;3��|Bn�5W@�X��;3�5U�ܵ5W@%~��;3���<�5W@d�ڳ�;3�Ǐ��5W@����;3������5W@�y ��;3���:�5W@�wH��;3�G�5W@�^˪�;3�*��5W@ ����;3�R�"*�5W@�Nƭ�;3����5W@�`!��;3�m��5W@VSD��;3�b`��5W@A�r��;3���fC�5W@/����;3�۬�g�5W@eȓ��;3�g��5W@Q���;3�d��l�5W@隤�;3��j�l�5W@`E���;3�� ��5W@f����;3��W&�5W@Oh��;3���}�5W@�X��;3�.�2�5W@b#���;3�n��ۭ5W@T<"��;3�q�2��5W@+k���;3��"��5W@\Bj��;3��r!q�5W@� ��;3���5W@"!��;3�0�鎱5W@�5Z��;3� �h��5W@#�)��;3�H]48�5W@6oߧ�;3���v��5W@EG��;3���<�5W@|����;3�g;@ų5W@��ߠ�;3���4��5W@��y��;3�sc�5W@H�n��;3��!��5W@�D���;3��t�j�5W@2ᬝ�;3��̕I�5W@��w��;3���4��5W@dU���;3� v��5W@�+T��;3� �n"�5W@��)��;3�Ҽ�.�5W@�{5��;3���o�5W@�彙�;3���ı5W@��p��;3�ک�.�5W@�;3�z��5W@.�֟�;3���T�5W@d&��;3�Ԯ^��5W@��3��;3��� ��5W@�@g��;3�6Ϡ�5W@梥�;3�)��5W@���;3�����5W@��X��;3��ˊt�5W@h�ժ�;3�i�t��5W@�� ��;3���Oz�5W@����;3�6�4�5W@^����;3���Hj�5W@S����;3�B�'�5W@�뙢�;3���y�5W@�_��;3�h��Ѻ5W@�"F��;3�N� �5W@1]���;3�՜p�5W@1'M��;3�SV/d�5W@�a��;3��A�W�5W@h����;3������5W@�FD��;3���)�5W@�{N��;3�����5W@�Ǝ��;3�l/�ܾ5W@5�ڀ�;3��m���5W@���~�;3������5W@Φ��;3��s��5W@2� ��;3�B�b�5W@�O?��;3��k�ĸ5W@4p���;3�Y���5W@,%��;3���Z�5W@(R���;3�pr��5W@V���;3�)7G�5W@�Ȟ��;3�uT��5W@ލ��;3�+�iI�5W@�����;3���G��5W@�C��;3���2`�5W@� ���;3�p�6�5W@� =��;3�j'�5W@n����;3���쇴5W@1匄�;3����0�5W@�I��;3���t�5W@i����;3���9�5W@ v�~�;3�!,�5W@O��~�;3���ݯ�5W@6��;3� ���5W@��|��;3���f��5W@H����;3���I��5W@Q�S��;3�`6!��5W@�����;3�d�K��5W@�s���;3����w�5W@Rm7��;3�D��C�5W@Q�ہ�;3���\W�5W@&���;3�U�nO�5W@��[~�;3�H}p=�5W@x8�~�;3�.u� �5W@�*��;3�RD5�5W@y��;3�i�N��5W@�X��;3�G|�ñ5W@�?���;3�U�.5�5W@�}��;3����;�5W@�g���;3����ڲ5W@����;3��i���5W@ז��;3���c�5W@�����;3���#2�5W@X�;��;3��Gx-�5W@� ��;3����5W@��H��;3�T���5W@�v��;3�?�d�5W@�;��;3�D�5W@ ���;3�b��5W@�W��;3���>��5W@����;3�-�� �5W@.Gh��;3�����5W@}5���;3�8�*�5W@��֞�;3�Z�D�5W@��ɛ�;3� �:d�5W@c;��;3�!DP�5W@��ϛ�;3�sc���5W@�]��;3���;̲5W@eϞ�;3��r���5W@���;3�S�4�5W@RUA��;3�I$Z �5W@x���;3�ḁ�5W@�^���;3��{��5W@i{��;3���U.�5W@Z�܅�;3�.'e�5W@pC1��;3�O�z�5W@�V��;3���5W@V�{�;3�qi��5W@gF+o�;3�(���5W@��j�;3��i�Z�5W@��Y�;3��w���5W@.�Q�;3�N�K/�5W@3��e�;3� �) �5W@K��k�;3��*�Ө5W@?y�;3���«5W@5�2u�;3��|U/�5W@#��v�;3�C�5W@7��q�;3��׻��5W@�Z�`�;3�)���5W@�f�;3�O�ݧ5W@� A�;3�hY���5W@!i�F�;3��S��5W@��q�;3�d]���5W@�λh�;3�h���5W@��Vy�;3����z�5W@4�u�;3�M8`��5W@�nq�;3���썩5W@Y�Z~�;3�Mp�u�5W@`�]�;3�M/�}�5W@Н�t�;3���V�5W@�c�w�;3�7Wm�5W@s�:��;3�K�縬5W@�Fh�;3�' Ĕ�5W@dt�%�;3�l�A�5W@`� �;3��>S�5W@}z�;3��>� �5W@C`S�;3�쫋��5W@���G�;3��z��5W@�� <�;3��C��5W@l��_�;3�ZF1�5W@�o^d�;3�V �1�5W@�3�W�;3�w�5W@#-�T�;3����@�5W@�g9e�;3�(/S�5W@���h�;3�>�M�5W@��3�;3�h���5W@iu4;�;3�K-L�5W@�\�8�;3�G:�}�5W@@q>N�;3����5W@���S�;3�1�� �5W@/�x`�;3�WN5�5W@�Nl�;3��K��5W@�n�;3���,��5W@��[�;3�}��Ф5W@�Q`�;3�����5W@C h�;3��� �5W@$��;3��?�ز5W@��8��;3�4���5W@[c���;3��t,�5W@8}���;3��bt6�5W@�F���;3�D�Y��5W@�_�x�;3� ��5W@�Z�x�;3���C�5W@��#w�;3���Oլ5W@ձ��;3�,��]�5W@�� �;3� ��-�5W@{��{�;3��['ĭ5W@�I,��;3� T@�5W@M�ۈ�;3�N1*6�5W@ {e��;3�ןH�5W@"���;3�{@���5W@�Iq��;3����5W@Z9���;3�Ve���5W@�i��;3��3���5W@[� ��;3��'��5W@�p���;3�"���5W@3� ��;3��Rf�5W@�'�x�;3�v����5W@�d�;3��F땽5W@�y���;3��lɹ5W@�ʎ��;3��q�5W@'���;3�&}c��5W@��w�;3�Ƌ$�5W@D ��;3��䲥�5W@�as�;3� eO�5W@�{�r�;3����í5W@3��|�;3���+�5W@�Y�r�;3��/�5W@w3�p�;3�lz��5W@�o|y�;3���ZY�5W@�q*y�;3�i$���5W@2ޢz�;3����#�5W@�v�k�;3�u��5W@���o�;3�Z�a��5W@���z�;3��ue�5W@7l8w�;3���?�5W@y�{�;3�;����5W@��y�;3��{fH�5W@�!'v�;3�e8K��5W@;nqt�;3��Y4�5W@��u�;3� 7O;�5W@x~�m�;3�C�f �5W@>I�k�;3����ȯ5W@� �v�;3�b�W��5W@[��g�;3������5W@���p�;3���_�5W@�6ir�;3��� �5W@�c0s�;3�i�T��5W@��r�;3��I�5W@�w�o�;3�U�⊾5W@v(�m�;3�'�l<�5W@9�q�;3��\�5W@��h�;3��p^ٴ5W@�� �;3��%�M�5W@�l�-�;3���p��5W@�b�2�;3����l�5W@��Y�;3�b���5W@�� \�;3���m�5W@�h4c�;3�彌�5W@noR�;3�b����5W@�T�;3� d�5W@��;3�����5W@~���;3� a8�u5W@�)���;3�E��w5W@_^v"�;3�Nwa��5W@]?�&�;3����5W@F�� �;3� ԑΐ5W@����;3��݉V�5W@�1��;3��Ƅ5W@ �5W@96j�;3�5�x�5W@\�j�;3��= H�5W@y�%l�;3�K;n�5W@��Tl�;3�#YTb�5W@_��k�;3��$�]�5W@b�j�;3�i�@�5W@�3�l�;3��� ^�5W@��j�;3�#���5W@�Zo�;3�ȼ���5W@dY1m�;3��N`t�5W@.'�n�;3����X�5W@(w�r�;3��/��5W@X~�m�;3����#�5W@uNm�;3��P���5W@%�rp�;3��P ��5W@��go�;3�ύ�!�5W@�K�t�;3��!��5W@�zrr�;3�p��5W@X"�;3�5�F�5W@� r�;3�Vw,x�5W@Z��u�;3����a�5W@�h�;3�����5W@`ؿk�;3�`'�|�5W@�ƒ\�;3���P��5W@tAqg�;3�H/i�5W@x7Ka�;3���{�5W@���d�;3�@���5W@��c�;3�S��x�5W@�#^�;3�M�v˶5W@�`�;3�,|�5W@Z��Q�;3�~r���5W@b�\P�;3�M@)]�5W@-ń_�;3�`]��5W@��X�;3��횳5W@T4�S�;3����@�5W@u[�;3�Rz��5W@g��B�;3��ޖ��5W@Z��D�;3��I,|�5W@֙Z&�;3�PC˒�5W@{��)�;3��=���5W@a%�,�;3��߸�5W@��;3��Mכ�5W@����;3��՞w5W@>����;3����t5W@��;3�:?��5W@g��;3����p�5W@�v��;3�K��w�5W@$t���;3�O��|u5W@��v�;3�\�mӌ5W@2O�,�;3�胜n�5W@�GK"�;3���IG�5W@t'�4�;3����W�5W@�i�7�;3�s��E�5W@|>�Q�;3�sٰ5W@[Z�;3�,ܱ�5W@;/�Z�;3��?Z�5W@��G�;3�.��!�5W@�y�M�;3����R�5W@T"N�;3���,�5W@n#R�;3��a�5W@C�Z�;3��[^+�5W@Ð�I�;3��,��5W@xB�K�;3�\ݏ��5W@�7J�;3���Y�5W@�I�3�;3�:�4n�5W@��<'�;3�]�Ն�5W@&^>�;3�����5W@�";�;3�f����5W@�WM��;3�3,�]o5W@P����;3����r5W@��"�;3���Z�5W@U�;3��X�o�5W@�=��;3�F��~�5W@�.���;3��`I�j5W@�����;3�Rܢ5}5W@]�:.�;3�~Z���5W@l��;3��չ1�5W@�13D�;3�z�5W@š�:�;3�l1Ն�5W@�RM�;3���_��5W@�y�W�;3��j���5W@�.6U�;3�|��O�5W@#4�W�;3�:����5W@7�)b�;3��:sK�5W@{O�\�;3���Ѩ�5W@yCUb�;3�ȀH�5W@Ye�;3��!�@�5W@�|�g�;3�d���5W@�Gq�;3��j?��5W@��U|�;3��Q,�5W@rݥ��;3�ե[6W@#���;3��:J�6W@�w���;3�nՀ�6W@��;3����6W@}c���;3�a��L(6W@�Pu��;3�C{S%6W@�Uѵ�;3��@ZA26W@�5���;3��e8�66W@�D%��;3�B&�76W@�L ��;3��L7Z<6W@R��;3�-F�<6W@,V���;3�˖Ӡ;6W@Ms-��;3��� =6W@�B���;3��%��=6W@a����;3��y�=6W@�J2��;3�! �^<6W@����;3�pnv�<6W@ˆ���;3�(��<6W@��3��;3���Q;6W@-9��;3�*I��96W@����;3��dΑ96W@}����;3��h;6W@�&���;3��_ޞ:6W@�Z9��;3�ETĨ;6W@�q��;3��lsN;6W@8�1��;3�2^�`:6W@@j���;3��06W@;���;3��/�E26W@:&��;3�a��f86W@�d��;3��hP96W@gA���;3���b]96W@�\��;3�� 9�:6W@d����;3�e�H�96W@�.���;3�> |�4W@no-�;3�6Z�5W@b�t)�;3�m]�5W@�2�;3��E� �4W@��x��;3��l��4W@�`��;3�6��4�4W@1  �;3�4Wl��4W@J� �;3����4W@�ۨO�;3� ��i5W@ݥ1o�;3�y�w225W@%}�2�;3��� 5W@���=�;3��P!�5W@ղ�E�;3��5��5W@���e�;3�?^�-5W@�1N~�;3��WpW;5W@[k��;3�n��A5W@ �a��;3��?�Q5W@aZ���;3��~:J5W@N ?X�;3�� �k#5W@�?���;3�hn/�A5W@e@Rz�;3��E�85W@�z�$�;3�J��5W@��9�;3��K�|5W@*H�-�;3��yo�5W@�����;3�A����4W@�7��;3�`ܠ)�4W@�����;3�zt�4W@�#/��;3�r��Ǥ4W@��M�;3����4W@���Q�;3���R��4W@�M�g�;3���'~�4W@��s_�;3�8k��4W@�2J�;3�P��Y�4W@K��S�;3��e�4W@>WPK�;3���Ҋ�4W@�h�O�;3��I�4W@^� %9�4W@��u�;3�J�%ٚ4W@�vWp�;3�����4W@2UW�;3�� p�4W@��Z�;3����̓4W@����;3�� � ��4W@�9<�;3���e�4W@˖�&�;3���]"�4W@�I3�;3�x��q�4W@��z"�;3�����4W@��*'�;3���@�4W@��\�;3�$��4W@�J�!�;3�Z�}�4W@"];'�;3�&����4W@�-�;3�� &"5W@��Bh�;3��%25W@��`�;3��^�0.5W@\�BW�;3��/�)5W@M�Km�;3�S���45W@����;3�wiN�@5W@�����;3���KU5W@�Lo��;3�� {QF5W@�Rs�;3��[C�85W@oAz�;3�e#�;5W@�#f��;3����YX5W@_����;3���bJ5W@��hk�;3��d}�45W@R�I�;3��#R"5W@�]N�;3�Y��R%5W@��`�;3��j�R/5W@�wf�;3��iu25W@c��^�;3�L��.5W@���Z�;3��CUv+5W@5�L�;3���Di#5W@�=�C�;3���F!5W@<��7�;3����5W@��/�;3�X�Ir5W@�G+�;3�a� 5W@��,�;3� �M+5W@m 3�;3�����5W@�:�;3�w�\5W@'�T"�;3�Xry5W@-�q�;3�,2y��4W@d���;3�`��o�4W@޷^ �;3��_��4W@��>�;3���R��4W@S:9�;3����z�4W@=[��;3����q�4W@I�$�;3�$4�;5W@"�#�;3��Һ5W@ EG �;3�ָ�0�4W@��j�;3�qUg�4W@U�9��;3�ba�C�4W@�7���;3�/b���4W@M<���;3����4W@���;3�)�s�4W@����;3��*%��4W@)V��;3�# ?��4W@��%�;3���'"�4W@Q�;3�U�jY5W@�ȳ�;3��?��4W@�(` �;3���y5W@�K��;3�%j�5W@�b�;3���5W@�^j�;3�b�%��4W@&y� �;3����4W@c�~�;3�t���4W@��| �;3��ja5W@Tp�$�;3����5W@�r�+�;3�%W_�5W@#7�2�;3�{߶5W@�9;�;3�Vݸ�5W@ŭ�0�;3��Ddl5W@$/�;�;3�$:}�5W@v��4�;3����|5W@ tJ/�;3���ڹ5W@��%�;3���� 5W@�(�;3�˝S�5W@�V0�;3��S�5W@�^I5�;3��7�55W@�:g+�;3�Z���5W@V��7�;3�_�[5W@Wg�E�;3�X�S:"5W@A�qS�;3�@���)5W@4��d�;3�tR��25W@7��o�;3�@�75W@BY7_�;3�o.V�/5W@�s�T�;3��16�)5W@���L�;3��9�&5W@�@�;3�@g��5W@�e�M�;3�(F5&5W@�t��;3�T��@5W@*��o�;3���=A75W@�i��;3���O5W@ؿЎ�;3�s2G5W@���;3�1(�W5W@�7���;3�� �mK5W@W���;3��mU�Q5W@�|�;3�����>5W@��e�;3��g�35W@���[�;3�-��/5W@oQWM�;3���)5W@�7�F�;3��Z�%5W@� 5�;3���Z5W@�}~<�;3����!5W@�0�:�;3�:�5W@�X�7�;3���/5W@��E�;3�s�ג$5W@�+0P�;3�B:�)5W@�v�U�;3�~V�+5W@m�SD�;3��,��"5W@�3<�;3��}��5W@���O�;3��%�(5W@t8@�;3��k"5W@���&�;3�Ң [5W@=�q4�;3��JO�5W@�Y�.�;3��ǻ�5W@�t�%�;3��j�5W@��0"�;3����5W@��}"�;3�Y,2 5W@�H�;3���f�5W@�j)$�;3����5W@���%�;3��V��5W@Qr�)�;3�O���5W@ͯN,�;3����+5W@P�4�;3�)��5W@�14�;3�y>�\5W@j-�;3���s�5W@��)�;3�����5W@t��1�;3�� 5W@��""�;3��Q��5W@%tx#�;3����5W@� ^!�;3��DԊ 5W@jږ�;3����*5W@���;3�NvO� 5W@P��;3�J%�5W@��&�;3�����5W@�`f&�;3�����5W@�ץ-�;3�f��5W@�Q)/�;3��+]�5W@#"�;3��H�Y5W@��4#�;3�T�ב5W@�'�;3�#)�5W@%]�(�;3�"��}5W@<��%�;3����5W@�St/�;3�O�x5W@�v�)�;3� ��5W@�G!�;3��nE5W@/�P�;3��f�5W@s�w�;3�ĝ!:5W@: ^�;3�?E�� 5W@�iS�;3�;�� 5W@�J��;3� dP�5W@F+��;3�xq0 5W@����;3�5�eQ5W@mD��;3�Hr�� 5W@�{�;3�K�/&5W@(���;3�W܅�5W@ד��;3��Q�v5W@����;3�C=�5W@�$c�;3�A�y 5W@���;3��T�\5W@�h��;3�:��5W@>���;3����5W@�{��;3��Z�5W@���'�;3��5W@��E"�;3��8?�5W@�*M�;3��Bwh5W@�]*$�;3� s5W@�\� �;3��ې�5W@ ��;3�C��y5W@e�� �;3�.���5W@����;3��^��5W@�S&&�;3��E��5W@��>(�;3�k9 o5W@ ��6�;3�r��!5W@��!L�;3�W�,�(5W@.��D�;3�:�|&5W@P�a<�;3��f��"5W@O��-�;3��X�5W@�G�2�;3�P��5W@���+�;3�G[�5W@^IU4�;3�(� 5W@���J�;3��?"�(5W@9�}S�;3���J,5W@�m�W�;3�)�nJ.5W@�[T�;3��#�f,5W@W�4�;3�Pk�5W@�!4=�;3�To�m"5W@루I�;3�7b�'5W@��(D�;3��=�%5W@t�6�;3���p{5W@ʦ�>�;3���n]"5W@�˒R�;3�7�S+5W@�ٙ]�;3�)�(05W@&�zp�;3�M���85W@�(��;3� DAE5W@(���;3�<ۙS5W@��.u�;3��6W;5W@��/��;3���^G5W@�p�#�;3��.5W@�V,�;3�*��]5W@�� �;3�ĉ5W@�Þ1�;3����� 5W@���8�;3�s��"5W@��IB�;3�D�21&5W@a�0,�;3�HooC5W@�ھ)�;3�ո˧5W@2�#�;3�L��5W@�Y�'�;3�!�5W@��]4�;3�聆�!5W@Q�s8�;3����"5W@u�)+�;3����5W@x��'�;3�)�S�5W@@{�1�;3�})$� 5W@ �=S�;3�Gf�,5W@�aRO�;3��‰!+5W@�� `�;3�C`�15W@JGeN�;3�A�'�*5W@�f=�;3�$� $5W@���D�;3��hd�&5W@я�5�;3��f�!5W@dT�8�;3��l8X"5W@�f�)�;3�$�Q�5W@�RG.�;3���$�5W@��'�;3���?5W@z��,�;3�t�.�5W@�:{*�;3��̏15W@��0�;3��"ZS 5W@ �^3�;3����!5W@e�K�;3�4�Ŗ)5W@Q�>�;3��ִ�$5W@���6�;3��xa"5W@��.&�;3����%5W@,=~*�;3���em5W@3�p!�;3�齉5W@+��;3�h�?�5W@�)�;3�r���5W@8\P�;3���Ä5W@{$�;3�2ϗ�5W@ �;3� �QK5W@VEb�;3�/@Nw5W@���;3��Fr5W@�/G�;3�w ��5W@����;3�1e��5W@2��;3���`�5W@��0�;3��� -5W@B��;3�ak$ 5W@�� �;3�����5W@�֚ �;3�t�?5W@a�� �;3���_�5W@�/,�;3� �V�5W@�O� �;3��*�r5W@5�k �;3�D�I�5W@y��;3���-�5W@� �;3�xFbe5W@��-�;3�:�Q�5W@H���;3�F��|5W@��]�;3�\�A�5W@�!��;3� ���5W@p�;3���4�5W@Ca��;3�^�'W5W@��i�;3�=��5W@/,�;3�����5W@BE�!�;3��uT�5W@7��%�;3����5W@�)<�;3�i[5�5W@���;3�pDG�5W@l��#�;3�G���5W@���;3���m5W@X��;3���'�5W@ ���;3��T��5W@q��;3��ꕩ5W@��;3�м�5W@H=�;3����W5W@l��!�;3����5W@��#!�;3����i5W@4P��;3����5W@��7�;3����5W@Y�t�;3���M5W@��;3�Z� 5W@Ġ!�;3�yo'5W@H?l�;3� p��5W@����;3�UYt5W@���;3�(N&�5W@���;3�G�y5W@�T�;3�@Y�5W@�\��;3����� 5W@�2L�;3��[�H5W@�zZ�;3����� 5W@��O�;3�� K5W@z4��;3����U 5W@���;3��h�5W@GX3�;3��!S�5W@����;3�\�� 5W@�{(�;3����� 5W@����;3���j� 5W@�� �;3���5W@�� �;3�A��55W@d���;3�J bS5W@�9B �;3��T�5W@ߋ��;3�u�f�5W@u8�;3��,E45W@.�y �;3���5W@݋� �;3��(�5W@ �� �;3�c�85W@C � �;3����95W@�Yj�;3��V��5W@����;3�{�f5W@Yu�;3���h5W@�6r�;3�1$`W5W@���;3����U5W@�.��;3�!�`5W@X��;3��Ȉ�5W@�{K"�;3��&��5W@ח��;3���5W@�� �;3��j�45W@D�> �;3��y�5W@Ǹ �;3�.�#�5W@�L��;3�)4V5W@�2< �;3���y5W@umA �;3��)ƞ5W@�t� �;3�>��)5W@�& �;3�y]%5W@@��;3�,C�75W@I{H�;3��z�5W@�@q�;3��Cֻ5W@4Z��;3��c�|5W@����;3��5W@�Iz �;3��W6Z5W@���;3�=J�15W@���;3�\�{5W@o��;3��x_�5W@J3��;3��PtX5W@� ��;3��O5W@����;3�%,�5W@Gy�;3��^��5W@Z�d�;3�N��5W@�g]�;3���M5W@zT> �;3�%MD5W@�$ �;3�X u{5W@}i#�;3��9�;5W@�� �;3�~���5W@�c �;3�a���5W@=�s �;3��aN�5W@�� �;3��S�5W@���;3���a5W@1� �;3��47�5W@=��;3��]�i5W@y%h�;3���B(5W@ʸ��;3����+5W@g��;3�����5W@����;3�f�5W@Ճ���;3��l�$5W@,Y�;3�b;~�5W@;E{�;3�·��5W@��#�;3��5W@��7�;3����85W@����;3��(6\5W@�J �;3�/[��5W@_���;3�1Z��5W@8�l��;3����5W@PV���;3��Q�5W@�;��;3�jML5W@�:.��;3��� �5W@���;3�s(!�5W@�q���;3�r�5W@M ���;3���Ŧ5W@c���;3�Bф65W@��[�;3��4�5W@�*W�;3�V���5W@�4��;3�3ʃ�5W@T�m��;3�¨R�5W@h_L�;3�N��5W@ɨ��;3�����5W@[A!��;3��o��5W@�ږ��;3�_jI5W@r���;3�����5W@r��;3�ϛ5W@/c*�;3��M�^5W@�����;3��J)5W@�+�;3��=�5W@���;3�P��5W@~/G�;3��Q{�5W@���;3�����5W@)�� �;3��M5W@�hy �;3����5W@��"�;3��d�]5W@Dz��;3�m���5W@}�i�;3�ܰH�5W@){V�;3�+��5W@ws=�;3�R��B5W@� ��;3��`��5W@�Ez�;3� +U5W@=*�;3����5W@����;3����5W@b�V�;3�Ync5W@����;3���&5W@�/�;3�ג6�5W@����;3�#�S�5W@?4��;3���m5W@H/�;3���m5W@�e��;3��X��5W@E�z �;3���Rd5W@~�$�;3���5W@��_ �;3��|��5W@{"��;3�'�-5W@^IQ�;3�CV=�5W@n�t��;3�T{$�5W@�^G�;3���5W@�:D��;3�*hR�5W@����;3��TZ>5W@ȺW�;3��Mʙ5W@k���;3�؍߷5W@O� �;3�1�${5W@�Ի �;3�~,s;5W@���;3� �h5W@����;3��_�5W@���;3��BZ5W@N���;3���5W@��O��;3�D5W@+]��;3��k'�5W@��?��;3��QW5W@ד���;3��ρ5W@�ū��;3��x>J5W@b��;3�N���5W@�_���;3��}F�5W@'��;3�$�_�5W@&VY��;3�Œ75W@��o��;3����A5W@��c��;3��]��5W@ �u��;3��;�l5W@��!��;3��l��5W@�Q��;3�A�h�5W@��3��;3�x�H5W@*���;3����5W@�/��;3�e� z5W@^U���;3�ڙ�c5W@����;3� -&d5W@�M=��;3����5W@=��;3�,�8�5W@��r��;3�PZ�5W@����;3�ל!J5W@SD���;3��.9$5W@�?���;3�ȴ�5W@G�U��;3�A C�5W@@��;3�eM��5W@L�l��;3�~�"@5W@��U��;3���5W@����;3���^�5W@*����;3����5W@���;3����y5W@ "���;3���L�5W@����;3�_۶5W@z���;3�M'�5W@�����;3��+�5W@� ���;3���%�5W@����;3��Ɲ�5W@)X(��;3�Ր�5W@����;3�1�� 5W@�����;3��"5W@kQ���;3��M�5W@E��;3�q�a�5W@4�a��;3���f65W@ ���;3��o�N5W@ɴ���;3����5W@o���;3�>V�b5W@h}s��;3� �2�5W@9��;3�?�c\5W@a��;3�_MFv5W@V(���;3��KY5W@I���;3�z�d5W@�o���;3�F'��5W@�'���;3�� 2}v5W@��F��;3�O�n`5W@�=��;3�O�a�5W@����;3�����5W@2� ��;3�"�5W@�����;3�:�5W@�S���;3����5W@j���;3�{z�5W@�0���;3���F�5W@��;3�VI�5W@uӤ��;3�Bd?c5W@h����;3��l;Q5W@�,��;3��~=5W@�0���;3��"��5W@ɰ���;3��d�l5W@2l���;3�7K�R5W@�2���;3�=)%R5W@ ]��;3�xN#B5W@[����;3� !8�5W@�h���;3�F�I�5W@,=F��;3��x�5W@��c��;3��,C35W@s����;3��,} 5W@i����;3��}6�5W@SՃ��;3�{5W@�����;3� B�5W@� ���;3�I?4�5W@JA���;3�!�7g5W@l ���;3��[z5W@\Z���;3��9n5W@(� ��;3�o�l�5W@:���;3��Z��5W@�����;3�{F��5W@)ɋ��;3����5W@����;3�Նs�5W@����;3����5W@6i?��;3�@�5W@!^���;3�߷��5W@�����;3��0;�5W@�>��;3��J�u5W@=���;3����5W@�Օ��;3�|L��5W@;r��;3��,�5W@Պ���;3�d��5W@b#���;3����5W@��]��;3�|�ώ5W@��O��;3�� ��5W@� b��;3��ǯ�5W@��4��;3��E��5W@9���;3���w5W@�r���;3�x�Ѱ5W@se��;3�PM �5W@u����;3�}�t�5W@����;3�(�%u5W@$P���;3����5W@ 7���;3�ܫυ5W@��L��;3�Jq�5W@o'���;3�RX 5W@�����;3�� �5W@�~��;3��꭪5W@�$%��;3��1q�5W@�����;3���K�5W@�MD��;3�%�2�5W@a���;3�K�o�5W@�W���;3�,��;5W@� ��;3�LMΧ5W@ !���;3����5W@φ���;3����5W@e���;3��4c5W@����;3��1Ɲ5W@�����;3��=�5W@����;3�%<-R5W@:$���;3��"�5W@��Y��;3���j�5W@�.���;3�,8�5W@5��;3�}%�5W@%x��;3�#���5W@�����;3����5W@����;3�-!e55W@�{���;3�?�V�5W@:����;3��HI�5W@�[��;3�~��5W@! ���;3�W`d5W@Ȧc��;3����05W@�}X��;3����F5W@ɬ0��;3�/��5W@�����;3����5W@����;3�`��5W@!����;3���/�5W@�pU�;3�� ~�5W@�3��;3��'5W@�K\�;3��L�t5W@�� �;3�v<�5W@�� �;3��!�5W@�2��;3���\�5W@Z�%�;3�0j �5W@� ��;3�G��\5W@l���;3����5W@4����;3�a0-S5W@�����;3��ޝ5W@=J��;3�y���5W@�2��;3� ѫw5W@i�m��;3��n�5W@��D�;3��-5W@�O���;3�w�5W@�.���;3�Dž�.5W@م���;3��Gz5W@j���;3�XiE5W@�A���;3���j85W@�`��;3�&���5W@�~���;3���\�5W@W����;3��sD�5W@f+���;3�����5W@'��;3��j�I5W@=+��;3��ѹ5W@��|��;3�f);5W@��t��;3��ld�5W@��U��;3�Y4��5W@�=���;3��R� 5W@H����;3����a5W@��X��;3���6(5W@J��;3�I��55W@�����;3���5W@u���;3�[��h5W@� ���;3���aX5W@^ ��;3��0�O5W@T_��;3�a��5W@7����;3��7��5W@���;3����5W@��8��;3���(�5W@ܫ��;3���U5W@�:���;3���ʾ5W@Č��;3����5W@�?���;3�~u;t5W@|����;3���pr5W@.Xr��;3���5W@1���;3�2I�5W@@���;3�:ټ�5W@�����;3�1F�5W@��h��;3�;��5W@ѥ���;3�6)��5W@��"��;3�'��5W@�Cr��;3�3^�75W@M����;3����5W@����;3�` 9�5W@]���;3���Ԟ5W@�)��;3�Mhd5W@�����;3���5W@1?���;3�- �5W@�O���;3��c�5W@�����;3���B5W@?O���;3�x�El5W@�=��;3� �5W@mWB��;3��93W5W@`����;3��M�P5W@m����;3��l�5W@�-���;3��6Gq5W@�E���;3��3�^5W@�/���;3��u�x5W@l���;3�'O�5W@8�z��;3�q�X5W@:a��;3��Jl5W@x;��;3�Λ�g5W@Q,��;3�D~�5W@F98��;3�K��P5W@�q���;3��6��5W@����;3��;��5W@�6�;3��='U�4W@�E��;3�ZM�4W@���;3��E�m5W@�`\�;3�d)4��4W@ U��;3����5W@b`�;3�S;�5W@��T�;3���y5W@����;3�+���4W@�~�;3����4W@�_���;3��>���4W@_�+x�;3��.��4W@�,"��;3�c错4W@<�NW�;3���(z�4W@[��G�;3��} g�4W@ow~`�;3���5�4W@���M�;3���ً4W@�P�(�;3�c���4W@��b5�;3���VE�4W@���?�;3��"�W�4W@ Z �;3���OV�4W@H�� �;3�7Ɍ�4W@s`��;3���m��4W@=pf�;3��yԇ4W@F. �;3� B ��4W@n]��;3����4W@�nl�;3����4W@���;3�L�-q�4W@Bg �;3��c��4W@y P�;3�΢���4W@TJ;�;3�*|�a�4W@���;3��4W@Ξ=�;3�뜊�4W@�m}<�;3� �;3�j�|�4W@',�;3�H����4W@���;3�H��4W@Vy�;3��߯�4W@�*B�;3�5�Ѕ4W@�����;3���2q�4W@G�6�;3��Å4W@�����;3�� LK�4W@��M��;3���tӄ4W@�u��;3��;�A�4W@����;3��Z�f�4W@��;3��囗�4W@��� �;3���Lm�4W@����;3� �<�4W@�����;3�7㪴�4W@b?��;3��f��4W@��H��;3�E�5݄4W@e�J��;3����<�4W@�����;3�����4W@|���;3�1�퓄4W@ԥ���;3��G���4W@� ��;3��n�4W@5����;3��Fq&�4W@�CZ��;3�-2g��4W@� ���;3�e�+�4W@��F��;3�9�7 �4W@'����;3�%0���4W@}T���;3�z��ƒ4W@"dk��;3�ă;��4W@5ځ��;3� . ؃4W@�r��;3�z@���4W@����;3�%�'�4W@AHj��;3�mE5�4W@����;3�k�� �4W@�����;3��>K.�4W@3J� �;3�29�4W@���;3�)t^b�4W@�>�;3�����4W@�@��;3��|X�4W@��& �;3��I.��4W@ ��&�;3��.��4W@��x!�;3�9��)�4W@UI�;�;3����4W@��JB�;3�#'C�4W@Wyj�;3���N�4W@(�HY�;3��i!x�4W@`��H�;3���変4W@�A�;3�lBR�4W@b�-�;3�{�ł�4W@{��;3�Mʄ4W@����;3��j�\�4W@F����;3�EJ��4W@�}i��;3�%�5#�4W@��/�;3������4W@�����;3��T��4W@����;3�rt��4W@��8��;3��� �4W@�9��;3�B�2��4W@�����;3�C'l�4W@ *��;3��T�4W@s����;3�T���4W@�0��;3���pM�4W@y���;3�3��l�4W@�"&��;3�� ��4W@�l��;3��F�.�4W@��?��;3����4W@����;3���wB�4W@C���;3��� �4W@ ����;3� �(��4W@¬6��;3��:I��4W@ "��;3����ނ4W@�6��;3���4W@��T��;3�7����4W@����;3���=2�4W@M��;3��X�Ƃ4W@��=��;3���}��4W@��+��;3������4W@*R���;3��҈�4W@�x��;3����͂4W@B`(��;3�b�i��4W@%����;3��c���4W@�C���;3�؏Do�4W@�\T��;3�Vˆ�4W@����;3���o�4W@�����;3�'@;�4W@\:B��;3���U�4W@"���;3��Q1F�4W@|)J��;3�CPkX�4W@��.��;3��}�L�4W@>�"��;3�^k�4W@� :��;3��F�C�4W@�g���;3�R�3�4W@lV%��;3��=>:�4W@ӈT��;3��o�4W@����;3��<* �4W@��?��;3���!�4W@C���;3�-͜ �4W@���;3�¹��4W@����;3��?Y�4W@�"��;3�DQ}�4W@I^*��;3�U����4W@��k��;3�� ��4W@�d��;3�?V'�4W@����;3�t���4W@j�k��;3�����4W@��X��;3�H-s/�4W@�����;3�F��4W@�*���;3� ��;3�����4W@R�#��;3���!��4W@[f��;3�[Ny}�4W@�� ��;3��׉��4W@[���;3�>�t�4W@B����;3�S��|�4W@Y��;3�+a���4W@�&��;3��r�e�4W@lcҭ�;3�E��j�4W@�|m��;3��f>i�4W@�ŭ�;3���k�4W@�*���;3�b�sk�4W@����;3�j|�t�4W@��Ǯ�;3����s�4W@�����;3�/Y�r�4W@��D��;3�V��o�4W@3FO��;3�`r�p�4W@�K���;3�m3>t�4W@���;3���r��4W@��ް�;3���uy�4W@1&��;3��u�r�4W@�����;3��kv�4W@#rZ��;3�.�z�4W@��;3�o,|�4W@�����;3�>��{�4W@��ܱ�;3������4W@[ٱ�;3��p��4W@�k��;3�e�0�4W@7ڵ�;3�����4W@S{:��;3�%��4W@ i��;3��Ɤ�4W@k�r��;3�-!��4W@��=��;3��T���4W@ WL��;3�`��Q�4W@]��;3��h�j�4W@�6��;3���N�4W@Vɷ��;3�C�x]�4W@ �m��;3���Sa�4W@�FB��;3�*��Z�4W@����;3�P�qT�4W@�?��;3�"�qU�4W@F]���;3�A�R�4W@:T���;3��s�_�4W@4e���;3���*P�4W@p�_��;3��MYV�4W@��۫�;3�W��[�4W@�@ի�;3�o�Z�4W@��H��;3��̳V�4W@��:��;3��� V�4W@0.��;3��@V�4W@��8��;3��pXN�4W@m����;3�^]�Z�4W@����;3��ӄP�4W@m�9��;3�;)Q^�4W@K���;3�j �Z�4W@Z�Ь�;3�W��a�4W@{Y��;3�� �g�4W@䅧��;3�k]�Y�4W@��F��;3���^�4W@�ব�;3���|b�4W@ �_��;3��@`�4W@? ��;3�5�^�4W@5�ǩ�;3����J�4W@p�O��;3���S�4W@�+���;3�� K�4W@:Ӓ��;3��(�H�4W@Al>��;3��(�T�4W@����;3��,HK�4W@O^e��;3�\dG�4W@����;3��9�L�4W@��ĩ�;3�r� �4W@�7z��;3��##@�4W@��P��;3�*��>�4W@7k��;3�|[�?�4W@�XQ��;3���>�4W@��7��;3�9�>�4W@a#��;3���s=�4W@S1��;3�z,K=�4W@p��;3����~D6W@�k)�;3�EwD6W@�pw�;3�{5^xD6W@�-��;3�"�mD6W@#Vz �;3��z9MD6W@�!���;3�39�[C6W@���;3�&��yB6W@(���;3�e��]A6W@�����;3��o?6W@s����;3����)6W@��.q�;3��&[��5W@����;3�,F�`�5W@v����;3�M�bص5W@�!$��;3��ɍ��5W@�����;3�K��5W@�_���;3�-α_�5W@�S���;3���P��5W@&A��;3�H�8��5W@����;3�K���5W@G�խ�;3��'��5W@�!o��;3��a���5W@5� ��;3�o���5W@�> ��;3����5W@��X��;3�R�,'�5W@����;3�WXЬ�5W@��|��;3��5��5W@ ���;3���@�5W@���;3��V�5W@u~*��;3�h�r�5W@�L٭�;3�ج�7�5W@|*"��;3��N�5W@���;3����5W@� ؄�;3�ܔ��5W@��s��;3��S��5W@�Bh��;3�� �z�5W@?r��;3�7����5W@�Dk��;3��f,ۯ5W@�=���;3�����5W@W�Qg�;3��C���5W@b0)t�;3�ew�I�5W@��� �;3�u{���5W@�;�5�;3���(�5W@���u�;3��u^�5W@��k�;3�.�y�5W@E�v�;3��[�y�5W@��[f�;3�9�ڡ�5W@�˦;�;3�G�ɜ5W@l��;3�d��;�5W@}_s\�;3�FeM_�5W@����;3�Y<-p5W@�=�M�;3�T �ٮ5W@V��6�;3�Ȝ���5W@�b��;3� G��;6W@�3O��;3�{O�"6W@�gz��;3�p_�F56W@�L��;3��j�L�5W@K+�r�;3����45W@Z��7�;3�%�>5W@QL-$�;3��vg5W@�9N��;3�+]��4W@26�Y�;3�/��Ӑ4W@vEf"�;3��?���4W@��.%�;3�Sɦ5W@��G�;3��_.q 5W@v��g�;3�ž�Y35W@~Bt�;3�@I���4W@|� �;3�c�A�4W@F V�;3��y�Y5W@�6�2�;3���45W@��P�;3� �3(5W@/ԫ2�;3��65W@*��%�;3��4,5W@� �#�;3���/)5W@цZ'�;3�69�5W@��/�;3�����5W@L���;3�zV*�5W@HG��;3�2m �5W@�vPH�;3����}'5W@�ե)�;3�y(H�5W@��g4�;3�q�}!5W@��O�;3��D��*5W@�W?�;3�5J�N5W@�� �;3��:Y�5W@���;3�����5W@ ���;3�E��5W@ �;3�,lH5W@\P��;3��d3w5W@����;3��dbC5W@� T��;3�_?��5W@+?�;3�I�#5W@*�?�;3���5W@߿ �;3�o5W@�v��;3�?a�5W@ ���;3�ɑ�25W@��%��;3����>5W@� ���;3��Q�5W@���;3����5W@����;3��)tp5W@Ys���;3���5W@��O��;3�”{5W@�J$��;3�UD&C5W@��e��;3��ߠ5W@�mE��;3�fZ �5W@#!��;3���w�5W@+����;3��1v�5W@ 3���;3�����5W@S����;3����5W@�����;3��8F5W@�Ȁ��;3���( 5W@8p��;3��:�d5W@$��;3�N��4W@�w��;3���70�4W@����;3� A��4W@�I��;3�F!cY�4W@Y �A�;3�ER{�4W@��7��;3�t �(�4W@:mB��;3����n�4W@?��;3�h�%�4W@fx9��;3���/ہ4W@B�Q��;3�PT~��4W@:I���;3��A���4W@�Tr��;3�@D��4W@~%���;3�`3�~�4W@5���;3��&K�4W@L���;3���E�4W@� ��;3���r�D6W@�(�;3��΁D6W@��8�;3��1ʂD6W@�09�;3�Ɛ��D6W@ǂ%�;3� <ϣ�d6w@ \�;3��="��D6W@�^k�;3�žZ�D6W@�#t�;3��хD6W@T��;3�}�u{D6W@݂��;3����~D6W@d��;3�-�/{D6W@�0��;3����}D6W@D!��;3�" c-d6w@ƭ��;3���~d6w@����;3��2u~d6w@��;3���|d6w@��3�;3���pud6w@�w7�;3��vd6w@ ��;3�;jtd6w@s���;3��i_qd6w@.�g�;3�[�fwd6w@� ��;3���od6w@���;3��1 OD6W@�� �;3��ZGD6W@�[� �;3�JLGD6W@�f� �;3���CD6W@Y/� �;3���BD6W@�vF �;3�W�T;D6W@�� �;3�� �:D6W@�{ �;3�s�S4D6W@����;3�M��D6W@w� �;3���$/D6W@�a �;3����,D6W@u�� �;3���%D6W@W�C �;3�0�;)D6W@��Q �;3���� D6W@/��;3�l�_D6W@����;3�*qTD6W@v��;3��{� D6W@v~�;3��|�D6W@�T��;3����C6W@57���;3�u�C6W@B|�;3���O3D6W@-����;3�H'5 D6W@�����;3�?%xC6W@����;3��>:#C6W@fu���;3��-�lC6W@�4@��;3�?߅C6W@9N��;3�wZ�C6W@�O��;3�u~E�C6W@�����;3��!��C6W@P0*�;3��LU D6W@/�F�;3��3�C6W@MS��;3�дl�C6W@ ��;3�����C6W@� �;3�4U�C6W@&ٕ�;3�5���C6W@��;3�I���C6W@.��;3�5�y�C6W@9���;3��:��C6W@�/&�;3�����C6W@��;3�G�ҬC6W@����;3��F��C6W@8���;3��w�C6W@�I�;3���C6W@a��;3���=�C6W@�;���;3�a�~{C6W@�J�;3��nC6W@����;3��{qC6W@�g���;3�?�_C6W@3���;3�+��C6W@4���;3��%g�B6W@/���;3�IC6W@t����;3��~MC6W@,�x��;3� �5C6W@����;3���F�B6W@Ҭ���;3�s���B6W@t����;3����A6W@<\��;3��0\�B6W@����;3��M�B6W@(�_��;3��[�;6W@LB��;3�����<6W@�����;3�H�x�?6W@��6��;3���xA6W@����;3�'�B6W@^(��;3�*�:�A6W@�����;3�ovIB6W@G:��;3�����B6W@/0���;3�!DMB6W@�����;3�A�VpB6W@+����;3���B6W@pp���;3����A6W@}���;3����A6W@�E(��;3�1iIA6W@�����;3�¥�A6W@0���;3�����@6W@�7���;3�dq�@6W@�����;3��W9@6W@�d���;3�2�z@6W@lf]��;3��5�>6W@8m���;3�)��>6W@R����;3��1�?6W@p� ��;3� #��?6W@h���;3��8��?6W@�����;3�ϓ�?6W@ax��;3���&;>6W@�*���;3�A>6W@�2��;3��RG$=6W@dd���;3�[V�>6W@ f���;3�9�FT:6W@Ox��;3�n7� 36W@[Mi��;3���2;6W@��^o�;3�he=��5W@�X�o�;3������5W@��w�;3�x�V�5W@K�t�;3���l �5W@W#˕�;3�����5W@B�t��;3��"��5W@EiF��;3� �rQ�5W@�K���;3�����5W@���;3���9��5W@*���;3�{�%µ5W@uZK��;3�6)X*�5W@��C��;3�.�5W@�W��;3�j�t�5W@zEl��;3�/z,q�5W@�h��;3����5W@CN���;3����ӵ5W@�����;3������5W@J����;3�O�&�5W@]���;3�6ّ��5W@"+��;3��`�ݴ5W@>�"��;3��@=�5W@6�v��;3����f�5W@��v��;3�*�c��5W@:Z_��;3�<�$��5W@�D��;3��N�w�5W@�����;3�B��5W@�:���;3���9g�5W@{`��;3���K�5W@����;3��nz�5W@GSS��;3�>V��5W@�����;3��(��5W@�-$��;3��ȵ5W@0���;3��ʩ�5W@����;3�.,ŵ5W@l˹�;3�8d �5W@D)���;3��)H��5W@o����;3����{�5W@H���;3�;����5W@&RQ��;3�"z�5�5W@�O���;3�5��~�5W@�F���;3���O�5W@�9���;3��ᗷ�5W@m_���;3��� �5W@A�!��;3�Ӈq��5W@�A&��;3��k���5W@��8��;3�\�(1�5W@��d��;3��,���5W@�����;3� �5W@�� ��;3��V��5W@�;��;3�B�)��5W@rˎ��;3�=O`��5W@Ar}��;3��\�F�5W@;����;3��әǵ5W@�k��;3�Z]ε5W@�S?��;3�:� �5W@#Z��;3����!�5W@�z��;3� c�ǵ5W@a�&��;3� ��ߵ5W@� ��;3�趹y�5W@ ���;3������5W@����;3������5W@��y��;3�Q�N��5W@ "l��;3�m�O��5W@-�#��;3��0��5W@�э��;3��W-�5W@����;3�:��γ5W@����;3����ݴ5W@����;3��БL�5W@)<��;3��_H�5W@�L���;3�����5W@��'��;3��/l�5W@W}J��;3�:ۯ�5W@V����;3�iNͳ5W@��[��;3�as89�5W@{�(��;3�0���5W@�����;3��᜴5W@!v���;3�8w�۴5W@@���;3���/�5W@��Ƽ�;3��o�V�5W@�s���;3��C�5W@�-b��;3�:���5W@����;3�Q�s�5W@x���;3�� B��5W@u����;3�MG�5W@�je��;3��pr�5W@�I��;3�?�g �5W@�Ƭ�;3��T�5W@}Sy��;3��}�c�5W@��̦�;3���~\�5W@g���;3��s沈5W@�H���;3��頱5W@�ױ��;3�ױ5W@���;3�i�S�5W@ *���;3��a�j�5W@mR��;3��$(�5W@�=3��;3�ʹR˴5W@&.[��;3�0���5W@�E���;3����5W@���;3��c"�5W@�����;3������5W@���;3���~��5W@��%��;3��~}O�5W@� 9��;3� ��F�5W@�g���;3�����5W@��a��;3���$}�5W@�����;3��y�u�5W@܌���;3��x�/�5W@����;3���=�5W@����;3� ��5W@#>��;3��5�Y�5W@k����;3�P�V´5W@�X,��;3�ӕ�/�5W@���;3��s۳5W@"����;3����Ѵ5W@e���;3�?ˎy�5W@�Rr��;3�8��5W@�� ��;3�����5W@u���;3��am̴5W@i%϶�;3�"0@"�5W@ �I��;3�@�eP�5W@�=��;3���c�5W@��|��;3���ٴ5W@1����;3�=�#��5W@|�R��;3��Tf��5W@Pv��;3�@���5W@�X���;3�0��Y�5W@#�Ы�;3�{A�5W@�G��;3�����5W@�_ʛ�;3� ѥ�5W@�0k��;3�����5W@��x��;3�y���5W@�����;3��H�^�5W@0���;3��8b�5W@��2��;3�f���5W@;{���;3�0 ��5W@�0��;3��9�Q�5W@�aO��;3�x#;�5W@�d���;3�>0��5W@sx��;3�9�f#�5W@�dL��;3�fk�5W@�m���;3��2��5W@f*��;3�ZE���5W@Td��;3�8�S�5W@����;3���5W@gE���;3�U�*G�5W@g�ݶ�;3��)I��5W@&� ��;3��1��5W@( ��;3�Kiy�5W@O��;3���lö5W@A)���;3���5W@S.���;3�B��q�5W@!I��;3�D�3Z�5W@⒠��;3���/˵5W@���;3��ט��5W@�੯�;3�<�j��5W@ �h��;3��A�?�5W@�NY��;3��6�o�5W@���;3��.�9�5W@�����;3��n9ó5W@�9W��;3��}e�5W@�G���;3��h�޳5W@�����;3��+���5W@Γ���;3���5W@E0���;3�X���5W@4��;3�]�&Y�5W@|[��;3��O��5W@R��;3��Ǖ��5W@����;3��|±5W@�蔗�;3�Tí��5W@�nX��;3���P�5W@�NȤ�;3����(�5W@g���;3�#�O�5W@�7���;3�U� ��5W@�[ϔ�;3�ʎ�Ѱ5W@C`��;3�0=��5W@[5g��;3���J��5W@� :��;3��+���5W@�T���;3����T�5W@h�^��;3�S�~��5W@dr��;3�ù!��5W@*Ξ��;3�u\-E�5W@{n��;3���k�5W@��}��;3���0��5W@��ף�;3�.��Z�5W@�D��;3��\-t�5W@žғ�;3�Ód��5W@���z�;3��_���5W@�]���;3�'�#6�5W@�p(��;3�j��7�5W@B����;3�%b��5W@�/G��;3���5W@�rK��;3���dҴ5W@� E��;3�<4�Ķ5W@����;3����5W@̽P��;3��0�ε5W@BW��;3�þDڰ5W@�ᗌ�;3�=^б5W@�b~�;3�� Nf�5W@�p���;3����5W@Q�ԑ�;3�Ƴ�:�5W@5X��;3�)��M�5W@�'#��;3���t�5W@��W��;3�+m�5W@�{�;3�d�q۬5W@����;3�]�>��5W@|�$��;3�ݟ�ٯ5W@����;3� �I�5W@�Ö�;3�~�?�5W@:0Ĕ�;3�{`p�5W@A=��;3�+�X��5W@}|��;3�\H��5W@k|���;3���Bp�5W@����;3��ty�5W@xw��;3�u˜�5W@'6���;3�����5W@�&��;3�? L�;3��H�+�5W@�Xc�;3��xv�5W@���Q�;3�8�W�5W@��gW�;3���ϱ5W@���=�;3�;&H��5W@1��1�;3�x���5W@�qo��;3�|�Xx}5W@�,�;3�ޞJ�5W@a��#�;3�w�ܔ5W@�P�;3�H�h�5W@^�nU�;3���T��5W@�"C�;3��4�5W@U)kI�;3���x�5W@���Q�;3�*R�(�5W@�%�O�;3��r�5W@n��G�;3����o�5W@3dX*�;3�$�f�5W@�1."�;3��.��5W@��z��;3�3�x5W@ˌy��;3� ���5W@�4��;3�U���5W@P{� �;3�hiG�5W@`�C*�;3�V]��5W@���;3���S�5W@���A�;3� 6w��5W@��PR�;3���B�5W@6�S�;3�k��5W@eި`�;3��R\l�5W@��d�;3����5W@r��i�;3��=�O�5W@�8���;3��ꗅ6W@�L��;3��E�#6W@��C��;3��u�6W@ �V��;3��'W�+6W@t ��;3�*���46W@O�I��;3�|�� <6W@� ���;3���*;6W@f���;3����<6W@\����;3���v=6W@C����;3���<6W@C��;3��*H�96W@��n��;3�c~�^:6W@p�C��;3�� �66W@6—��;3�wş�76W@q����;3�����96W@;���;3� �96W@����;3�~ہ&86W@�`���;3�<ؘ )6W@����;3��ћ�66W@f7+��;3���6W@S[��;3�z��16W@ѩ���;3��F�(-6W@�eL��;3�&5�e76W@����;3��-�66W@n��;3��Ӊ�36W@���q�;3�E�H�5W@�sF]�;3�����5W@�(�C�;3��S[�5W@�F�=�;3����5W@���;3��<,��5W@���;3�%��}5W@���%�;3�ӂ7�5W@'B�B�;3�,L06�5W@�~�:�;3�Fw͠�5W@��KS�;3��gu�5W@�蕂�;3��b0�6W@e��S�;3�+.N��5W@ �@n�;3��o�?�5W@�ʚ}�;3�e�#Q�5W@�Y>i�;3�^=ِ�5W@` �;3���rC�5W@��O<�;3��f ��5W@6��;3���r�5W@{ꁀ�;3� ��=5W@.c��;3�JH�1Z5W@��]�;3�Mփ�(5W@P!�P�;3���� 5W@ Hr2�;3�5"o� 5W@sT�F�;3�Gj05W@!�l�;3�`�v�25W@�ՖA�;3���(5W@5h�;3��s_��4W@BW�'�;3�� @75W@R%��;3�� f��4W@�����;3���)�4W@[����;3�7{��4W@����;3������4W@D-�;3���7�4W@h���;3� �Y�4W@�t���;3��sK�4W@��9�;3��2���4W@���%�;3�4d�5W@��/:�;3��:7�5W@�el>�;3�B5-�5W@��b�;3��]�n*5W@� ;��;3�呍�H5W@��p�;3��>-��4W@"�R�;3��z���4W@�3�M�;3���d��4W@&��a�;3�e[A��4W@�J\�;3�x��ڝ4W@7e���;3����4W@F46��;3�2�L�4W@����;3�s�rn�4W@�����;3�Q��V�4W@0����;3�� P`�4W@�Wz�;3���j�4W@Z�%X�;3��u��4W@1ʋf�;3�(n��4W@�;=\�;3���d��4W@I qE�;3�,)�4W@���=�;3���W�4W@_�IF�;3����*�4W@eK�T�;3���ѐ4W@�4�E�;3�H-�p�4W@�):D�;3��τԍ4W@4�d;�;3��m��4W@��*1�;3�����4W@k�v4�;3���7�4W@v3�&�;3��藨�4W@��'�;3���>L�4W@7L�;3���ƨ�4W@���U�;3��ZP�4W@�+�h�;3�fQ9�4W@�{�c�;3� B�G�4W@o���;3����4W@s���;3�G����4W@��2��;3�F�)�4W@�2̿�;3�b7͸4W@�՞�;3�T$�ަ4W@�i��;3���9�4W@*��;3��䲯�4W@zl�'�;3�rO9�5W@��.�;3����� 5W@ ���;3��6�>�4W@��@�;3��UT(5W@����;3���:�@5W@��uz�;3����,;5W@�^���;3��{S5W@�$�X�;3�-@U�'5W@���E�;3�-*f�5W@um%3�;3�(Xwa5W@rP=�;3��U�5W@i��@�;3�t,4>5W@QQ�;3� �%5W@}m$d�;3�b�]�/5W@�Y�s�;3�bՊ85W@�m���;3�3��K5W@���u�;3����~95W@-�r��;3��M۲R5W@�\��;3���ŀL5W@VE�;3���!5W@��U�;3�ڢ��(5W@c��i�;3��l�35W@:$?�;3����Z5W@Q�3�;3�[��f5W@�4�,�;3�{y� 5W@-��3�;3�1@��5W@�s �;3���x�5W@Rf�;3�?h���4W@�T��;3��k�4W@�?���;3���'9�4W@r7��;3��7;m�4W@Zi��;3�7��Y�4W@� D �;3�T2l�4W@ؐ��;3�����4W@�^ �;3����~5W@8E��;3�M�d55W@1�_�;3���'��4W@x�l�;3�I@��4W@��y(�;3��ţ[ 5W@(�(�;3��u}K 5W@5&<�;3��f��5W@��b7�;3�N�z5W@�P�*�;3�`xe�5W@�w &�;3���j 5W@XwD.�;3��)��5W@ |�2�;3��Y�5W@��I�;3���$5W@#�%\�;3���.5W@��xm�;3��)_75W@��W�;3��a��+5W@0M�Q�;3�>��'5W@����;3�@H�@5W@���w�;3�����;5W@����;3��a*`]5W@����;3��t�B5W@��E�;3�X0�%5W@1F�8�;3��Is�5W@t�:�;3����H5W@�@�I�;3��e�&5W@Ӭ�P�;3���)5W@]ǟC�;3�&�:#5W@��;?�;3���� 5W@C�*�;3���;�5W@,�c$�;3���P' 5W@�5�%�;3�lb��5W@� L+�;3���;^5W@aS�4�;3�K��5W@G*�0�;3�I���5W@�M!�;3��*�I5W@�j� �;3�pl|5W@j\X �;3�ؑ 5W@��C�;3�.��� 5W@��d$�;3��l�@5W@� �.�;3��镰5W@�2'�;3��?��5W@��*�;3���zL5W@�U�+�;3�}�G5W@1�o(�;3��d��5W@,��#�;3���Qv5W@�p �;3�'���5W@�� �;3�]b�5W@�<��;3�~���5W@ S�;3�a�<5W@�sn�;3��{$�5W@���;3�ћ=U5W@S���;3��T�5W@ܢ��;3�4a�;5W@�k!�;3�� N5W@��)�;3�g���5W@��*!�;3�X?�5W@�'1$�;3��E�5W@߱,�;3��N�5W@P��:�;3�W�"5W@IC�N�;3�!�[F*5W@~ �@�;3�,K�$5W@*q�0�;3���Ջ5W@���5�;3�~��D!5W@�!�G�;3��!�'5W@*Ѱ`�;3�WC>�15W@ck>8�;3��dˍ 5W@Q4A�;3�09�#5W@�f�V�;3��s+Q-5W@���%�;3�٦��5W@$ד.�;3�b3� 5W@�n#�;3��Dt�5W@���'�;3��H15W@�L�%�;3��r|5W@��-�;3��—�5W@bP)�;3��EoD5W@䆋R�;3���O/,5W@�`=�;3�M���#5W@�}'1�;3�eJ:�5W@�/�;3�!5W@���/�;3��.��5W@���J�;3���/)5W@�E�:�;3��4=k#5W@DX�&�;3�E҉5W@t��$�;3�^A��5W@� �;3����5W@{C��;3��� �5W@:�6�;3�M;5W@r��;3�'��E5W@r� �;3���e5W@I%� �;3��͢5W@�� �;3��y�5W@ ��;3���>�5W@�]��;3�] �5W@O?3�;3��R�.5W@*�;3�b��l5W@���;3�R�3(5W@zd�;3� �5W@]1�;3�96��5W@�)��;3��(�5W@k��#�;3��l�5W@O" �;3���5W@Rܫ�;3�\�I55W@�2�;3�?��F5W@�s+%�;3�����5W@f�;3���5W@��*�;3���d�5W@7t�;3�"pv5W@E��;3�:��5W@�<��;3���Y@5W@q�b�;3�G�H� 5W@e���;3�(��5W@��*�;3��7l 5W@����;3�>H�s 5W@� �;3��u�55W@=���;3�pZ4 5W@���;3�v �z5W@�hM �;3��|;5W@�� �;3�����5W@Q�[ �;3�룮h5W@ J �;3����5W@��\�;3�\��5W@����;3�Ţ�5W@I�@�;3��B�5W@�S� �;3��5W@;��;3�]�Ѡ5W@�(��;3�r�S�5W@�!�;3�;���5W@f���;3�p %�5W@�". �;3��S��5W@/+�;3��m��5W@+�� �;3�;��(5W@����;3����5W@f��;3�y��5W@(��;3��K�5W@O/��;3��Q�c5W@VN��;3��B�5W@�e��;3�E�Y�5W@KE �;3��?��5W@�A �;3��|,5W@Ia� �;3�E��5W@�3 �;3����5W@�"��;3�� i5W@G�f�;3� ��5W@}��;3��ɠ5W@4o?�;3�s��#5W@�jF�;3�Z�t�5W@�@��;3����%5W@�%~�;3�~}�5W@�U\�;3�bG�5W@�Q��;3���45W@49x��;3�<��5W@�z/��;3��C �5W@yl��;3�8�.q5W@����;3���5W@a����;3�A3�5W@����;3�]���5W@e��;3��n��5W@o'_��;3�(N�B5W@n6[�;3���w�5W@|u��;3�!�K�5W@ z �;3�t�a25W@� �;3��B �5W@��o�;3� �: 5W@�`�;3�� !z5W@~���;3�����5W@�n��;3���[5W@D C�;3�'�A5W@� R�;3�};�5W@<��;3��*5W@W��;3� i�5W@�.T�;3��4��5W@#� �;3��z/5W@��;3�� �5W@�,�;3�mM�5W@��l�;3�b1`x5W@�r��;3���e�5W@]��;3�����5W@�Η �;3�**=I5W@�SH�;3�� +25W@Á���;3��U'5W@  ��;3���g5W@����;3���_5W@����;3�z���5W@�þ��;3��y��5W@7���;3��5W@����;3�Z{N�5W@��.��;3��hV.5W@-ap��;3��a=q5W@�c\��;3���)5W@w�\��;3��t�5W@�����;3�=�0.5W@Ӓ���;3�=�V5W@�[���;3�L&Hd5W@\^��;3����5W@QpG��;3���z�5W@� !��;3��X��5W@D���;3�eȟ 5W@Tf���;3��x��5W@F���;3�e��,5W@(6���;3��–5W@�9.��;3�<�,P5W@�7h��;3���ڼ5W@X|��;3���5W@*&��;3���5W@!����;3����D5W@'�k��;3�g��5W@e���;3��Чb5W@ _U�;3�8�ʈ5W@Ýu��;3�S��5W@�R���;3��b.5W@�oj�;3�읏5W@��B�;3����5W@� �;3�q�ӈ5W@<���;3�Y�5W@~�E�;3��t�,5W@p����;3��ل5W@�Z� �;3���'�5W@3"M�;3��/15W@�@m�;3�L�ɋ5W@��,�;3�昪�5W@�?{��;3���h5W@<����;3��V�y5W@k>3��;3��w5W@p���;3��^��5W@5�E��;3���5W@䎻��;3�C%�5W@��e��;3��2k5W@C3A��;3�ůR�5W@[����;3� � v5W@�&G��;3��8/5W@te���;3����5W@H����;3���Z5W@�x��;3��{��5W@�}���;3�[)5W@r����;3�,�c=5W@�����;3��K\5W@�����;3�����5W@��V��;3�zP�5W@�A���;3�;9�5W@���;3�s%��5W@�����;3�'��5W@�,q��;3�0��5W@l)W��;3�W][5W@����;3��V��5W@4<���;3���R�5W@T����;3�vg��5W@��A��;3��#ge5W@F���;3�J��5W@W���;3�&G��5W@1����;3��aw�5W@ǧ&�;3���15W@��\��;3� �;3��Խ|�4W@M���;3��� P�4W@꟒.�;3��t��4W@���;3���҆4W@6r��;3�7���4W@�i���;3��J4W@a���;3� ���4W@�ç��;3��Al?�4W@��$�;3��{7�4W@}e�;3�L\f��4W@���;3����4W@g>`��;3��h��4W@�����;3��"�z�4W@�l���;3����τ4W@����;3�oRa��4W@g���;3��MY�4W@,xk��;3�>����4W@~'���;3���G��4W@ʏ���;3�����4W@�J��;3�� ԃ4W@��?��;3�P���4W@x^���;3�؁�*�4W@[� �;3�~c���4W@��`�;3��z��4W@†��;3���5�4W@K��!�;3�$��4W@IQI�;3�ݣi�4W@�*�p�;3�89ׇ�4W@�z��;3�h^ r�4W@v8��;3���5��4W@�����;3��YF �4W@�i��;3�Ahۙ�4W@yfu��;3���瑃4W@�����;3��&��4W@S���;3��:��4W@ �8��;3��-pV�4W@贘��;3��LX͂4W@r3���;3��+�Ă4W@w����;3��}i�4W@�8H��;3�";);�4W@ZT��;3��1��4W@Jz���;3������4W@�(���;3��mP��4W@x����;3�.� g�4W@FR1��;3�ۘ�Q�4W@�ʏ��;3��Hd�4W@%���;3�)]iA�4W@�=���;3��@8�4W@�v3��;3��q!�4W@�~Ѿ�;3�sUr �4W@��$��;3��U �4W@ $���;3��e��4W@.S���;3���"�4W@���;3�6iy�4W@L�o��;3�U�/�4W@�L���;3�� 00�4W@���;3���l�4W@$'���;3��ƥ"�4W@�f��;3���ɂ4W@�㕺�;3�K�y��4W@f曺�;3�n�Á4W@5*[��;3�����4W@����;3��%�ρ4W@.����;3�����4W@�hM��;3�YUG܁4W@0ٹ�;3�$Ѐځ4W@�Kx��;3�ѫ:��4W@pz���;3�}�+��4W@�k��;3�: 9��4W@sX=��;3�b�;��4W@ ����;3���Q��4W@��N��;3��ZŠ�4W@ײ�;3��N��4W@턼��;3��x��4W@�N���;3�,"��4W@:6��;3�O�r��4W@��u��;3��u�z�4W@�����;3�l�m�4W@����;3���=c�4W@}��;3�#�e�4W@���;3���+s�4W@&�.��;3�c�gw�4W@T{���;3��Xfv�4W@y=��;3���k�4W@��Q��;3���dj�4W@��?��;3�|����4W@�$��;3��懁�4W@~�(��;3�tN;��4W@-�ű�;3��Ջ�4W@�n���;3�6 ��4W@�����;3�ɒb��4W@{?��;3��O!q�4W@"L���;3�*yjX�4W@�yL��;3���W�4W@UP��;3���:V�4W@T���;3����T�4W@d���;3�`S�Q�4W@d�s��;3���tX�4W@��s��;3� (�_�4W@����;3� *Yh�4W@�K���;3�Fd�4W@�F���;3���a�4W@E����;3��5%J�4W@� ڪ�;3�!�P�4W@.LD��;3�P+-F�4W@���;3���L�4W@GGE��;3�^1�L�4W@�G���;3�#ȿQ�4W@ ��;3��Q�D�4W@ ���;3�"+�Q�4W@��;3��7LK�4W@�s��;3���*P�4W@f�{��;3�^EOH�4W@�젨�;3���HA�4W@�¦��;3��:gA�4W@�ɨ�;3�t�B�4W@�tǨ�;3��_�B�4W@v�9��;3��!F�4W@a��;3�<7^C�4W@����;3��T=�4W@T�7��;3�:�,F�4W@����;3���s@�4W@�@u��;3�5S�?�4W@x ��;3�Q��<�4W@�pe��;3��r�?�4W@΍E��;3��ͅ>�4W@l�P��;3�Vvt��4W@ǨJv�AH�0}�����Iv�A��.}������Hv�A5�.}������Iv�A�V/}�����Jv�A}�/}�����YGv�A��,}����DIv�A_�.}������Gv�A7e-}������Fv�A� ,}������Gv�Au-}������Hv�Ag.}����?tHv�Am.}����� Gv�A�y,}�����Fv�A�e+}�����mEv�A�*}������Fv�A,}����BoGv�A��,}����G�Dv�A�)}����}%Fv�An{+}����/Fv�A]V+}�����^Av�A��%}�����iBv�A�5'}������Bv�A+�'}�����TEv�A��*}����Y�Ev�A�=+}������Ev�A?�*}����*^Dv�A�)}������Dv�A&*}������Dv�A�1*}����\�Cv�A) )}�����rCv�A�g(}�����Dv�A�8)}�����eDv�Ad�)}������Cv�A��(}����o�Cv�A��(}����T7Cv�A�*(}�����Bv�A`�&}�����Av�A]I&}�����aCv�A�](}����ppCv�Anl(}�����Cv�A��(}�����Bv�A�'}������Bv�A��'}����zBv�Ar>'}�����Av�Ali&}����O2Av�A��%}������@v�A��$}�����r@v�A�$}������@v�A�$}�����@v�A��$}�����Av�A�9%}�����Av�A �%}������@v�A�7%}����vBv�A��&}����>\Bv�A�+'}������Bv�A��'}����2�Bv�A�'}����ٜBv�Ayl'}�����MBv�A�'}������Bv�Ag'}������Av�A?�&}�����Bv�A[�&}������Av�A�a&}�����Av�AcA&}�����EAv�Af�%}�����Av�A&}�����Bv�A��&}����g�Av�A�&}�����Av�A:2%}������@v�Am$}������@v�A~�$}����A$Av�A�_%}����YAv�A�%}����tpAv�A��%}�����@v�A��$}�����@v�A��$}����w@v�AQ�#}�����@v�A�7$}����pq@v�AOO#}����:t@v�A�#}����_~@v�AE$}����ǐ@v�A�C$}����(�@v�A�$}������@v�A��$}����*�@v�Ao�$}���� �@v�A\�$}������@v�A�$}������@v�A@v$}����ʀ@v�A�$}������@v�An=$}�����r@v�A.|#}����L�@v�A�#}����Zy@v�A��#}������@v�A^$}����q�@v�A�$}�����@v�A3$}������@v�A_�#}����){@v�Ac�#}�����}@v�A�#}����u@v�A[#}�����w@v�A��#}����aq@v�AC#}�����r@v�A+P#}�����c@v�A�}�����Z@v�AG}����^�?v�A�}����`[@v�A�� }����[�Av�AN�}����ʉAv�A��}�����Bv�A[>�|����WCv�A� �|�����YDv�A�v�|�����Lv�A�&�|����]zJv�A���|�����Lv�AҲ�|�����7Dv�AAU}����U�Dv�A&}������Mv�A1K�|����;\Ov�A���|����z@Vv�A�-�|�����PCv�A� }������Fv�A7��|����j�Ov�A ��|����S�Mv�A��|�����Kv�Au��|����� Hv�AZ�|����KDv�Aǘ}����X�Xv�A�|������Ov�A���|������Pv�At��|����K�Ev�AD�|����L5Jv�A�{�|����r`Bv�A�G}����^�Gv�A���|������Iv�A���|�����7Bv�A��}����\�Bv�A^t }����O�Hv�A�E�|����V�Ev�A4��|����u�Cv�A��}����X�Kv�AuH�|����tJv�A���|������Fv�AnX�|����4Nv�A<��|����_�Dv�Ai~}�����~Lv�A���|�����:Kv�A��|����p�Gv�A5��|������Hv�A �|����(�Gv�AA�|����nwFv�A"9�|����K�Jv�AAC�|������Gv�A�W�|����%9Ev�A@�|����NIv�A?��|����VGv�A�v�|����Fv�A%�|����z�Gv�A��|�����Bv�A��}����/�Ev�AT�|������Fv�A�|�����{Av�A� }�����$Cv�A�� }������Bv�A�� }�����^Fv�A�l�|����gFDv�A��}������Dv�Ax�|����XIv�An��|����ҫDv�A�q}����f�Cv�A��}�����VEv�A$��|����e�Fv�A1[�|����P Iv�A��|�����]Hv�Aˈ�|����8�Av�A�.}����Av�A��}�����Av�A*�}����;Bv�A�� }�����Av�A��}����G�@v�A�e}���� hBv�A�3 }����l�Cv�A�}�����PCv�A>}�����bEv�A ��|����aADv�Ag'}�����}Ev�AF��|����h�Dv�AmQ�|������Dv�A��|�����uFv�A]��|����TFv�Ax��|�����Fv�A��|������Dv�A���|����9oEv�AGo�|�����Dv�AF��|����8�Dv�A���|����j�Bv�A��}�����Dv�A�h}���� Dv�A���|������Cv�A R�|����EDv�A��|���� }���� �@v�AEM}�����@v�A��}������@v�A0}����`|@v�A�7}����t�@v�A��}����X�@v�A��}������@v�A�}����z�@v�AN}�����V@v�A�}�����O@v�A}r}�����L@v�A�}����a�@v�An}����x�@v�A��}����w�@v�Ab}}�����_@v�Aar}����@\@v�A�g}������@v�Aa�}����݈@v�A"�}������@v�AG�}�����y@v�A�}�����j@v�Aȵ}�����^@v�A�3}�����f@v�A�}�����r@v�Aa}����Ӆ@v�AgW}����X�@v�A�C}����w@v�A�"}����My@v�A>�}����q�@v�Aa�}����ޏ@v�A\}����ou@v�A�.}���� u@v�A#3}�����w@v�A��}����Xv@v�A;}�����y@v�A3�}����$|@v�A.a}����Cz@v�A��}������@v�As�}����;|@v�A6}����~{@v�A��}����Zv@v�A\}�����k@v�A� }�����c@v�A�}�����h@v�A�e}����ic@v�A�R}����pf@v�Al�}�����W@v�A�}�����Z@v�Ah�}����.`@v�A �}����8g@v�A�}�����h@v�AfV}�����j@v�A٧}����Ri@v�A�}����Ih@v�AM�}����j@v�A�E}�����f@v�AҶ}�����v@v�A��}����(h@v�At�}����tq@v�A��}�����w@v�A�}����x@v�AZ�}�����u@v�A�!}�����u@v�A�}����w@v�Av}�����l@v�AH�}����q@v�A�7}�����s@v�A�}���� p@v�A�}}�����v@v�At�}����sv@v�A}����ou@v�A}����Iu@v�A}�����u@v�A�}�����q@v�Av\}����(m@v�A��}�����j@v�A��}����&h@v�Ao�}�����h@v�A �}�����f@v�A�S}����o@v�A;"}�����k@v�A+� }�����x@v�A~�#}�����t@v�A�Y#}����w@v�A��#}�����v@v�A t#}�����r@v�Ai#}�����u@v�A7c#}�����t@v�A�Q#}����7r@v�A�"}���� q@v�A_�"}����wt@v�A�K#}�����s@v�A{5#}����i@v�A�}�����h@v�A�}����&n@v�Az }���� u@v�A�}����s@v�A�L}����>o@v�A[�}�����p@v�Ae�}�����k@v�A��}�����i@v�A`�}����6m@v�A�.}�����i@v�Aa6}����Wq@v�A�{}����'q@v�A��}����wu@v�A6}����Nu@v�A�}�����t@v�A�}�����q@v�A^\}�����s@v�A�m}�����p@v�A�~}�����r@v�A��}����ns@v�A)t}�����u@v�A�}�����q@v�A}����|p@v�A6}����q@v�A��}�����t@v�AB�}�����y@v�AUu }�����r@v�Ae�}�����q@v�A��}�����q@v�A5�}�����v@v�At}�����q@v�Aߗ}����:u@v�A�}����i�@v�A��#}����"�@v�A�#}�����@v�A`#}����!�@v�Awx"}������@v�A�0"}�����{@v�A�� }������@v�AR*#}����A�@v�A�#}�����@v�A�#}����6�@v�Ae�#}����H�@v�A��#}������@v�A �#}����e�@v�Aл#}������@v�A��#}������@v�Ag�#}����|�@v�A��#}�����@v�A1�#}������@v�A�B$}����כ@v�A�$}������@v�AT$}����k�@v�A͈#}���� �@v�A�:#}����ʼn@v�A��#}����5�@v�A�T#}������@v�A�#}����l�@v�AU�"}����#}@v�Ai!}������@v�As�"}�����t@v�A�}����kp@v�A�}�����o@v�A�}����Lo@v�Aqo}�����u@v�A�}�����u@v�A� }����'u@v�Al�}�����s@v�A�}����oq@v�A^v}���� r@v�A��}�����t@v�Av�}����,v@v�Ad�}����cv@v�A�}����$w@v�A��}����u@v�A�$}�����v@v�A��}����u@v�Au4}����=y@v�A{>}����=x@v�A��}�����v@v�A��}�����w@v�A}����Uo@v�Aaw}����Ql@v�AYZ}�����o@v�A��}����Oi@v�A��}�����m@v�A��}�����q@v�A��}����;m@v�A,�}����^@v�A�}����h@v�A�}����qg@v�A0�}����Gc@v�A�}����jl@v�Aq�}����Lj@v�A�}�����p@v�Aq}����{y@v�A�}����"t@v�A5?}�����u@v�A(}�����y@v�AG}���� x@v�A��}����-v@v�A�}�����|@v�A��}�����u@v�AW}����]v@v�A�}����Yu@v�A/3}����$}@v�A%$}������@v�AA�}����l�@v�AwJ}�����@v�A��}�����{@v�Au�}�����l@v�AV�}����4b@v�A_#}����Pg@v�A�m}�����{@v�A_�}����R�@v�AU}�����~@v�As�}�����c@v�A�}�����\@v�A$}�����X@v�A�V}����2�@v�A� }����=u@v�Aj}����.�@v�A�>}������@v�A2�}�����@v�A�}�����@v�A��}�����K@v�Al}�����P@v�A�X}�����M@v�AH}�����@v�An}������@v�A��}���� a@v�A�"}�����K@v�A:Q}����@�@v�A?}����d�@v�AՔ}����Kv@v�Arh}�����@v�A��}����;{@v�A�}����@v�A�R}������@v�A�}����ţ@v�Ag�}����C�@v�A�S}�����y@v�A��}�����x@v�A��}����8�@v�A�}������@v�A��}����:z@v�A�}����}�@v�A}����ׁ@v�AZ�}������@v�A�}������@v�A�t}�����@v�A12}����B�@v�A�.}����(�@v�A�-}����e�@v�A;}�����@v�A|}������@v�Ax�}����]�@v�A��}����O�@v�A�s}�����@v�A�F}����r�@v�A �}������@v�A�}������@v�A�g }�����Av�A ^ }�����@v�A/�}������@v�Aַ }����Z@v�AxR}����\�@v�A&�}������@v�Aa�}�����>@v�A�}�����@v�A��}����u�@v�A+�}����k�@v�A�G}������@v�A��}����ڹ@v�Ao}������@v�A �}����/�@v�Az}������@v�AW4}�����t@v�A��}�����5@v�A �}�����2@v�An�}�����H@v�A�w}�����Av�Ab}����~�@v�A�}�����@v�Aym }���� �@v�A�` }����MAv�AW�}����vAv�A�� }������@v�A�i}������@v�A�Y}�����WAv�A� }����_%Av�A� }�����.Av�AHh }����w,Av�A6}�����Av�AƂ}�����VAv�AI}����b�@v�A�C}����@9Av�A�t }����� Av�A}������@v�A�'}����u�@v�A�}������@v�A_}����>�Av�A�}���� mAv�A2 }������Av�A�W}������Av�A�}�����oAv�A�Y}����9�Av�A�C�|����>Av�A�l}����پ@v�A�H}������@v�A�� }������@v�Au}�����yAv�A���|������@v�A �}������@v�AK�}���� �Av�AW��|�����HAv�A�}����9 Bv�Ad[�|����tBv�AW�|������Av�AP }����:Bv�A^��|������@v�Aw/}����i-Av�A�1}������Av�Av�}�����@v�Ac#}������@v�A�}}������@v�A#@}����E�@v�A��}����/WAv�A�� }����sAv�A}�����`Av�Aǃ }����MBv�Adq�|�����Bv�Aɝ}�����Bv�A0��|������Av�A��}�����Bv�A�[�|������Av�A�}������Bv�A�h�|����8�Bv�A ��|����#XAv�AP:}����ͿAv�A� �|�����'Bv�A�X�|�����'Bv�A���|�����Cv�A�/�|������Bv�AMJ�|����_6Cv�A�Z�|�����Cv�A�K�|������Bv�A}�|�����Cv�A��|����� Dv�A)w�|����Y�Cv�A;��|������Cv�A:�|����ɀDv�A��|���� �@v�AY�$}����o�@v�Ac&%}�����@v�A�d$}������@v�A6�$}������@v�A%}������@v�A%}����!Av�AEf%}����>Av�A�I%}�����`Av�A��%}�����;Av�As�%}����[�Av�A�&}����;NAv�A5�%}����1�@v�A�}$}����{�@v�A�$}���� �@v�A�R$}����5�@v�A/�#}����ޱ@v�A��$}������@v�Aѕ$}������@v�A�3%}����t�Av�Axm&}����xAv�A��%}�����Av�AFv&}�����Av�A�=&}����e�Bv�A (}������Av�A��&}������Bv�A}I(}����4.Bv�A�W'}����#Av�A��%}����HcCv�A!;)}�����Dv�A~F*}�����iCv�A�@)}�����6Bv�A�r'}������Bv�AZ(}����JDv�A �Cv�A��)}����gfCv�A�=)}������@v�A��$}������Bv�Ay(}������Bv�A{�(}�����Cv�AT*}�����Fv�A�-}������Fv�A�.}������Gv�A� 0}�����Iv�AB�1}������Fv�A�t.}����hGv�A/-/}������Ev�A} -}����F9Iv�A��1}����P)Hv�A�I0}������Jv�AV�3}�����QJv�A�p3}����c�Kv�A�>5}�����]Mv�A1�7}����@�Jv�AD^4}������Kv�Avp5}�����~Iv�A�<2}����*�Iv�A��2}����Hv�A� 0}������Dv�A�t+}����e�Nv�A�9}������Pv�A�<}�����nNv�A�b9}����^�Lv�A�7}�����Nv�A��8}����iOv�A�?:}����$Mv�A|7}�����Kv�A �5}����u�Rv�A�v?}������Qv�A��=}����ӈKv�A=C5}����KMv�Agw7}����6}Pv�A�$<}������Ov�A~;}�����mTv�A$�A}����X@Ov�Av:}������Qv�A�>}����zUv�AB}����Wv�As%E}����5@Sv�A��?}�����ASv�A��?}������Yv�AJ}����sVv�A�^C}�����6\v�A/�O}�����uHv�A�.}����uEEv�A �*}����'�Gv�A�-}����M�Fv�A��+}����R�Dv�AI�)}�����Av�A��%}���� �@v�A%}������@v�A�m$}������@v�A�$}�����n@v�A�G"}����nU@v�A`�}����q)Bv�A�!�|����nSv�AT�|�����Bv�A��}�����Kv�ACR�|�����Iv�A ��|������Iv�ASI�|����� Gv�A ��|�����)Bv�A��}����A�Av�A��}����c-Ev�A���|�����hEv�A���|�����Cv�Ay}����G�Cv�A���|������@v�AO }�����RAv�A�:}�����Bv�AH�}����SBv�A�� }�����}Bv�A�i}����5Av�A|� }����w�Av�A�}������Av�A�s}�����@v�A��}�����C@v�A��}����Z{@v�A�N}������@v�AZ�}����I�@v�AŠ}����%Av�A��}������@v�A8I}������@v�A��}�����t@v�A�C}����ny@v�A��}������@v�A�i}����Ԓ@v�A�z}�����p@v�Aj�}����;~@v�A�U}����r|@v�A��}����:w@v�Aa}�����q@v�Ab�}����gu@v�Ap$}����Vs@v�A��}�����t@v�A�}����Hy@v�A��#}�����n@v�A�"}����t@v�A�C#}�����t@v�A�%}���� u@v�A;1}����wq@v�A��}����=q@v�A�%}�����u@v�A�}����I�@v�A��#}����5�@v�A*3$}�����o@v�A�}����Xv@v�A��}����iw@v�A0�}����Sm@v�AT"}�����o@v�AIV}����8e@v�ARe}�����t@v�A��}�����y@v�A�S}����&�@v�A�}����[p@v�A��}����Wf@v�AC8}����ۑ@v�A�[}�����@v�A�V}�����_@v�A<�}������@v�A�}�����}@v�A�D}����,�@v�A��}������@v�A�>}����8w@v�A�K}������@v�A�t}����BAv�AƬ }������@v�A� }����`%Av�AM� }����KbAv�A�T }����՘Av�A��}����%�Av�Ag��|������Av�Aь�|����f�@v�A��}������Av�Aw�}����v"Av�A �}����� Bv�A��|�����LBv�A�+�|����Q�Bv�A?�|����HzDv�AG,�|�����>Dv�A3b�|�����eCv�Au�|�����Bv�A3O�|������Nv�Aj^|������Bv�A5��|����&Iv�Aw��|����l�Cv�Aq��|����3RGv�As%�|�����(Gv�A�\�|����*Gv�A���|����=�Ev�A���|�����Dv�A���|����AEv�A���|������Cv�A`x�|�����g@v�AM�}������@v�A֕$}�����$Av�A��%}����[Av�A&}����_�@v�A�#}����:1Bv�A['}����X+Av�A��%}������Dv�A��+}����;Cv�A�)}������Gv�A��/}����PtEv�A5M,}������Fv�A�P.}����N�Hv�A^ 1}�����=Pv�As�;}������Uv�AI�C}����>Y�R1�7�U��GG>]$O��P���y�SG�>�?���7���p� i>���Aܵ5�_]�ETg>M2��%D7��F�vj>d��0 �X��T��4�>Lju|�"��x���5S>w���N��>ޡ0�>���$h�q�3���>x�/��9�0)i��l>���=.��cn���I>�W�Y�1��6]Kc>h��9g�A�ɽl���t>��8u�]a�OG��ߔ>��YE��k��…�Ϡ> R���QT�As�(�>�A�. !+�ȋ��^�_>o.��]Pu��N�%^��>��O"�L�h��>�ox���1��NH�4�i>�ƃ�h���"�F���>aڠ������@vo]�>��e%�|�ҹ%2���>���J���v��/�[>�а����?�k�A>A�w�'�M� `R^;�>n\��̑^�@����>���M�F�." _L��>��FM� a�ʺ����>���lQ�v�q/���>"X��&Vu���l��>�!k[E >t*8s�zB>�DI���8�a�?��y>� ��M:�h ���>k!oL�a�'np��ٛ>����\.b��X���>E���p���k���d�>����׈�ا���>9�lfgO6>V��&9�"����йA��=�S��>�NoC�|&>���I�����U�_��}˅1i�>N˪E��>N�`0��}>�@ ��r�%8}��>�{�6��o�N֎5C��>f2 � ���P����>W:�p=m��Sr��g�>��9Q@���7��#�*�>��RT!���|�>��E��x���Qx&+��>1}_+w��-��(r�>�� z:x�h�7�%�>���?�R���� Cw�>��H��me��V��e�>�5$;��(>^y�� �>v����:>�L�w�ua���)v��E>u�zs�b�ȁ��o�;>O�d��,�(7`P>��HQקr����(��G>%�z��,1>����>Y�_�B��>�{���dU>�����Q�(v� ^�W>/ �jŀ}�M;أV\>u�� �i<���^�( >��u�{�>i(GHJ�>�?^Z��>�v��kD>� ��>Vo��i>W>0(Dʌ��Ӻ���[>9��šq�>D 6��}�F�7\���>Ί py�i�2����z�>�\ ��Ii>kOw\e�}�� EH�`>c�����t"r�b>�+q�n|U��µ��_=�a�؟B3�>T��E�~b>{�Ƕ��> 4]��s�߬��v�><���1{���߂y�>m �(i��J�2#�>ֽ��L_��g�}���>�̧͖�m�ׄR���>*��+�kR>zmAa���>'E ��O\>��S�u�>8H}t�e>̩o% B5�~��>�OJ� m>�)�=����h2��`>�#�� ޅ�-o��l>�<�S&���$pG>�$��"�>䇧��o>Cԟ� ��>Ѣ��W�c�������>���0h>�F\��>�>�� l7 ��o�^)��>/����Si>���ֻ*��1`��&k>�x�\2�>c����?d>��z&����G0z�,ZT>Y,�E������_ e>����'�>>1�VHd>Q͉���j���}K>D����/�>�9�T>��-��>r�SH�+�D*��0�>;r�,�9>\2 "�V�>H��Wk>pW�m�? &y*�>��t�2�?� ��\��>,��y5"?p{�|~�>�﹚Z�?�Q � �>*޻ׅ?���'�;�>az�>mE?,/�w��>�cvM�3?����;��>2�Q�?%5Jx���>��չ�?\���H4�>0��d^�>�y���-�>��ZIM�?ʏ��䢤>����d?� P���>�헹Z�>Y�%�2�>bܷb��>��4ޟ>���c��>9�,�>E������>�m>M�n���>�7j�(Ў>bۡ����>�~xF�> �ɇw��>�/X�'Ӛ>�2���B�>Oi��>���b�>���Q@�>"������>F�h��N�>�g��@d�>����y^�>�����>��OH��>��! ��>�"� �>�-����>2�X��›>���-q�>x F3i�>���@#�>�4CF/�>Nӄ����>�8�0�z�>j�O���>��ɘaL�>]ģ7 �>U �˝>�*�8��>�Ҫ�Ӑ>g�ʲi�>���$�k�>���&i�>S���-�>C�\)�,�>,����,�>#H8����>>����N�>E�lFС�>���m�> �'n�>�>�\�����>�Ms;�?���^��>�l�<�>o8�Q ��>��E ��>5�����>��?&ۧ�>��U��>^����>�̘�[�>��!ʻ�>����wT�>4���Ą�>��9��>��A�Ϻ?�w�* �>����L?iƴ����>�x��>i ?ţ�O��>+1�cb?�1tE��>q�� ?��;��>3��� ?�do�n$�>�x�&-?��t���>ޙ}�E?���p��>+�0=�^ ?��n���>�A#�?�K�W�>�2x�TZ�>Z��v���>Gԑ_? �H��>���R�#?x ^|=��>=Nn�z��>�*����>EN�Q� �>Qe�( "�>���ܠt�>�GY���>�tu�u?�#��L_�>������>����̠>�r�_!�?�1.F�>N �e?��d��b�>z�?�I��>3j:k�W�>����[�>�e��Fq�>æB��x�>�[��R��>#�5�?�*��+�>�d�j�s?3$�����>�*��m��>JB��Ӫ�>��= �>��1�Y��>)� 5��>o$,}�™>O����?V�}��ٟ>�9��p?����A�>���&��>aZX���>� F���>��WM��> ��x�?tv��#S�>bB#*':?�x�Xz�>���]?]L�@��>���9v�?�jB��>1���c�?�x���b�>�s��|�?wen*�>}ᬻ��?�rV!�>?QC��?�09R��>a��i@�?B����>geZ� � ?� H���>� l�� ?;�׆'j�>�WǠ�y ?����](�>�/�� � ?��bD.D�>v *b�7 ? |q�>$X�!~�?:Ϲyc�>���An0 ?�P e��>��T���?| �:k�>�*�f?�Aܶ��>Ly�]�� ?EM�ߣ>�p� �� ?��fh���>�\CT�� ?�#sWH�>��%\ ?0��.�>�>�Co��?�ʮ�>�E��?�?taɥ�>�Xw�T ?Y`g�J�>H��� ?�ڄ�qǗ>˜^�~N?����Ws�>d�����>6��� �>�)R��#?�țK~�>�G-q�p ?��`���>։Тʊ?+�F��>RD��� ?gkNȬК>֔�o��?�Y�Lפ�>s:G!?�=X-�\�>�?��X�?��O�V�>�l�PW ?�A@���> x"�=�?��P"뜤>[���?�څb�,�>Db��OJ?�4�-���>������?��$� �>���f*L?��LA�><��)�?3#P"g�>�$��4�?���SD �>� ������?��%�L�>睬�?������>q_y ?�jU�B�>�m��>i?+��>���>6k�{?Qv �;�>Ŧߘv�?m`Χ�/�>M�R)�?��H1�>���)I�?ǜ88�U�>PmNV�'?iö��W�>���9�?�Z��ߋ�>��#�K�?�� W�b�>������?^b� �z�>L��+�?�>?��S�>f �� ?v�3`�~�>Gs�W?���}J�>3��?(,?�4 �Y�>k���_Q�>�#p����>�sV��?��ld^�> ��w?Z���>2�O�s� ?���]^�>�D��v�?�Zӓ�@�>�@�P$�?H��o=Ŝ>�R��� ?��U�?��>��q r�? ��P��>W �]�?@l ��>�{�I�4?,�H�B-�>�:��?�����z�>�����?s��E�r�>�����?~��i�>bn�ۥc?��j�{ġ>$Z�*lw?J5��2,�>n�o? ?l��oF�>}r�םM?@�ю�S�>�K��7s?�=�����>�r��?��=��>�L�;?(��dMY�>V+z��?d~-Q�>�(��?���0B��>��UI�?��l�}*�>P���u?�� J$#�>=�t�?=�����>��c0y?-�x��>�3���?�����>VZ-�u6 ?�9�^.�>���Z� ?��y�d�>���d ?����ߘ>d|Ks�!?j^���>"�jy�?�(a�j�>{9�D�Q?< �ϧn�> q��?�e���>˰�� ?����O�>Cg��$?_O;cR��>81:�o?�p�*'��>;����b?�u����>`����?Z������>u"C�M{?�:�xV�>�>Ϲ:L?&���T�>WV��?MI�6�v�>�UR�?ɟ�pC�>��|N���>�cM3�͎>�� �L?7r�ա0�>7rו��>,�B��*�>�`l����>4�֖ �v>sZII��>%F2�"ڒ>�o�Y5g?R7A��4�>�LoeO?������w>�*�?�>�����fb>��+|�p�>�S]4~>~��{��>A�?�j�>u��??E�qTw0�>� V���?*�~?I��>����2��>М#�~��>>����h?�!��#=�>~�ȡ��?�s��]�>���|?�vN�� �>i���$7?2d�呁>�Ҿ�� ?����z��>��?IW� |>�mY��?�U I��>XiM�?W��JҔ>�$j�+� ?QUk�,��>���'?�ɰ�K�>��� �?�I�3h!�>�\-��?q%���>K<�9W�?(����+�>�j��+?�����U�>�P�$�� ?t�|݄�>�,x��; ?��xO��>��vA� ?p�D�x>Hk�f� ?�Tp���t>ŨO EW?5!~�4"q>����>�?2"�>Gt>���� ?�_&;�>S���]�?�c<��T>#����[?��n�4V>����?j��w� o> H��dd?��-z*뽧����S�>�����]�"�Z�x��>v� �q>�]� A?V���ly>ac �+�>��~���l>������>��w+�s>���u��>"l�e:��>���$�?kx�v�>Fؠ�d�?�����U>�����>�9�KLjB>����m&�>�Q۶&2i>mET�- �>��[5j`>��Jy�>�i8�Ip>��&��>���[>c��ɟ��>싌K��f>%�pL���>�,Z�#q>s`�a ��><���A>�jN��>��� ��.�.��!�0�>��F6�c��+��>�ܭ�Jk�܈]�o�>��N1|/8>�K����>�Ђ�^>p ă_��>[���g>�Ȟ-"�>�;H�P�V>���2��h��L��v>�Ľ�^?SCV�Vy>1&)�\4 ?��,x>{[�L�?����U>g$ub���>e؉EʹB>�R>5#�>�ѐ���R> oV�����L�h�O>���#����{�wB>����]����Qc�p��9qc���n:�_�J��2�e�7��XCz`�c��\q�,�> 7G�e�����!��� =���q�.�B��j��m��d�xQ�al��B�>�A)-�`>&u��>S˱q &C> �?�@>�>��OA��B>�)���D�>�l��U�[>5d�N���>�q�k�Yu�ӝh�oq[u�#�٧��?� Ȩq�3��y���֣��w��E�G���d���+�T(�>D�l�?1>���o��>�鄥��F�df���;{r�q_�� i9{�Ҿ��;�utK���`�dº������u����ձk���P0 �w�vi��br��l�mxs�7��z~ �N�0�g9M� ��9 ��Z��J��d�6Z��)f�u�#7YD�"�v{i�����cW> 1�; �3oH��T>ў����ZR��Y>���P+q����m~b>p.S'%Ծ�HXv6%c> 䶞!���|$�}a>���WȾ*c�i�`>��K)���j;�+�O>���Lû�U�jf \>�SKKR�ҾdpG1%c>���� #�-�(�3?[>6��-�龴�_�P> ��b����ߘn�4>�쁀+) ��N!�LW�ޚ � �vo�Ѧ�t������2�&m(�Y�‰60Vվt�'r�.YE�?{����x��?SC�� #���p�R��%5���wO���s�s5�a:����� 9�T>�����4�����w��h�^e-��O��G j�t�{,v| � ����v�6"�Y�v���O���u�dj�a�)���v���e3>���?�>�K���C>�e�v���>�?aZV>�4�>���/�W>=fp8j:?>%���a>T�D��`�>�<��ifS>��m�)/?��h�Eb>��B5�?C#D�X�d>���!�>"�Ā��;>���r�>�/vp��`>���CS�? ��k��%�ý��?����T�u(Z%]?��vD�fh��|k���?����f����}��>D�n�O�a��_�X?�:����B>47���(?¾��a[�Ƭ�p A ?Lv���kg�1\�4��?�"7�wK�K���2/ ?*m�nƯJ>�� �2��S`��-A���>�Gy��n�,� �>y�ȧ�s��[�~���>�r� -�-8��>���0��j����� �>*����p���MĶ?*|�r��ls��>�:� Yt��v:��^�>�ð@�t����r��>J����`��)h���>8Y �lq����W���>y�Idks�3P<�O<�>�E+Rgg�ů���>#clϤ�t���A ��>0��jl��mY�y�>�]��8q�"����B�>�gS-u�M�ʅL�>��>��"o��{J�l�>��s���t�-U��Ϻ>�;b���s��g�5e��>�D�Xh>k&���Wᾀ<�|&l>���XTv꾧*��hRd>�7��]ھ�;*f��]�s��[�>��.�A_���*� ��>�����M>���sђѾ~/�$��g�.s�5=�>i \��lp����V���>�&��hP>�3i%X����R��P������>�8�W��Y>�#�z^C�>�Ќ�I��b|����> c�-@O�>˺�X�Bd>�p ]���>�b�7�e>�K�@�> ' �f> T/�>-n,K�a>e��پ�pyQ� �ʵiʯҾ��+ ҉0>q\Uo�0ھ�3� � 0>���ܩ�֠�@� 8�����O�ľ�@��jN��L@0�侏� ���2��T�]����($���BH�ٲ� ����YR�)U����!����[�PJ��O �M��~q��*O>��O����5�e�a>l��i4�>d:؅:PV>�{� �E��+1�c>d�� �x�2<�zR����p��Ȑu=Y�>�T,�J�>�����B>��=��4����D�ö<�W����E� m�UعI� 0� HI�k���:P���Z��H� ���C�����*yc��]F��"��nt��mH>6�Pq�^Ⱦ�ktFE�M>�oo����^V��a> Ǚ�?����f�C>^�Cp}���u2�@b>���m߳�Q����T>߿��sR��,��f�g��po��{��� �iete�� �R_�NlY��W��+�.a���W�2S_i��� �'=������H�J���׾��*&'�R�N'ڸ侑Z�ŵF��ۙ�VIѾ2��`r�W"��l���7�&(q��t [��� u! ��Y�<�u�z9_�v�I� �A&I�[�G�6���A� ��u��=��\ Ӻ� ����ll�^��C� �o���QI���0D���S���f��� �V �)��um��C�l����'�cft���}���U,O w�)!R�����݊�_�ʊ[������oag��@Ӕl� ��� ~��q��B�t����h��ށ�^�?Jl�ՂraJb��C?[t��z˔J����eƻ�U*�U�|�_��8�� ���S��Ձ��{j#B��ĭ�H�{����� }���q5��y�)Ѿt=��d�"��w���Bm����"�����QV~������˃�����~�'W@!�~��7��F/����,,v��B����~..+��~�%sriAy ��78� �p����R�����rk�xu��#��ޞ��J �� y��Ղ�O����M�a���$e@!���W�G~� �s2���Iv��l��g��������h�i]q�,���Uw�b�v� s�w�����ܢs��':�� ���X�L�m�"L��"����� a��u��`'�t���!h+�r�c};ö��2o��wj���WX���Q�!Ⴞ�qg[����gI�� �����m�0P��]PB�C�������傾��v� �w�Mɀ݃�~�o�+���sL7y�`>,)��7�9%4F�����+��uvd�.����|�n �Y,�֩i����`4�7�h <����D��I���H�[�;���]� �:&��������L� v���[ �Dɐ�� �턤��V� �����w;m��Xg�Φ����̷Y����N���+>_���%9�#`��$��շ'�*��_Y��T�g�7�n �q3���Ea'^�_?��ٞ��ؠ��I��Yp� T��s�9 �8�~i�I�f��� 6z`�@�;��퇾Z���8��ף3|����{�5{��!M1��nA�B�������������w� ���݅�i����� ׉��^��"�Y�K��3���<��-I��n�"�4�Ao����,^xYQ� �DZ�kL ������p �<�|�A��E�"��e�3;!����$���,�����A�� �>�E�Bc�����^_���m�� [�=e����U@���]�m��K�: ����*�2��X���-�����ɑ��>�[5���_�l|���U�l�!l���䒾N��a.�fI(w���>��$n�H�40�� uˍ�w��3S����q���h��<��^��kcC����`�U�}S����a�bv �'���4�P����x�T�I���h�<��g5��Ȑ����u5�������a^ ��� ���0k�I���!��5f ���ڝ�ǖ���"�{���S��������J��-c�A������66���:�{K�ژ�/��.79֥�_�E���y��G�f�u������#��.x����I9�s0��DN����N�-W����*��B��m��������� �+����B�����{� ��}X����&+��,����s$���9�l�������:��&��J)����c����Z� 3@�]�J�ݗ�v��Oy����3�?��5CCJ���{y}���ǭO_H��H�d�֗�-���Yz��FL�����;�1���g^��*Α����I\1 �Ҷ�z���f̋�&����^p�j������M���~��v���,�����bA�j^��^�ArM�& )����ю=�C��=(�h:ɑ�I �Z����2BQ�� '߰����`Kя��ؖ����h�^�\���Ʈ�� ��MǪ6���#���� �n�#%Q��8���� ���m�H����6� ������N��{���\��m:q ���� �ʺ��*�����=~���5�!T�똾�{���'Е0Ca����� Y��[��耞����T N�Ű������Y�)T�Q5��et��m#�>ѣ�b��H��x�:V���،�0z/��۩z$o�]��eqC��Yg� C3�^�͘b�����K6�-s�����C��7nq��i�3���������!��f �����v) �<,~T�훾W��"�X�Y�U��Z]���W ��`��a����}�ZcE ��ē�嚒���<� �ʍqW��ѝO�o ����0ޑ�?Ai�"��X[_�$W��&�"Z�I ����8A����l�t��ܐ�$�:��Ì��> ����J̕���Rt����U`�����}�U&��+&h#y픾tq�)��5�C����p��G���{��� �LXr*�Z��Ĺg�����=��ABj �k~���@)���d=�9������k����"?�`�y��R�����]��ǀ�[�nS�����FF�����=�T��HR��̃��5��M�e�}с����:�������V���Js��*��гs�ؽ���^�M�����H��x��y�r�aK��iԊ�>v�~�~����;~�Dž���L�{���v.,��B�����T >_s���`KD���XD�y���Zs+�l�[V��s�)�Y����qt9���������i�vfpx���04羒�V�0`�����I�u���l[�Om��3 `�Ľ��&$ YX���K������L�G����J��Yp���]}����S������db%��;z��u)r�ss:��?{��Gg��>��`�U�� ��������O:Ji섾)%�09���$����+���U �έ��hL�W���G�X5������:��z����`�c�� 8}����|z������_�h�p�����9�j�� "Xr��_�������K�L �� T�pb��խ[�d2��5��$���a\&���&g:g��ǎ\������t)������W����`G��Ym�/������}��͛=Q�(��+u�,��D����S���iM�ww����ǶP��E���g��h��MN�����z� ֔�и>�d��d�5#���Bg�:�0xa1Xq��р��4��Gؼ����� ���*xq#���=sHW���z�bT���> H�����b��2��٫��� ��69�J��1꤉φ���v�ٮ��T~�w � ���.Ҿ&$�(��z���v'�>Ed�<,�u��si+�>Լ����~�&kPE�ެ>Qأ���w�q` �����2A1�p�h�J�Ӳ����U�j>{j��t�پd�Jk��z��P�!����1�8P p���9(�>oA����Q>�z]��=Ҿe��K��R��r�m/ɾ�?�( 6X������7��ϫ���8�㏗>3*���B]�ubz�>��;��瀾���hM�>���e�Qx�n� �ի>�ްjh��� k;Tկ>��1آ|x�Зr��1�>�;U}'�|����~�>5�$E��>���AWTݾ���зzo>����IҾC� -�V�>��?d���4ߟp~>dD���l�]R��z�>s�i�W�ܾ�b��(�>��,�7㾇�4j��>ʙ%�3>׾�H|1�>���9ɾ�xEN����7����)�v�Ʒ���z>�� ���W�|�(�>R�V~�:g��|��0%�>Ӄ�SR~�U>�0�@�>X���Au��]�囥>1τ��pn�;K���X>� n��>�kmo�ҾOvw{�en�*H'��5�>�X��l�^�؍�@ꓓ>�`A$�{j������>�+����>O�$=Qоܨ ��>>��(�����'��6V>����К��z��Q3R�@Ψ;=��>��,�`�D�B9��>�ېEh/f��q� �p�>����8V�D�Q ;�>��/�k��>ü�8r��mM_G�>u�˓��ľ&7}�X�h>��ubu/���6���>���G�P��,�>�>�j�H>޾���I��>�S����Ⱦ��(�^��>�|վI��,��y>��>�����6ېQ�LQ�U�X��a�>�'�j�A�+C��?v>�c�u�M!>9U�j��i���G>��Jv(ϊ����20|>�&�'% ��e�d\���>��+{4�о�wTU6��9u��j>�/p<(�a>��������`�T>��������(����h��=��Z�{�e��bF>�����%>���3V/g���0�v>W5[����K��y$�<>p���6`z�HY¯Z�l>Sk#8��-2bk�>S/�¾{�I�rՒ>ɓ�] ̾O)�����>�?��к׾S'g ʮ?#���}�%� ;>��{~X�u��J�ȋ�y>�T��q��hĺS>-t>��&�k#���<���h>�t.Ȣ����+�%>m��Be��L:���X> ��!-ȓ���S��a>�LN�图�p`���=>S�7�y u�~3!Q�h>(�1������O���>H��Y*�������.#�>��7\ؾ��H�գ_>������M�i�7�>I� �� ������G>�A.��&��67�0^i>ϣY������.���!T>��Ҽa���ɋ՘`>н'�"ڕ� W�/��R>7��J���õ��ho>����/����&�Y>��V2����'�㢛H>T�2�^�����_8Cc>}q�|����˦�~�0>`mU�i�]^H,��)�N�J�>>�7:�{��꩑ �7>�*�����(��d@F>�v�M�R�9"nso�>(�*�P� ����͂>�co��r��0}%�>!Z��4?M��@@^(�>)���D�� �C����Z����Y�ԍ>a����A�49pDF�r>��Y�L�hC�F�~>��!u+�����'�]>���4�,�����S^>s��N���$���3K>��_�;�ܖ�ɿjp>���Nn6���R�3�h>=�+��A�٧#��t>�K�����(x�£J>�k6���2��v��e>9�~��������K>(� t "��TCa�U>��G`��[�ȴ�dj�>P<�����)-�C>�����TK���f6~>��D�mPy����Hf�>Ҿ����E�<��>��U�=v���r,-�>�f��Tao�}�>��f�p���*�ˤ�>U(�{9c�xɅJ=��>b��Xk�rK �G> �'*~T�%̗��>3���GI�#0 H�v|>�;��N�@� ߩ�;�r>qC���/�-�]��y`>�X%_�&��S��-X>����6�s����h>������#����~U>�+*u�A���-cLs>�t���>���絔p>�vr����غ[�?>P�"� C����*v>f��#� `�T��S��>S��&q���c5��>.s-Usf�ɭ���/�>����A't�ߍ���>gb����� �N��>��rC*���3���\>l���:7�/�96m�k>x�̅��@�p��`�t>�8���PV���Ե�>b��>Z�����?<>��!��a�/2�r#��>�$� n�8���FgD�l>4�9��P��R9��>.��K��$.9�K> �@W�a�ě�>��P�;W�@\}��|�>#31E�_[�����\�>H�+g�Dx�K�#jxR�>{����E���˞�{>Bj{YKJ������>6`� -��0[��c>T���7�~�k� p>�q�� �<�Ř��A>��wi�.v���X4h�>?fD��5���d�h�>κ��p��3�4����>y��7�����.cp�>B��N^���'�W�Y�>�E������ffW}�> ���������>T\v�1a���Y� �ƿ>���U���ә��,�>dp�bj� ���d�>�,K�%����LV�b>���%�q� k6�ۭ�>rHT͝G_���.�8œ>�ߒ�f�L��AX>�m��B�����x>�k*���@���s�qxv>�0C�zi�=ك� ���]\!`����Z�D�>A���ll� �;��>Kҟ�GJ�z7�8���>nƁ�W��a~:�>�x|'@d ���\qQ>�-e��D�=%)��0,>.��"�:�� 5�a>!\��>�ο,+f��[�����۽�X"�k�A>'�Ex?A�F�26U~>�;/�Ԁ��W:4�X�>��v�l�T�W���>O�jv��o9����>�47��5�R�[��t>U?�V�g>�̃��C>AG���P���I�eɉ>���W#��=$\>fW"W>0�i��-���]�wq>kQs���>��H�1�b5K��::�ܞ�$�9}>��}���R�bm8+qT�>.޲ �l�K�;��ť>�R� ?y��V6�>�dF��`�mA��?�>�`�eҋ���z˧��>�5�����}��b�>�0�y��w���j��>�ub�oϏ�v�K��h�>7hoږxp��\� `�>�<��1T���I@�H�>������q��zXP� �>��D�@�">&�3&9�ՒT��B>�̒��e>} �m~(>d2j;�@����RK�>�鷵v3R�>�nkw�W >�F�j�GC���yH��T����4�>E4Ix a�#��'9�>9s2�F�.���t�l�>F{F��'>�3�|�)P��E�3>tbI'��M��~��t5>��!SW���f��@>�R�p�T��R�@JUz��A\�յ>��K�ti�%&���>�'��Z�~�Py76���>���v����<���6��>�L��A���֣a��>q7���ΑF�}s�>�����ӑ��д����>���sl���$���y�>BtV <ƙ��r�[1���> �� B����: ��u@1P��&�Yi��>�����!���\t�p[�>�y9�P���>p�X��>֛O�ɱ����a3��>Ά��ᔾ����>��>rb{�����t���[��>��u�s����b���>�E�5ʸ���dJ��R�>Xag�*t��;M~H9�>���at����k��p��>�K�`�������pK��> ��Nʆ�]���E(�>ugv��j�U�L�_s�>�8n �X�f���<�>߆��b<>݆`���j>l%�F�@>Q�]Q�J>�� ��ii�;>�j���Z�(O}y�$>��uO� D7��2>g�v) �����@d������E2>��޵�>[�0hG��,2>5n'�\��r���K>�D�Vl��K�A>E��^�dr>��hg�ZG>��_�.�U�^�-��O����:�l�>&Ll��P�LV ��>C�i���!>åpX|��>��6l�K>���� Vm>/4�<��8>�'Z�LQc�oh��G>/{6�p�{O�p�X>�1�>�v�Y.R~�R>'A�Y�|>�_�.VAY�ۺ[��G�>�=}�������cף�>���db��z�����>.�B���d��2!N�>M�5���X> �����I�=��J>�R۷��>�Im)��K>ڪ����s�\rՕZ�>>P�X�R�h�����{�B>�e,vn�!��&�@Q> ���x��+���#S>#�,����>��\���\>��4!�=���?�ܰP>�N��Ӵx�u����[`>dX�d�'w�W�e%�\>$���b���rB��hQ����f�>}����h>�_E����>Ɍ��������Q@I�>�����5���{����>����-�z��r�^��>�V�MP>�xce��>��PSzYq�@`}�;��>:�U�ewd>}b����>lV��Na>-��*o#��9�ʤ��b>�/%��y�f�y��aO>��G5x��%|��C>�ݳ'�Ap� T�c{lQ>'�K {�T���E�c>W�gi:�����wɀ�e>�;��Q�WW>U�2���k���P>��A� Py��i!K�Xj>����>7n�Q-l>��ۤ��v�f�{��o��n�J�>���=�fY�IB>DK�>�k��c'>���N���>�sD͇�q��i���>_4�`����X(}�TL�>4k����������>T��̅����Z]�>w��k�̑�,�àR��>S�1��A|�x��}�> ��k;=k�O���f�>dɗ���x�F�/�P�>ҔG]�Hq��]�E��>d�ͧ�{z��W���>AƳ���)��d���>�1�t�4V��g�> �9g6P|�D���Ul�>�l�L#��=H ���>F� %a��!���>�j�:'_��ph����>�K>�k�A%�>F��s�P>J�!e �> %y� ok>Q�E/��!��ٸ�c><���Q����~qG{k>cz���E�> ��8��P>�����y�2���o>�k�ڮ{>��Gf&n>�����|��ӐRMp>�"Y�^�>y��Wsg>"}�K�|���_Y{�\>U��r��������6p>,��B{M4>I��_1E>�ٟǨGq�����HX>5�kᜁ��vԏ�/m>A1��qg����P�p>�#9��*z>��uD��i>޶䴻�>�b�C�q���$�t��>j��m�P�Ż�J��>��ɒ(Rp>#RZC���>���TM�f>9����=�>eJ[�WX>��- ����m7��S> �����}��j+�I>�H��bt�o�?���b>~v��;����5�o>��Y��/b>��q4VMk>��Id�>O��a�*f>����i�>y9�$�^��s�N5�>k+�&�p�k�Vk7��>0E��'�p������>&�%�i>\�;�>N���f�*>@C��>���׶b>�=p��a�>�� Zm>[e-S>M.�\1n>`y2G4��>�~�]>A^yw�u����Q1J>]�:E�~w����UsP>+G7�J���`���]>!�q~�����fD[h�[> I�r/�>�κ$L 8>�э{�p���9��c>&e�5�����8q�Q�T>l��{k��Y��+�a>���P���7��f>��h�>q�=���h>1ٷ������r�A,����`�\�>�E��j�b�ܜ�O�>�%f ^>wj�vn�>m�� 1�#�q������>� x��\�%|Aq�>��aw!pT�ןw�&?�>��I���c�Ϋ�O��>i��֘q�� 0~�>�2�m��k��2\�Q�?�<�/V�� �Ųi�>(�Q�N�6�� �%�>;Y�g��R��<�F��>=�'�s�Q�D���� ?����dsr>�a�/�?fS�#\�3�=�J-<?�3�py>�=�?p��qa��>�9#?�w�Z��>td2F�?K7Z�:��>c�+E��?x): ���>�2�•=?-�8˒p>'���t ?/�7[j�>��Vd�!?@���&�>v@8�#?�gi|ۮ>�\��hY#?3�1㕲>�Ⱥz�?��� �>h�m��T?_��Ag�>iBig�?��Vs�>���X.c?Et�qU�>���x�?���Ǥ�>���+e?�2x�8�>�{p�)Z?E�V dc�>c����)?n���7�>�3��?-f��z�>Ŏ�?r���N�>�Է��9?�ܥ�,�>�1 Mu?�^�nK�>(���3�?����Z�>rN�?��f:]Ӵ>�g��?\*".y�>iRJ�Zj?��+���>��%ꎘ?�:��E �>���lA�>��e9Oߤ>_�xV�?�_^����>�%?�㩩�]�>��P��>b{��ȣ>>�`��X�>#\`�>�!ә�'�>꾷\�1>u�[�ώ�>�x�R9�>(5���>�t���F�>�Q��;�>� � �G�>�*.)HH�>{ǔ��{�>�`sh�> ��وӕ>f(ܥ�2�>TS�'Nx�>�����v�>9��*18�>��� ��>* 7�*3~>��=֓�>��#��b�>��$����>�w�>�+Ӆ)O�>8��E��>(��;\��>�HҦNҗ>�L��Q�>P�t�j[�>v�x���>� ����>�J��1�>�|q4\tr>kfwWo�>q��k��>��O~���>ˆ��[(�>�İ2�B�>,{�a�>�,� ���>�&�J딈>�Y-���>�n�u{щ>�����>'z-� ~>���y�{�>J����֓>gP"=�6�>��~��D�>�g�&N�>W���Wʖ>������>S�ޑJo�>�����=�>ڋ��}~>�)�I�E�> ���~J�>�\{U &�>Ӈ����>�89ɺ��>��,)��}>:����o�>Z�@CÅ≯ H�b�>�v|�4�w>ې��9!�>97��<��>�&�!��>(��6�>�Y:#� �>0�U�5�>���!�A�>�D�%��>��-*��>T��~݂>������>@B0�w�>J C��>��9,Ж>Y���:�>˜²�'�>�\���G�>��;��>'�#LN��>�vZ�qj�>������>z_�h�>t_���>9��"�ߙ>�X [���>W�@Y1�>Sk�>6�>��ƀ>RX���M�>�m T�>&�E'��>G����ޓ>yKt�\S�>��؍��>��&Z���> <ѯrʞ> w �� c�>G@Vg���>�v��\�>_#�u첚>��^�.S�>�O�,ې>��O�>�>�Bb�ꑝ>���\��>Ǧeb�~�>,4;Ԟ��>O�ݚB��>|�� Rv�>>m��7�>4z�X;��>;P���J�>� y��>�%vV�5�>���]��>y���b�><�y�<��>�26�w!�>�5/��:�>��]�ؒ>z� ����>�t0~�2�> �yf��>E�R��y�>d'��`��>֭4��ߓ>��y1x?�>'\�Z+��>� � �(�>���!�>����V�>��u,Eݠ>�Վ���>D�¤���>�h����>����ӄ�>(c�T���>��"#7�>�A���>�m!�t��>x�����>�a�}�>Rb�g�o�>7��̫Ö>J��El��>Uӝ?PN�>'�״ 7�>��d� �>��TU��>��ݬ��>��u5t��>x1�yS�>UM��b�>�I}?K�>'K����>$�Z.�Ŗ>|o�UX�>F��"Ŗ>��9ү�>��%m �>Ѽ8�\�? ��}G�> �x�P?���C_�>x�a���?`-��)<�>�e��2E? \z�>��>��+v��?J�J��>�s4�n ?���C�>�c;�A_ ?��NM䓢>o\��0?���� ��>3ci���?L�bd�L�>A���?��J����>׊�RL4? f��J�>��)�P��>��rk@�>�� C7?mG��v��>����?���~淣>#���?�ߨ��ڨ>}�}b�x?�y�d+;�>�i+� ?-cdD���>����@ ?u� I7F�>��|�� ?rĈ��;�> ]v��?R��t�-�>�g�e@�?�`�Ԟ�>�0����?H��/�Z�>KJ]Cg?��*?I3�>�0��n?�<�>��`|8 ?�}&��>o�a�j2 ?w1�6��>���Z�z? E���f�>x��@? ���2�>�a���>�K��ՠ><#]= ?��[�T��>=�� �?�Gp+��>���S�>�V�7�>{N�� �>���U�S�>���{��>WN��>����xd?u�ثU�>��S.?��z����>^W�X?' ��6e�>&��G���>7���M�>U��ݭ?^]���>���=�>x�q+��>V����?�W�ͽ{�>vp�tՖ�>6�Z�V��>�}s�]�>�*�t��>{9.�h��>�\�7�>.�Q��>�ud eA�>���\M�>z,��}�>�����>�Uh= �>��Z�\�>�9g���>nZM��F�>ۯ �JK�>��9���>iU����>�5�����>Qdz�>�d�����>�� ҵ�>����f`?�|��Jp�>�~�H�j�>�̺B�%�>�k��0�>O�J�7��>�=����>W����<�>�`rRR/�>��Tg�>W����?������>�x�R�?8>�y]�>��i'���>H���悟>�f�q�n�>u��s�>�ߦ]&j�>I�W���>f�P<=��>�tJ��r�>*=�#J��>���2�~><�$�=�>z�'��>åC��S�>;���9�>�g��AA�>�wZ�$�>��.^��>u �M�>��"�o��>���,3�>��Q��>��8�W|>�ׄ��>����DZ�>Zasy?߃H�7�>��3�F?J>T�А>Li��.�>)r���>i-_��/�>���̀ �>ū�KW�>�^��I��>���B���>�R|�> vX-f��>�X\�^�>�bb(���>����}�>���T�>��PI�%�>����'�?�V�X���>��P�?��/\>T�>(�27��?Ğ�9���>�ID�z?��p�9ȟ>��5�2?�N���>��xX�k?�rK*��>�@���?e� l�>������?���C�I�>^Y�rb�?���A�>qB�U��?و��㻚>�ƻ�!��>�4*XP��>� %��?��+x�>�d�{%?����>9��F?�>W���H��>�/p{��?]�ܳ�٢>Sv��?���" &�>���od�?ܺ�#��>l���%(?�צP�u�>�J�J_�?T�&�ҫ>ԞU ��?g�}�Ё�>g��tlO? ���A�>x���v ?�ao�΃�>�T*t�X?#��&�ͤ>J�1 ��?%��uܦ>�̅�j?�hy\f�>���ݴ?����.��>����� ?�[� Y�>��S��5?W,�H}�>��d�� ?8B^H�j�>��a� ?��5�i�>A|%h2 ?:�'LZ��>�e �4� ?�4�ĥ>���B] ?�=u����>Zr�� ?��zH�>���n5 ?l����>~F �̺ ?d���]ӟ>B9� ��?����vˣ>q� k]�?�|��4�>�� �đ?H⣠�"�>��&��?q�����>_�ZY ?ƭ��>�A׏l�?���\�>&�|��?S���գ>�~/�K?a���}g�>M��貓?.�h/8n�>�ˏ��� ?��M��>�j�?������>}���TE?�I Cʦ>J��o3 ?=�Ln���>�P-!�� ?MK@7��>Ō��� ?�e��s��>�6~�r�?f&`�M��>��^O��?M��ݷڤ>���n޷ ?G=$/��>wX�y�H?]���Aq�>�~|b�?y������>��� � ?�]w�'�>��4 ?E��碧>�ƛ�@5?_GZ� �>�s ��?�Uo� �>H<��� ?g�{�|�>�ԆR?׺�΁(�>�I�B?1?c���@˦>�y�X?�Fd����>�6�cZ�?�u��D�>f��)e ?�jˆ��>czr��x ?�����W�>�����l ?|i�{2�>����<~ ?ke�@�>;a�ڪ@?q۠.�y�>�����?�N�j4�>#+1��?Fu�]�>u�Cn��>&�~S���>�|g�(H�>������>�C����?�vW�]�>Y�5t�?�t�4h�>� �s+�>�g��>6( �%ȁ|�>a��x^~�>�ǐ��>�ECZ���>6u'����>z�;��>M>��א>�2�{� �>Qz'���>��d�*?y�VV�>��xu?ӚH�rן>�z���?*�B��>��n�� ?��ƽ �>n���n?�a����>�}����?'�3�%�>[Е�;�?V���>/�,c� ?UH�j�>�R�z|c?Oc��U٢>�x�EC ?Y�QVX�>�q���?'����>:/���?�}��.�>�J�O?)twz_�>��3�,?*!?�l��>����?�rω��>���� ?Q�lE�[�>���/[ ?#t����>��*J?a���nZ�>ֿh�&?'�\�V\�>�2�r*�?x(H>����0?�w�nW�>�n�<�"?��J��D�>d���?���p�>��2�2?�~-8Ħ�>�R� ?$51e�k�>���a[�?�����>�0Q�u?���8�>��U��?܀�U��>����?�B��Uԭ>��=j?�m�0�>B����?gC��2��>��d�?�Y�]��>�Ia�?��៉H�>*��X1?HhL(N�>�M,���?^��-ް>.8 &��!?�����>j=��&�?��P�%��>�'�!, ? %:�ۭ>�� _�?`X�ɭ>qj\�?�]!�B�>��G��?�A��]��>���\2?S�]0帥>�� '?�nKޥ>3y��?Y�X���>�l�5-�?���ҿ��>j��z+?��;$^B�>w�V%�?���)�w�>�d6��r?��OP�}�>f�*]�?`���>*�>����L?˅{��'�>&����?�ĞQ��>��a�?�ԒA8�>��4�h?/��:ɤ>>����?�Q��>I�>�v?L�!] ��> �!P�?9��4���>bG�ru�?Οe�t�>�� [uL?z���>^%����?T�>!>�>�<�.3?�{=�d��>�<�%��?�BnoE�>�yG�>K?fM ٢>���U ?s��5��>A!u^�| ?a�a!��>z�C��` ?�����>IkY�8?�g��2;�>"LL%==?3ȶ �Π>x@> a0 ?h�u�b��>�z�N?�GBA�a�>��@��>�z"�闓>VS�w�?��42�>q�����?����@7�>Χ�&�=�>(Y��y�>�[r�?h��\�P�>Bs�1�(?���ԡ>mq�j�?E=t,`�>�e�#W�?�g��:�>l�ʷV9?�~W\�>�=ՋC� ?G�$��Ԣ>�H��g$?�R� �ݢ>��1?N�|"� �>�]e �O?鈤��>��8D�?�#�E�>���z?���I#�>,�ƶ,�?�g$����>伻|�� ?�����7�>��\�� ?�xs`�S�>5`�pA?�H|ퟷ�>�=���?8�Uڝؕ>2Y�b�^? �؂�%�>��O�u�?�"�>�P�>(����=?U{9D,�>� -<?��Rw���>�����?�9���O�>&����?Iid�>Q���l�?�;=�Hd�>� �0:?RX���>��(_?6�g}��>�.i�?�O�5��>#0����?6�-��O�>���!�?���I�>g��;?������>����V�?����7ƣ>'LA��?��)��ǣ>:��%?j��-pգ>�x�}?�&ӷ�|�>b�FK�L?a:*�9��>q�����?�Q��l�>�@�ٻw?��P>�>��ߩ-�!?[���$�>����@!??@�_t�>‚H+:"?!(m����>��Y.G�$?w�!V�E�>=�U��]"?gm_�c�>�d���?���z�>d�~f�)!?$��m&�>�EN`�>?��5�T�>�6UY�!?��E�p�>��}0o�?kf���Ø>��bQ�D ?���Zћ>�ꅗ��?�%�T��>k�2g%�?�:���S�>Q*[7�?t�ql��> pg�PG?������>,_�_N[?`E��� �>�|��{�?��oPF�>b��s��?}������>h�eSOy?�m|re8�>�5=�D9?B" �J��>��0�=?���Z’>�-?�?�3�ѡ�>J@/ �?G+M���>:���U�?D�ĩ^��>���v?Qm#H뚖>�kd ^?c��ŪI�>�+� ?���Q�>�+/J��?��:��>qo��� ?U��Ė>j42��_ ?���t���> �ٕ?�~��l�>)��� ~?�gϳ>��>�-��??��a�Ù> 7|K?��ȼF��>/� ���J?���~�b�>���>�?���4��>����� ?�r�#�?�>w�Ö�<?�<��ey�>>�?�8�n�>U��Q�?��7)�>����| ?��9�L�>��p�?t>��(�>����M?��N�ɜ>[�v;�?��E����>��!��?�}D-���>T���G?����~�>O��0��?�k���ޚ>#�ns�?4$����>�Or?�?Qg�E��>���?��E'}��>"���c�? ��Z��>#��?�����>�\��\?��T�ş>e �R2�?�a`��> 4�2�?_Sk+���>�u��I�?v���|ӡ>-�M�?�2j�m��>K𣏕�f?�����>~�J5?9 �AL��>_jY�N?�`.���>��|E�?�k~o�$�>���?�R�.�S�>���}�?�S��tI�>|G^-&�?fP��L�>r�L��??�?�ߞ>���� Y?Ra��&9�>���6:?'ƖNW�>w�m ��?lfH�%��>�p��?��1#x��>C�&g\] ?�o0���>�eP;�K?�^2|b��>=����?TȐ��>���g�W?.+�lX]�>�P ��>qh����>2�G�2��>�Y��>�>3�����>c^��3|>�]� ���>�h!��t>.�)A��>�b�M�>�W�'9��>����ߊ>3�/����>o�o�K��>Ra�1��?Sǻ=?>�>S*�]��?(*,�p��>\��.q?��x�J��>g�!UI�?Y8�8�!�>��!��c�>�+�++�>y/:� ?j��{�r>�8I�>B�)u��p>/H;'O��>.�poց>��)c�N�>—�b bw>�l��n�>RU4���>ͽ�0�>���=q�>^�UZQ|�>�H�r��w>=��N�R�>d�j?-ֆ>� �Je�><�,o@�t>>�a.W�>�|>$�n>�x���>옏%p�}>B���B�>V��IM�>Q/@Xe!�>s�� �DX>�v����>α�ѹ5b>�����>�f�Q��F>��^� ν>P��Aϳ\>��n���>qIFfm{a>�&�v0�>B�;~>����}�>.�,�z>7�$aI�>�VW�Ή>�E�!��?F�J��_�>T!5Q�?a��+wF�>5�w/�?�a�s+K�>�*O$ ��>�k�z9Ѝ>��ّ�{?ҋ�Yӎ>V��3�Q?2<�q5q>weH���>�{�u<�v>�m1��>_s�*0�h>u�2��(�>� F�8y%g�>X�ȉ}>p��g}J�>$�1�>Y?��`�>S�o��>;(x�K�?�B0P��>Kf@�7?��ú��>��F����>�nMq;��>l�p~j?B$����>� }^�?\$���~�>h�u,?%��?t��>m]�m��?��bU���>TH�հ�?~G;�m7�>S"���??&��X��>�hz�6?����А>:���{� ?P�#/�>���� ?�����J�>�lp��; ?�P��T�>툋Y�x?^�� 6�>*�%{r�?>�P�ӕ>/3M��� ?�Vt&)p�>y��-�?��!���>�|��;N?x� �q˒>�POV��?��2��>��mA�0?ֹ'>]�wU�?��ڢɄ�>�6��ڄ?�U����>���t�d?&0����>��4N�?��Ӊ^�>:P ��?��� c�>4C��?��bWrF�>GD�N,?Kd��&�>�)�y?��*���>F� �?���Mt�>�x���$?��ml��>C,jnC?;�� MX�> �D݉#?�K�|ڧ�>�`���?�IM�n�>b���e ?+ B�>t8�j�5 ?���W ��>E8 ?���h:��>���� ?*8����>��̖�l ?��j��х>��$�d ?�,��q�z>r�L��� ?��\g��w>߻� ?.�.�م�>+�X��� ?�ć�Y��>���`� ?���>w>���#�� ?�O.��t>ϳqe+� ?��\tt+}>}u�� ?n�3Sr�>���)J ?'�&�{��>��F ?��Į��v>��Y� ?�d�8�{>U$8lj� ?�{�=e��>�1�'�� ?��o��x>��>�?����sp>��M/�# ?�ӅT�>�X<� �?[�'�33r>�m�(��?'��Rt�b>�Q��?��*�Dk>6�q.�b?^o_��d>��d�O�?h�NmRr>p< �?ܧ[G^a>$v��z=?y��QX�h>���?���g@������>*��Oh�c>�L�%.U?�r���4z>����� ?I���P>$)v�t�?�:�<�#x>��(2$?�gc.Z�>�������>�آ�K̃>d��h�?����Kvx>�:����>��p�x�z>^)��N��>�\Wח�q> �(l�g�>Q�l�Mu>)��}���>)�B؛�>k��>>�?����L��>P��v�h?����؉>C�[�J�?�u#u��>�7RK�?��p2�V>>ԅb��>n�U�K>6ΓR���>3(7լ�7>2ܴ���>��_E>|�*R6�>ˢxrK�l>`���;�>z._oR)p>��Ϛ�>�f "��9P��>�� ђf>e�t��z�> h�R�P\>L�B���>7~�ձ�=>�/�6��>��� e>� �ok�>1�o��$s>>(M�˱�>���kXp>p��h�>�c(~�f>�h����>��H�jq>�p����>��J5ev>� N�Ar�>�:]�r>��I��>�է �u>߸㋭G�>ˇ��B7}>�� �d?�3��.�x>����?/����b>� �'�>kX>�\>��#+��>���KC7>ɀ�!>�>_�ܜ�^d>T!�� �?r1�I�F�i��r�>g����!D��=|f\��>���B�t]> �t���>v��T<�W��a����>�� b$>2�!N��>���u�tU��X�d�(�>--&k�e`�w�d����>�>�mdg>r��mA��>4$ߠ��p>V�F7~��>-mv��Sn>����Gi?�Z�;8�d>�(:���>��-Hr>�|>��?�xk CZq>��-�8?t�1' y>uN��<?��� �]>K� r7(�>��CJ<-�>00� ��?7ء4:�s>f �y��?�#��Ι�>>�6��?�#�A�M�>@ ����?3(�vˀr>��_5?䱠��y>�Pt�r� ?Em�!`�S>zagyft?�Jr)�y`>�փ���?�"e�>6��"A�?L��><>kDY��� ?��]2>�B��H���ʩ,�/K>�{� ��>9�j�<_I>�M3�Ζ꾮㷠6�L>��B�0_����I�I>�y�� ��?� r�l�|2������G{�U>�9�7}�U���Z� t��羺�꒿2>��\���QDH9��߃-�v>V!����l��p{4l��>*��m�e��p+m�E�>��'�'kR�,6�Nu��>��A�US>�M5/ w�>3l fYdi�F�4m*˾�M��"p�G��3n�>|��k4�c�?{sG��>@>�� �h��P,�-�>�{�� �c>�1����>�ry�� >�CH����>��b� f> %����>a�Y�D�l>}9aV�>h��"5h>0�ڱ*�>/���A�[>�����>�ujd�G>4��9��>`���M>>>�#�t�>�5�[c>/�]d��> �����_>�@�~�Q�>zs��MV>�Ʊt��>^�f<8>���]�>�`��k�Q>I-�n�>fbLB��P>�=D�~�>����x�^>�,=�*�>K)SZ��Q>��,��M�>� ��/h��q���b&G˾��R-Rr���[� �a�ɋ��p���Gc*�>0R��N[���$��>us��ml�ȫ����>�f�m�s�TcG��ᾙ�zv���K.��s��L�Qq����:*�渵q�p�z��۾ߖ�=��v�] �n�w��H�+�s�K�H���"�eb�\�j�F�w@��v�:O�7>p{�PU�>��ژn����U&���gU��b��K�F'^���Ҥ�:J2>7�Ų_�>&A㹄 �=#/�T:~>1����F>4@��)*�>���R@>���$E�>��%�ك$��\oՅ>�Oއ'(>x����p�>(:0mc=����C���\��Md���� �׾?��&߉7���\�H֜>D��)�*w�������" �@r�)چ �뾎���x��yg��l����γ��s��SrN����4{�Z+u����cd��r���$�����g(�Z�1J�����BY#k��h��������U�b�������!��lV�B�P��O���UZ�2(_0><%v�(���ӯf��mL>�.� �}�y��s�NQ>P.�����46�KU>:W�����b7h^>9 `Zp�����x��2>���B>�Ӿ�7�W�C3>6�z��=־�ը|6>��<��Ҿ"���~O�p�bw@��>�� D�N>$��r�Dپ�5��+I�=�yhа>�d��ߦW���[c��>��1�e>���jcw���*7;P>�߰U�>6�^���F���2S��>%E�_i`>�e&���>�^K�G>3O%:�Շ�3IO��`>m �;�]����?Wu@>\��#�t�������Y>�f0����X4\�)a>�ыH%t��S�Dz�A>��#.:�>|9�G�<^>{3F/þ����A�d>�#�͕��7_��@�b>�i������4��!PS>ۖ�ߨ�|*��>A>k�G=����/���c>���z:hľ춴��\8>.=�̾$�%4/]>JT "�������jnZ>� H�/�ɾG��'c>� ;�3SоsW�Z>LT���%ľ��t?�N>k/�|ak��F���#G>��sLV�����= \_>�����#оW[3�[@a>���#)�۾���2,G>��&��#���6Kc>�� C�㾖qJ�.*Y>��B�������w�c>�i Q龵��[ ˱.�Y޾M�m6O\>]nj����dIeI��`>���L6��� V��o`>6��m|���X��AE�]>H��0���*�dz�dc>oC�g��|U-$_b>?����J�!���\Y>#ԛb�Ծ#o��cI>U���!¾�,Yg�US>�˯C/Lо` �$n_>�aZ�8oݾ r����D>������a��r�=>\p�p�����2j@iJ>B�;���ƾ�=�pab>�����L�\�Ӓ[>H1 ?�U������lH>�S�DǾ��i�@Z>I�9'�۾8x@�V>��BC���`Khh�+`>�W�k>��+���DJ>�2��5�����m�L>N�%�_C�p���+S���V���pU!:�p�j�Y�@���L- eB]Wɒ��>y,>p��bc:�������u��v��I��� s��xb�E!X�X ���x;� 1�B ��}? %K>:�j�����a!�J>,�>��8��m _ i�R>5���}����g"]V����Ģ���bR�n��C�q���ɰݳ�w��j"u��������h��s�F��]�AO�x���S�H���d��l%x�D(�F��%`Mp�Dz� &��x�,�n�b�p�8e�ܾ��mIVk��x~,��@A?=t���.1%��D��zv��'�Z��9�V�Dy�P��X���-,�v�=�L����0��t�LQd�4\���r$ �W����Ҿ�H3��L�g�/T�ľ��}��[� Ah�#�Ծ��3(>�\n�s�>�S�N�;>�_�\�>��px��L>�],�>���yF�>�fTyͧ>!8�D�U>�O뽨f�>s,�I�\>��T�1�?���J c>����>8@ �6�[> ���R�?2�q��a>�`�D'b? ۡ'�a>'s�oq��>e�ݖ�M>X�-�Y�>&1�ݘ�\>F_f��?�<�Op�a>�)�=�??�4!���!�j���??���*�@>� �!j:?_��!:X�?����- ?g[$�{8e�k $M?a�VAD0l��e���?b���Dg�բr����>w]�L�Ua���&O:?V�& H��7��?f�����G>ib�!9 ?!3 l2>G� � ?���Y°N�6��� ?��Xm�Ψ����?�{K �i�ȇ�:1C ?�;�'�a�%v�U�k ?K�~��A�hHu�� ?$FzmE�`>���Gr�> �2EnIW>K���õ�>��\�P>�?05?��2�"[_>�&�s?�o���0`>�+�2f�?ze�fh,\>���{�4�>�h���P>8����b�>JE�n�H>�T�V���>�p6>��h�q�>� ��o�@>h���>?����Z>��E�>�l:�C>, ���`�>�.� �R>zh�=�Y�>NN]y�.������?D�8�"�M>8�W��?�Ȟ� �8>c���?]�����d�p�W�n%?vc�iz�n�Ib?^��?��v�Oh��d�q.��>I�!0i�*��v���>��9RwS�����@�>Wō��S����̥�>:���W�j�����*�>gp�Fr�J�2{ ��>�-�4j�I�6��G��>���Z�g�%/�˗E�>�ո��Z�?M��#��>���{�tr�rjő�>�ɟn�at������>�i�`c�s�\�;I��>L;�n�Os��/��O��>��3�zEr����>la�4�Zr���P���>��� Cp����?Қ~�8�p����m?Z�:Nq�'���� �>�� Ӛ0r� ����J�>J�-�^q�b��x�>L�V5TAi��n�fB@�>�}���o���%���?Y����l���V���>�{��s�t��m0XK�>%'�m2�t��٬�?��>�� T�t�Ϝ��i��>����(s������>;�N��c���%-BY�>#���W�na��<�>Q���\j�'L�&��>zv�G�s�-5G;��>�H[�e�h��mf�>����Y������<�>�9\i��s�$�x�.�>=����l�j� !����Lm��n}�m��>\ұ�s�AiC��>!�Zp� a� � �F��>o��_eIm���G9Ē�>�Dd��q��^�q0��>$S]���t�a���>�w�F�r�:��M�>��0YГa���mR�>C�l0�U�Iĉ,��>���"m���n� ��>�fT�nq�"G P5�>}�W�t��m��k��>��UMe�@�ٻ��>� ��Fou�)��l�.�>�v�K5�9�fE%;d�~>�bZ]�(Y�̪&j�Z�>���7�W�Բ�����>�Ո[o�d���� �>=r� s�s���?��>%7��w�7��Q�%�>j1���q�d1���f�>�Z8ϒV�~q�|A���h\�%)c��� y ܢ�ǡs2�C> yn�}���8��E�@E>B�3oD���wo��o(>��C���l';}dZ����4��>�4-P�]�G��S��>�@[ �UY>�,㾄�b�>�:>�9W�԰�f��wF��^��P�>���ޕ c>!r�E�w��&�q�G�N��_�J�>��@{r j�@��v��>R��c�K����Tv�>N���aQa���Dڱ�>ͯƱL�6K� F�>*e(�viT�\g���>�����S���� �>n^��C�Y� ��LL�>kg��P�� g�H�>�ٟ�IO> ��;���>Z��rX�3��A���>xf@���J>vz�w�?�+Dh>��jf�?�`_'$�@�ۋLy\B�>��?B�f`>e����>"X�:��d>7=��І�>�3����b>�2*� �>[�}-�F>e16��>���0>����f�>ӄ�V�!0����%��ƾ��ţz��es����h0I�h �.�X�ݩ���S9�.>�>N�I���.[T��M>T:'��8Ǿ]l{�N>o�� {��>Z߻��`>��`�/�>�6C�,f>�gh���>����1d> f>���>([��L_>��K��e�>V���+f>��d�U*�>�� ܴ`>�bAc���E�˃d>����P�>cy/z`+U>{O�i��>��<��d>J��y���z����]>�nj��޾N��X>��š�Ǿ0 �'�n9�w:�9>�pq�?�4�Haγn�㾡�C��.>�V�I ��ݣ�~@�yl���P߾C�<�qG�����)�ؾP�.��#0��_=�73��^:n;;���D!;�AU�g�Q��֍�9��d����K����߾q�����+��ɟ�������A��=o�c�Ͼu�=��U��+l4׍꾇1���9:>�\6c`P�3���(�>o�8�%�ɳ/��[�9���9��|��A�U���KCk�q�j�Q����{Y��3%��<��*r�4��uU?[�H>�K�CF�U�YN��R>�V�E-쾏�B��d>��c��Cپ w��b>�;�t��bLVY>^K��i�>�哧[}_>w��F�p�"۵=�)d>�2ٷ�c���7;b>��A�I�po�0�3�iUG<�w�pX�V�9��v720z�>� ��;�nԠ�Q��1��E>�]bБj��h�t�+J����Ɉ�7� ���J�Yj�+ѾBJKB?ZF�:B~=��>=��:k9>NB��w}�>���iw0>��YHk��>������=�}!X~�侗v�1�S�� �Q��\>b@aK���A�y)g>0�T���~��mQv>}[��A�y�� �K��P�$�*�,�W�Q;s>/4����ڀ��u�V>ppu4f��D}�0)H>��X�� ԩ&if��O�w�x�����RY�+��Ô��v��UbY�=���8�� ��o]�c�� ����9^���X��A�l ����:��HE��p�G�% ��@�z9�a>w�r���z�`G“J��ўf���u�cXQ��s�� ������&>pP&����w�r�^�]>6牐^+�mb>Ȯ�!����Z��[>y���H�����ɩ`>���:�Q���R���5��� ��(��2�ó�`>ʓ� K|���=�Ξ�b>�2 b�0���$��=} ԧ����q����P>2ë�ì�Z� �&iY>~z� i'��{ |;�pU>�ʅ�d8��G�~ A�[>ʞ� ����ymA��~�%8��/09#P���!`����L�YOe��Z00q��*Q�uO�b�b{����wS�k�\��7����_@P-�b�o^q*����,}(s[��A����Pn0y�e����9&b���D�3��CO̓���� �T �X�0�D�f��W�Y!SO�My����޾�I��V�W�:Ս,G��6e���r>��c-R ƾ�C�&U�I�1� �^Eվ�gl�+,�h�e!䱾�*�:�A��P���Ⱦ�a1r�V7����l(྾��} �mS���h� ߾�y�ݢlb��x�e���|m���1i���1����A�c�(r�Sg/������!��p^s���0L�f�:���t�;T� �� *S�r�/~���)���z_�o�hCc�6"�������h��E�%`��i���o�/��l�8��N-f��p�� ϫū�������k�U���^��o�JR}�b����Zb�V�˞Z Z��|�9��Q'���`i�7 �����L��̹�q�t�=��������s�E>�ޠu? �=�h�j�=� �B����o�İ�=>9���b�g�#6>C� �h����)�&�S�0�ЙK����T��H��z� �c��u%h��������|P#�)��Zd/� ���3��6>̇��7�sŨ2�M>�DA�MX��h2�k�A���MP�J�JxՁ�3W��Q��bG�,�v��o��hݷ�� ��wW��[���>)�� �Q��X��'�y �r�~�3�s�8���A� �� R�P���X�� ���ss$�C����*Z ����]�=�>?K~ ��eR�+q��bMm5��x��-\r���Y���a�8P�j�* �O+�����x�. > ��Z �K/<y.T�a|Ӿ�` �3@�o1j������ �+_a�Rx��R͋H� �I�! K�^��ԝw�S�3��^G�� �b� �� d�sd���(�5� �,� mp��J�׽��p�X �s�/@.:V�?yÖ�}�*v�fl� �l{.I�*v�Mؾ����{���Ih� �5|���{�Zf���P����VK��a��y�u�{�H��w�|���\�1�k��x��¾F4��i��{=z���P�mJ��� �I9�� f�l��C;!��v�ӷ2�����k�^�z�f�g.����k\{��a-������N~�,�t��T S���`��8t��x��^��1c6�H~�֕or���wr훅�<ܸa���d�}w��D�����'��y~��! $����9��.���i�}�H�i�9d$����:���! �%�����I]Η�'Yp�SA���U�e'�����'�ǀ�EC������#䃂�v�F�����D�Qv�f�d^�����w�v����`8�6V�wHdp����N���SR�|�q��n�f^��=A��Vy�{0��ժ�{�������w��������˼�����r��'E4�r�nb�uC��E�j�Iu���|�/#������{��O*}��Ƨ��.���� ��� �����G��Հ���� ��.��P��� �l�� �P�e������ H2�]�S��q� @�A�X��u��a!k�4�b �+��+>e���n�3�|��-/m���P����aj��߾|�WlD��� �i )(�x��B��Q�L��[��s��̩�H�Еy��v�r�c���6�Cƞx���]ۃM �QŁ�Eu��m�����ؚ��o��K�Ӗ��S�-��g����6�I����A�[���E���:�R�e�I�tAEbhӾ�%�O�Z-�9��e~"����� �Q�u:2��J۾�7�)� A����oǾ@�&�n�r��c^�6�`͓�p��<���<��(*x����������X|}�m�w1J��JB��lj��H����_�~�f���.���9�g/~�u���������u��s�L$�0���������+��^$�=2�Z�w�Z[:� ������~q�q��ڄU���n���q�9���)������}��?��f{�� �j���=^�N3��u����_u����_����{,uu%_�-۝ ��<�S���P�t��b׾1}c�WG\�T� t���O99g��Z�N����f��Lw�V������[Ί�Go��찔Μ��(�/A�|��A�V��>��#�|�?BnɁ��s߯�م�ǀ�:Ѯ ����0����<0� ��O�醾��D� �0'�R(z���.��'���eR���Dik���^Է�1H{��&���Od�`|�0x��˓�L�`?•a������输��3?�r�8�r��i����t�zx�4�\�����`��d����Ae�� ������Ԃ�T3+_d���s��=؈��{�m �e���$��(+1N�u�oz'��e��$�Yc�FoP�{,��S��1� �H�Xť���Z6��q]�=֎�~������ ���8��7��ݝ�2�� ����o%oe�S���d�8p����y}1S��X~�8����>��� �����)��!��x�C� ���>���5m�-���:�w����4����g:ں̄����X 1a�����ǔ��S#�!��(�Ox7����R����������^>�O�x^݋��dz�g�����{������ót�j�����hdq����O� �� ��HN����7���������e��_���ȓP)���|+��ӄ�a�XZ� ��L}V�&��Q!ͧ��|#���̊�dr#<����T�����Z�C��[Q�������ЪC�p�t1�䎾�WG��0�3r����p�v��Y ������2��@ ��R6 ��������u�*��:4G�4���5��8�FD���ߍd]i]�~���[4��6(U��������n���6���B�3Z�>��X�����0*�����vd ��#�X��ʚ0C�J�������^9��H���>4��P2�V#���㓷���e/�I��w̲Ń�6�<�/���ƈM�ق�z}����r���怈���� ~���!p�oB���L�k�e���������Q�}���(g��1}�U��s��6/�셾E��+j�����Y"����`�*��Zyw��yO����'�T�=��3��dY|��l����C�Cт�!��-�H$���{a���ͥnZ��7� �x����ۘ5&��Ivm��E"�J;p�����P�|�&!�Ru��.��o5�Q�h��CT�m��?�ʉ˩"�����AE��v�.$�h�b�p*��u5����#�9�D����m %e%��5_��(���}�(� ��֠C�.��89��v$$�i��iX���fw����2�Z������n���*�>/K���y�᧣�����7������cV���4����UF����M�u6����͇� ���'��F��V��Kǹ��Bd�>�U?�V��ى���������������N������3�K�|����:~ej��;�C X��q9Yb��Ƞ.D㎾�'�P��'���v}�� � ��t�YH�H���������&Rօ���֔;t��t�m�$����;V�>���~�S $���|�����'�Iz�� p����;8�0���'�|6���WLU���ɼ�N��A�;=����ľ뒾���QI��O2ڑ����������M)xƓ�A��]0�%�U�� ���t�G��a?ᔾ܊A�Z��_��f����A�P"�m��D7��c��(�"�q����� O�����O��t�|\�Aڔ��ˤ�o��9����KPj{�! í}���ߣ�i�D�*0�Q8ڒ� ��B�3�<�4�����q��BG �2ޥ�s���B�ϻ� �*=�^�����; �����`��ձ�� ���y�����:�G*݄� x�b֨��Pʪ�y�t�m�����*��K��2�v����T|�~��Ϡ��d�����z?����$�������V ��{��������ԏh��a4]Ɣ��g�3f��]N��放ѣ|���L���ӕ��oK���&Ϯ,2I��$A��!=�&@��9���?Ȟ�[���,�,��9&c�i����p䣖���N� ���w�\be�����?*�4�W�Η���V�����>�������<9�t�l�� к��DB��������3���L9X]�`��x A��1�̯p����>������(X��y��S���22j��� ���(��7���Q�4�� �1���#���9�פ�c��!�p�V������> .7/ ��E�e�J��������Z�d#ȣ��̢�� ��Y{ :��d�2|a��ڊ0�͞��&.k�)�B���������I�f���=���+�V��R��ʡ�/���"�rCOڮߡ� �&������ϖ�m�1߆p�*���8g����}~�� _���������xT�2P��1>U��e3�r���� �T�� �%�m嗾{`;2��‰!g���T�tk�����B8��Yrb�h��� q�D����f�E����z�NȦ����^4�m�҂��#ե�c��"at6����:�,����ڈ ���n���G5o9����y���1��d����mF�+ �����ͫ��-G���P�`&�-�����h�����T��Δ��0$<� ��n���䖾D��n�?��+δ�t���� ��8�T���~���S&5?� �� ��q A'KI�v/�`^����#\k ��&�3Ǔ������� �o��ꕔ�as�A� �I8�97֐�� �V��a�#������1�}�4 �v╾N惁�:������Ɨ���fk��1y���m����U��L ��������h�?��w�3��xҙ�+UG���+�"�S��xt��~��� "m��z�b#���/;71��sBOs3���ŭ���f)��`��(s�r��x@�p��-,#�n��m66X������XC���) ���,��rV���z�[���)����[�ԧ��\�����@e��V�����H����S���� �h8�����by[��^�4���� �{&�����ĨH��h�e�H������ �����e7��Є��{y�8��MC���>R�P����������&�<�X�~}z�����:P����P�<���*�L�4� 7�Ƥ��B��䃩��i�:]������~����t�F��jZ�@$��W����菉��C�F��̱��՟��<���c�74T}�B* [�Y�s���?Wp��V�F? =���I����y����ڰ]4 ��N4ɚ�טL��������W���PWDY}����t=䘾�I���� �4���K����Wn����hD�\3`����&��� ���t��c��%�dL( �����0���sUۈ��g����T�’���7�n��ʄZ�wU��e�����y���� �zYZk����S�S���n��?�����,G ��\�>e��-�堰� ��!�SN���e؉�O �N��{Bm�����T5�g=��0?���K��  �P��XrK��W�#�� ���tׂ��ݣ� v5�8q`�薾k44ʴ �!Y\����\� �' �~�#��'��z[�5& ��Y��]C��>��A����c�[����@f+�yY�߿��MȊmX���G�j���ɑ���Z�2PD���P�/�� �&������۵���� W�*>���H8�!��ɵ��]k���0N����mN�ʗ��0Ja> ��m��$���xW�����}^?F�G����6�K���@ m� ��T������,�#����4�Nm��z�`�m������0л� ��L'�����*�!��|�UԒ狾�5��p<���*y�h��X��a��6ե,:��¸�Kt��. ��M����-u� ��JFI�Җ�z�˙:H ���׷��G�ʵ� ��b�ӕ˗�_E33 �)`��x����,�n ��z���=���A�Z��E�3�엾�0 �a�<�H��Y���lb����Q�"i���ga���2�I^��wÑm�7�~�6���?7��f�������u�j8��0}��W�r�W�~�;gQ�x�~~��_Lm��}�T�߃�������{��C(}���ʓ�P�u��46|sW�&8R� r�=����J�s`僾��#�3?�W+�ŝiu�'�s3[�径<[~! w��Xf<:꾛;��dő���u���nV�y�z�!����꾑4� ����c<���-�����Ɂ(���� P3cJw���\��,�����.d)������� 2���j��t⍾�,|���e�\�k�3/���2ݾ2eC�!:s���q� �jH��a��t*N1�����9.���7%��i�c�m;vu��*��G�$R �|���2: ���g�aDQԍ���oog��j(_y�K��1��Q���� Z��|���[�-�{��2,7�~��SI(�� �u�wP���,a�~�:���a����/�������K��sf��9+��뾛�o�r��C:��ᾶܑ��s��^tU�)�?��O����/��i�w��Ű��>9��r����xIЇ���������H(a6������Ĥ����K��xc���FV�����@�]ސ�=i(X�����ؼkD�����X&����V�|7�q��ܒ'i߾�y�� x���:g:�徯�B�:t�"�����]PY{���̮�Հ����v�xy�h|�<�k�q�_����$��=���8� Z����yX�-��� ��u�V+�e�@�8�C]2 z?#����.������[� ]�y�X������{d��� X��W�I���n������]���U‡m5��t������h�1)/������O� ��d�5� ��-4�PA"���Pr������(4=N��ܕ/L���i!�=͐�42r�u��@��Lْ��{��;��`ݒ��Z�~���Y4�줔�"U�bq�4O�f���ȭ ���9�O���m��;�[�����+⏾��(o{���.,W�F鎾�u��L����#�����F"�����Q��N��|�=*����a�������u��U.���s�f����m+u�r{��w4Q�r����쪞��\��)���I�`[H��Z@ �鍑��=��(��ɣ{߽萾j�������k�hr�^�p��W u�]x� �K(�������ht��i$ �"辜M�B��x�~tq �����"n}�x�GC�p�q��{�i��=s&�eЂ�c�y���j��<�i�g���B�wF�繋� ���|B/����,��ѻ����R�����%��I��΃Z�O�����d'q��O�9�|��}F�w$��$��W�y���:p��3(n2y��,q#�`��V��g������x�����Pe�o�  �����E��l ���!C�ؖ�0aC�! ��z� "����^Pc���/k�u����ҷ,���׋�넾 e������d�k�۔�k�u�t���؟G��� 0*�n�/S�,{���஄V���P*���k��vk���}wN�c���څ��� �}�G���g�vB��n��{�) �������KaRw$���p����k���<)�� �w������}֑�6'ۗ_����U��}�������$p���û�j��ˇh�쟒����.��W��x��.��z��XLBYђ���]� ��H�V�^���[L33���7����-Ťmp��v������� ����L�D���I������jI?X��� N�� � ��٥ m ��G��q�$��D�?I���9X���.h��1��MO� >l��Ń�x��*ZV����.��}��%�q�b��2 ��r�K�"� ��%=;윾WfU�� ����47A��C���f;��Ad���H��0q �N�sҕ�:5��SJ�)g�{_��M��-�����T{�����(��V �Lۤ�C��-�=%���MEO�����ʍ�� u��@����Rf� ��Ƕ���L��ŵ��5�.g��kpWi�����Ø� � G���|$����'��@>>) �BW!�9 `>�/�#��������c>��ϋ̬�����@F�u>56�.������ى��n>����F�聧`x>苪������S��!s>�h�9�-侔/�Z�x>���j���8)'���x>�X��������r��5d B��3W)z��`�����Ž�}��-_q>� ~ce�92�\�Xy�O���~�f>�cz�v�an��>|D��@f��~�� ��>N�^f�\��:�>�!�V�{�� .(%��>�`ս^�|��o|h�.�>�����{�B� X:�>�ޠ�l]p��t ʁV�>*J�L���U��>z�>�����Y��O%�8Ő>�&h�trWm`�>�I��A}��1ta�m> �w���s�`ʞ-;���m_.5=�>#4�?��t��^x>�����A侙Oғ�*G�����P�;�5ak�p���]B���un��p�B(2�輾�8Ϡ�m�� ��שּ>yj��/b��j��ʖ>K���X���-N]"�>���r}z���3��|�>~,$�$:�����b֭>($�x�pt������§>�"/�tp�쓮h��>\Nf0��>o��,Ͼz�z/"g���vZ���\!I�~�neM�`�w�����M>���;ξ�I���)q>��]��)׾�L�7; V>������ʾ�h�p����y2�-��>gw5�����r��>����lہ�����Ϩ>m�c�/�~�%�~y�>%; F��x�ġ�z�>\M��,�������>�]�j�_��s���>�cY �V����/��>F�W�%u�K���Zh�����(�p�xG���/�>:��wX:~����� '�>Ǖ�P+~���C_�>���cb��xץ��>y��_�|��E����>�2���t��,�ny�/�>��$�r�Pqɐ���XX��}�U�=j�&����ƣ.��~�x�ߨ� �>x��cW+������>\��_�Bw>�A�'�qѾ ���{>Hh�OP�׾�\Q�"�>n_��̒־�D����>��`"T�侶!Hm�>���~w��ϸV̱��>��ʼ̊뾹��)� �>b�Z��yQ c2c>� WQ�Z־h��|V]�>�l�a�:� \�*�q�>f����]�Ii[�V\x>/��j��z)1)�>0��|�+��)nu�̱�>�Z:_����,E��W��><�y-����X�&׎>�Nh���J���>R!� ��辣x-��>p% �j�yg��^͘>�F�p徹`רxә>����������+�5�>S�DI�(辢����Ӎ>��e�;ھ��6(Ј�>����r�� �� �k>�v�^����j���OH����`���[��"r>�;fE+Ǿ�����i�ސ��U���;?����ڕ��>\.@l5r�����|��>�c�=��x��+yT�j�>�8C��)s���݀g�>1�J]Sae�Rb�D�Ě>���B�y��2:n�>���lA|�ڼ�%da�>_�@��x����gT*�>��0Z M�P�q<� �>�Ool�ϸ���^�>�E��D6Z��̙�}�>� P61s�Q�mY%v>�K�;��y���� p�>+$�7v>ҙB��ƾ3"�%�>݋�,��޾k@V/!��>��#�e�־��@�`����$﬎���e"r�5��/�.�>ԕ��3[>0(�Y����]t{��m���m>~��>�9% a�#� mo�>�u��1�p�ۆ�+��>����e�R�h�H�>!X�'Z���?fא>G�lb=%f�7 Sm�>�c!� l�D��n?�>he��MO���(u��I�>�Q}>�`Y�����8�>��Z>���n���H<@ ��a>�~��ਾU�̳�h�D�g�E�>2:���H`�36Z�X��>�Ur(aU�ǘ�l���>Uy�o�M�?�}~���>�d:\��V���bf��>���k��d�~Ѕ�'�>j�{H:�X�6/P�d~>�����_���Hʢ��>+� ���R����� �>9���zH�?L��1�>A��E�mS>����F��� kD)�@� �tM�c�w,���4�>��'��Eþ>����(�>^V�܍Ͼ��w��>�+���A۾S��;#��>�xDJ�̾��;dw>rj��{ﶾ�@d�{>����%�� #��`W�>Z��׾�ө&�Ң>®�=,���cʋ��>��?�phپF�S�5�>��'�m�߾W��|3�>�i�Zd���}@�>%M��f����F�y�>���]�#�c+N���>M�L]^?�\[�5��>�A� �`�b���> ��V�㾬��3�ͦ>p��+�侐��i�ȡ>4�Q�ܾ #M�ݒ>�tã� ξ2۠6N��>����پ#1����>N�_J!��Q��$��>3 �gо �ZK�H�>��F&��ξ)ޖ@B�>*��q�վ�*�AB�%P�Ұ�V>�P(�Ds>^"g�屾�%z���j>+�ù���8{`�2 H�I���+$v>E�U_9�Lx���p>�����H���C�k�>� 8 ��K����C9�>�l���>�*Gc���s>�"Ҩ�J���s�S�>:N]���T�_9 N���O3�T� ׁqh>sx?���> ��0Nu����vž�>�� ��id����2t{p">�2�BFgr�U�ڞ��>���������<���ZV> �2p���S��ɒ>-���3; ��O��>a�R>5��Z��A�U>n��O��έa,� 1��u����d>�i�[�/�k���!Z>�(˳�&�9 �t:\>�t^'=�to�m=r>�gk�sB>[�^V]����F���C>Зa����n�+�u�b>��l� ���#zH=,��* �^>P�+� �d�g�( >�WK^FBe��C�ٳ#�._���9V>��a��E>�i��I��Y^%��m>�GLp��������5��}���M+>^��a`�L>$�c�̇��yO�����$`� L0��w���q>���X��T֖g[>��0�ĕ�[_;(��g>ln:�w7���wY�oR>������x!Ⱦ��?����A���@������N��@>�]���ƒ>�VaA>�̾>DL)_�>5R"��EѾd���]L�>� (g�뼾�ێykM�>0Ju��þ\�z,�s�>�L��ӾԄ�0]��>�3�V�C׾T�o�>k��6�ɾ+�ÈN}>�<Be��� �Sy[�q>�%ԦƑ���i��u>�eDaa���ʭ�ݎ�>W����ѾfE5c�>��>���ܾ��I�s�>V��'�޾ԫ]����>$)l ����0]k�>���|p��)�jJ`�>������Ѿ�"_�N�>� )��u۾B�и楡>b�9���ھEh�f�>i���5�˾ؐ�g�$�>�.ugо-6� �=�>�iԩ��Ǿq�d9<�=����JD<�?w�� �W>x~,�gm����~��wP>�z->G��?�W]��>��G�a���A-����>5��(�Ҹ��r���}>>�fM�����?rA> Y![�|�'r��/;p>�3���a��*��ӕ_>>z���7�� b���y䢾kJ�-}�>�4:ЩR\��Vb�9'>%틘�`���tۢ�>䲳TS� NC��G>Aİ�{2��K��tϻa>a=n�e��q|�U��>�)��}�����E��>C\�Yi���6^�^>��d��藾�)#k� `>x>]���� �� %�U>~�ޓT���q�ܔY&>��r"��f��m>�N��=s�o�_H���dyȽep��2(���ԃ�B1>k���"�e��E����>�����Ǿ�f���1�>,���ʻ�Et�M�b>�� �����Gv�>U�c���/_,���~>6�hu�!��0}S��w>7������;�� *>����;H����@��o>���:�$�����p���>AK��4�����&�i>��@� ��K--EY{>���KX����}���T>rA�Ȱ��*�J eo>���&��~�� ��v>��㫰������V>���zBO����%4;�Y>��ʁ�J�������5J>�:<~���w&-�FR>��"����gr/M>)J+�0���\�e��3> ��>*d��c"4�n>d�=wX�E��5� �!>Zͭ=�H�(��k>�W���ʣ�u��o�ta>9����ї�u�8�ϓ>1�h�b�̾����p��>��$X�(��!�^�$��>����F����.EEz�>�*}���ƾ}�qw�u> ^� 8���l�)kS>��Er�/��u���7>{)� �\f�/����aK>�ye����ݾ>$dg>�3T�:e��)�1X\>�oU�9���K�c&��{>ݺ:�v����@�t>�}��׬�ޡ �'F>�=;!]{���F���[>ua�P������;Q07>�'���f�����ձW>�^�������N ԑZ>�,�ۑ�7\j> ��fh���_�^���b>��� ph���#�%>7�k�Y��L��J}I>\�X-����t�)��y@>![F�I{��âY��'>4V����d�},�� �G��g�"�y>��� +�{�� a�l�>���G�D�F5�R�w>�i�E�?�fU��q+t>,����x�u65��?e>J����`>z8�Ь]�����-�m>XFP���d� ����fo>I�hT�R�>����U>p��·� ���S���f`5�>V�H�>^l��@'?�<@�w�>��k��*?��VJ�Η>�z���>�����>�Ja`f��>d���h�>Y�;�{��>�ѵvx�>IA�����>�,mbFg�>�-Rh`�?��e]��>�_�?���?uғ>�]du}�>����7��>���5���>�v� ��>Ϩ6�� ?4�vt��>)Ы�o ?�ͻ��)�>*St2iU?���`3�>$[�p��?�ѡ���>�l�n��>��f'=͛>��v��K?��i9y�>�n��?̯nW���> 4��t?/��?J��> gx�Fx?Ѷ�>��ȵ'�?'00N-/�>���h�?yb><7��>r��^�? ֐��Ş>�� �b!?�\CC�>{��&�H?�|*H[�>�9=��?�ߦ�M�>_ +��2?�w&��@�>of�m� ?aS�E,��>�f' h?�,A-k�>��Q $�>� �B��|>��a K\�>��V�T>� ����>��b�ou>=���E%�>���F�>�K � ?�gk��_�>II�j�?���p>F��B ?��^ �P>��„��?1���1�v>)�^���>�+xU.Yj>ug�٬K�>��GI�k�jVfo�>M��BCL+>rj !�>/�Ci�q��~9��Ҿ����Aj�������ݾ�{�gY?d>%�*�q��� tv`>rEqt�����ʵ�U>63����Ӿ��R٘c�ԟ#��ྡྷ����S>�I����>vXT��jb>hdH�?U�P�� ���.m�I ?B��ݸ#m�:MI�N?<��5��X��m��ր�> #�g�V��saTǘ>ڈ�#Nq7>������><*y�f�U>��醟���S]�1X[�]M�/%*]c�F�J���,޾ o27D>q��Kz���?�%�3a�� �V7� �k� C_v]>ܺ�����s�5ha�� 9�����m<8��x��oڤ ��Nu"��$>�x� �b�� wA��L��?��R�!,< u��hY#J�`�L�9�o�g؛�(��E{M��C����T��)�K��h���o�)-}��s�1�jt��,��_���q��y��W��Y���:<�v��th������i�``��C�L@� /�Qd��������XW��>��]�,��!��v ;��(e�,hh���_�D��К����P��[��6�o���a��К���T6�i���e�� I��9����2�V!=������(h��y�'8�э���D�{K��u��C�����ds������玾��ӕ� �\„��y��]�I�:3��a����o�=��ҎUb� ��-�v��X��г�v���_[�S7 �/�J3X+�����~^ ���"~m��z �+� ���GQ:��P���{��%DZ���e��y�@ ����z��N�Y���Ɣ���:a����],ƝI8|����g�9�Q�XNP��{%��L�� x��]���oڣI���YGn{��O�.6����$�!H���7���^��n��rp��Y }�yO���þ�c����7jc��r�2�� dL{�G�L��v�U>�g�R#.!�V1N�x�~���)�SD�>#y����x��[��>@/u-=�@{?�M��K}�3X߉>�G.�O��Q��_�x�T��3�>1a;�>�g�g�Kᾔ�xg#"O>��g�����Qq�i��>���5�Wվ�Kd.ou5�x@���'X>P����>��"�%Sɾk�� �"�>)��T��Ǿgz�~{~>u3fD)���nY��s>�$t3d��Ng�R�D>_B�[�w��b��A ���X�Eg(>�'O��D��3�%�Iv>H�xf�6X��?΀��>z��|&���G�IW>njh��6��[A�Q+h>Ә��Y�@�3� �&fr>$�8t+�/0Y!�^>q���$���� W>I����S�=f���>���K��k�NY�N>'I�;�D�&�?%� w>��� j�P��C >u���]V��ढ़3ӈ>���*��+�gp[>���� �4�Q�m��e>���I��z�N� $>,=�[d� ��pԗ>�uv&m�)t�� �>�S D{��}�bm��z��>5�\(��2�[�u{�Pe>W����-�3L[Ÿ�b>��#��L�nVY����>�N�Pr"�৘�)�T>�Ի��cN�#7#�ɒ�>Ut� |��K*5��YT>���� Q���DJ܄>Xêug�$���w�V�]>���<7���h/O��>�fv�x����<��Ī�>�d[�T핾Jƍ�j�> IE=-������r���>;D�y�Ղ���t�ct�> WU1�e�~�\x�s�>VU���� ��A&��F>�oQ��8��[u�2�r>��IT{M���@�>�y�*�#T�HK�.?��>3�{�X5�h�D�}r>��.��T�-f߹G�>[ Nֽ��=j�~-:>�� �3�m��:����>�8�!0m��M�?�>�qf�P�dx�u^�>�@+�MG>i 7>JU�� �F,Yp�e>�R�9���N[pE�j>��/b��3��Ɋ�>/����j��q��¢<�>����K���'�o�>V� =�v�:��б>��:c-Q->� r� �2>�r��>��bn>�t��>���7�CH�JK�޳����>��v/�H� �"��|�>��� �K1>j<��־e>��73u�876�-�>2��G$x�E��U�2�>��,j5F������>sB#2s����0�>���P? ����3��>��o����챔�>p�i��b��(8���>���s��XkF �>3�06X��?Ï���>FZŪ������rn��>6��="�~��g����>[6�4B�c��w5Yc!�>g���n��b��^��>F1�o/l��k���A�>@ O/y�>c\��[�>'{��z�C>�pAxT�h��@S�"�;>�k!޻c� ����{!>��&�ӠL��� S�H>��3R�o�*��׽N>c� ߜsB��(���N>�Mykh� )�#rMM>"�q�wz>�7-��T>Kبo�l����@�,T>���~xx�e�!�Y��tS"��>�n�4�o�Z\�'��>n��Z�\>F�C��v�O��[��)>�X_���U�0 ��ɪY>U7-���>U몧ӕW>M3�4������@]�`>�k�9�mR�~ �2�Z>���IQ��>Ŋ�A��} ��h6�> ��Y�g>���]��>X]�` ;��@H�Q�>x��g>k�����u�2���\>�&a�>������C�[>]z`�X�Z��x�`>��ިnb�>Y5 M_}�)�"�H�>\JF�)|�V���CG�>J�@� ��#��L���>��C��u��<׆�>)�-�q���ă���>�),���l�q���b�>��_� �� ��Z��|��lH�>�0�ܛi>��:c�>��'G��e>?W�3�ˬ>Ŀ�,�h>۫i�����4��Cl>��e�j�>���/�`>���w������i>_�d]�����}��,c> �q����j�P�Pp>PG��#2>kC�(>h>?Lb�6L��L���W>�ZD_ؠ�>;��ؗ�M>n��JC�>O��"Lh>F�UV>���P53�,l>((�=�v����� _���RǛ�>N5����S���㔛#�>j,�vwk>�����>k&���b>��h���>=�/��g>ƶ�#���b?t]6m>�T��x}�>>��5�X>���l����L���.�<> �,�Q x�� [|s�f>��K���T��K#g>iI�W���?j=S��G>9J~��>���lB&I�����B��>��ѓ�M���\|��>��B`g�t�C�lU�>T��}e>}D��j-?�GT\��}>�N'�G?���>�� �3 ?e�"WΌ>�)(��!?ѝ�7�ɪ>^7�PYN%?���B:��>��@6�� ?����>w���?Q��{P�>��z ?-�+���>V�+�.?6������>�&i7��?Y� I~��>�Ǔ�b%?k��Zٰ>ܬ�W?x�}!o�>W �����>0p��u�>AW�!�~�>��B�� �>j̍�Lu�>�a�*��>�s�-C]�>�%,�>�P�����>v�F!�n�>,����>s=��D��>��H����>q��0vˈ>���Fq��>�U�ki�>V��3` �>��T�В>Ao$���>��4#Tx�>VP���>ê|E�>�qe$���>ƅ����>v�·o�>T�8� ��>����S9�>L�����>�����> JE��r>|%��#�>\�/C��>%ԷwU��>ٳ�r�ד>^ǤVу�>h� ���>��:��a�>]f^���>�g�����>�s�sF�>ߚ!@z��>A�i�x>!u��>5Io�`Ɋ>��g���>e`ʕ��>��A���>��kH�>�D��X�>ګ�"�|>����> �xoޛ>�V���5�>��Ƀ% �>|��]��>@��>���>�����>ZS*�>M�����>��J��>���� ��>>c?��>b�^� o�>�B?Bt�?����>;VE 8�>�"�/�>\���>j��r��>�`&,u��>ޚO�FX�>� �����>P�Z��>'���~2�>K*���>�&���>������>l1=���>�w�Ӥ�>�����^? ۋ�]�>M�,M��?�!|:��>�}}k��?��:4G�>!���) ?��0���>�:�fh?���Dƣ>�85P��?VOo�j�>dH3:�?��>�F9t�.?�� ���>3]Hy�?S:��*�>���xF�?Z���>5�� ��?�(|�٪>wL�u�� ?6뱵x^�>z��,�?��JO�3�>� ��sZ�>}�� "1�>��E�6Q?�����_�>�8uXwD�>rЛ+�ߢ>d�%�?i�n��ӣ>.�d�?B���d�>�4�Q��?/ATWsI�>��P:�?א|@�r�>씶�}��>fbh�>�>���>uG���V�>��SZb�>��eZ��>�l�*\�>0�e�%�>YIG���>��x�D=�>��A���?݃B���>��m<��>ͷ�վ�>��8��Q�> m�r�Ԟ>y@����>����<�>s;�~8��>/��0��>�"����?�֙eP�>���fo?������>i����>�+� /�>7ټ��>�+�1n��>-h 9@N�>���X��>� %�o�?����ʕ>���Z{+�>����˿�>~�PZ��>%s�oP �>� "E(��>��ϔ�2�>�l�����>��z�>I�C?�g�>��=�u��>6���h�>s�{|���>9&߲'?��� �.�>����?x���Ӥ>��q�B?�������>(h����?tkd,��>v�U��?s��I�>�[��d?I]����>��r��?˵��R�>8��B��?���11X�>y�j��?0�G��ק>:ː�� ?�I2s�+�>��Z��?J��u 9�>�LA 1� ?�t%��6�>}�/Ut� ?d�.� �>�B��_� ?�wa׋�>��~�"?�4(ܣ>:J�5/�?{���>�J��� ?`6�L:�>� I��?P2I4�ɡ>��#���?����Ѵ�>09<�t ?8'�yO�>T��?�*���^�>f+�� ?x�����>�>:�-C?.�>� �>7��m ?�Y�d,#�>�� � ?.|��Ƥ>� ��a�K|? _��>�OSW]#?� 1vv�>�uI�=?��G����>F��� ?x ��֤>ޛ�O�� ?��l7�>�7�f�� ?�$a�>C��X�?!��!T�> �M��?r��f���>k֬+O�> T����>��#�H��>�-I�w�>8�����>G&��f��>��6=��>��}0��>_���.?\Z�'�{�>�r���?�-0��o�>��%| ?�����ܖ>����9?���D��>3m��S�?d^S�>69�'2W ?$�:�̤>�Yt�MU?r�Gb��>9���( ?M�y*LA�>���*/?���%��>���2��?j��]K%�>�$O�֑?�)��[��>�����?�忣���>��w��?pOk��>SD���H?Z7�I'�><��y�s?"����Ю>�2�JM??�4���>ƽ���?Iޠ�� �>���R:� ?�J:Ҳ�>����?��~��&�>��OQ��?�݂nО�>���Dw?6V�`�>�?&�ZL?�V���>�>�oG?�]�]Ҩ> S��?< �/@�>"dQ$ �?4�����>��0�?�����>Oí C?ޭǀB�>.'�.�?aS㨲��> J�~?����6x�>��� ?`�"?ɠ>H�.�U ?��m�V�>�K���?٥�܈>��%as�>S� �Xe�>�4�ق�?c�Dqߑ>�àͭG?��YvR��>�_z�a ?g��(�J�>%ғ��- ?��8&��>�݈�]� ?T����{�>��hn�? Xf�@(�>BI��?.�+ <蹡> ���H9??�׀�t2�> ;'��� ?W�k5��>�lf�?�m�q��>zKB�G ?l��ȏ��>���?o?��� z �>F�>P�?O���.�>|;��5?��$,��>v��j��?��d=��>���t?Sq#�q�>�8A��?p�c�g�>5�� ^?�=��]>�>�LS�?`� �>ƛw���?%HI���>��Pk�?S3:|��>!�?��?��n8K|�>�Ns�}�?-�j�n��>��j�z?XR���G�>��:��"?��%��-�>'��EA?FP$w�>}�R.�?Ӄ@�㜔>�b.�]j?�_K�;�>��4z�{?���P�ǒ>b��xLc?1)�����>�z�`��?�X��r�> 4=��?!�#+x�> V{��� ?�e2$��>Y<�T�Z ?3�H{�M�>id�BR?�օ�ʗ>�B!��?���ٚ>�m�y��?��(���>���$� ?\|O8�>����XI?���4��>��Ű�� ?�q��>��Y�� ?��a��c�>hJO��?���\��>�;�RM�?Ӈ��訛>'���?�Ⱥ�J�>�C����?��ޙ'��>‹��?n���j��> n=uU6?�'N����>?@ �\A?F%\ �>���1�"?@��^��>å���?������>0�p�ׯ?�V�=���>}�TCk�?�r��i�>��d��?�I�{e0�> g���<?o����Ɩ>� ک?�Ty<�(�>�S�`��?u1���W�>/�C�V?~�~��>%{�4p�>�c��>�D#é��>Vc:yVL�>}!ox ?)���p�>h����?�PK�-x>q�F�L��>�Dv��g>���;H�>.�9ՙ�>�k2����>�d!^~>a����>�湻U@e>z$d��>T�N��g>1����P�>|�>"�|>#/{����>z+S���>����Ì?��C�Md�>:��E-� ?��O�l>R��ftR�>�pdk;q>�����O�>��.��>H�Ϡ�e ?�2��W�>����fm�>B�㐄=�>�\��r?r�# �>d�Uk��?7#�đ�>-lPK{�?B �nn�>�p�:?5�bK�ƒ>�j;�?t�Kw��>�5�"�V ?k��Պ�> ȋu # ?�l��>j+'�cZ?Ro��6�>!���1F?>�i�4F�>���ɨ�?q��|�'�>�h~^?ĘM� (�>�D���?YV���ވ>��5��?��q5T�>�,ּ3L?���\>C��E?אP�Zō>�*t�J� ?I����>J�KWf ?��e�0�>?���ѯ ?U�ts8s�>�#֨�?�hY y�>%�E}�? �_��>Sw�� ?��ndvdz>�C���?�ʳ�|�>e�F�l ?S�l=�/g> 0���f?��e |>e|�1��?ul���c>5ȟ�? �K|�$P>�j2��?�p���1}>�ҍ�6 ?"-C}��B>U��)��> F6�6q>��D�?�gߡw_~> �04���>��� \�> S'�AU?ʶ��tdx>P�>&�8�>�c3��q>�L ���>a�x��K�>e�S5��?KZ1~s;�>B �6i?C�rD��>8��B E�>ur��nP>Ѻ��!�>0.��":>Zf����>��\�h"M>�53 ��>����S�1>?IWvt��>���dp>�1">�>9�RLi�b>�,��{�>qE6�'Qd>�� <��>!����m>��$2�>�n,'�q>ŝr'2��>�68�~q>�9��?��D`a>��z/��>�7�gwT�HE��qM�>\!dW,#>�!��U��>��)��Ub��������>RS;E�IR����E��>n����f���$�S�>���Un]�

���>ˠ?o�|V>\��Z��>p| g)d>�G�s��>�e< �`>i�6����>�A�7[> 3.,q�>n��D�l>�9�.��>V� �>���I� ?)��4 >i���v?�2���|>������?�(�ka>K�Pa��?�U���>!�S��V<�>)�։.Q>� ��t�վ�%���:>W8 2�ﵾ���lie�����H���WQ�MR>D� ��>Q7�Q�@�i]�M��>��k��U�Ѝؿ���>�ELRhm����b�n�>���4�m���Rԃv�>�0Ҷ��M>$���X&�>�f�g�c>��]L���>��x�P>����>ZD���nR>�߇���>�2�EJQ>�7NDU�>������P>���nt��>6+=h�wt�70ߓ�{څH.�g�c՚��1��6����l�Q�s�л�P�����s�f7��޾~<�3�aw����9������u���v� ;���tj�S���E}Z���Ӹ��jjJ��*���B�R�>4Z��o�>�/�)�� >������>XB<����PT<*m��>p�hM�H�T�"{3��z����k���rm3�T-�r�dU���ޤ�^Ǿ,����*t��XS����;�e���v� �*X���g7��`�u�z��8��d�4�.�^�o��W~�����n��6�|ȶǛ�UxB0�?�=K���y4��v�C�>>�T��ᾑO$Q�9@>!�Umܾ���S>�X���o��D�}�q3>��� ';�ǽ<�~Q>�Ϝx��Ծ�?��e�c>V쭡����m��&�~\>-�及��:\��,{`>��S�Z�R�~6�{N>�g<�v}��<��3��_>��y�τ����e6wub>5�D-S�Ⱦ٥ �Ŏ_>��B"�����?E�3�V>��Q�Ҿ�/��Qb>�%� YK־L] �S>"�O}�i����2�F3>~d9�B֠�v��%��V>R��o�%ɾ�Vmca>,=e��E��f>(5�&a>��Ў�۾���E�\>k�� ����1�%�a>�xg�澭͢��Eb>�&�y)���c%R>8����Ǿ���mX�U>���iо;�I3@a>��A����h�/��<>Pǝr��}���0od��~Gie���y}��i�-�yA����݈'jq��Q)+�����\:-d�8���#�ˏB]P�&��2��ȾK-����p�VS�`v��x��w��ռ�$z��� \hs������`Pn�8mp�Q~��z� v�clnZ>�q�.�^���H)t�_��s9��Y��!�Q2>kiĖ!���ж`R�V>�ZM�gn��v秨:�˾^���� &z�v�qV�.p��L2�w�la���r��l�zC��6x�"U��J���yVv�w�n�0%1���� NG�/U���3ߤ�оs� �5A>-���;��>��]�v�>��V���>�GPA�h_>�� s^�>�!y��*c> $ju�>H��L0V>��+�!�?�.��c>~h9���>q)�z��J>�&����>�n`�G�c>_�3H�E?����A I���i>s ?K��& �@>&�O�2?�'q �^��T5��?����.i���(V2 ?�y��[h���DpQ?��{�<�o��5v�Y?nF��2�e���T��I ?f����T���lhm ?�=�o�y�����?�C����\���.�!� ?b#�oT!$���YMj ?λ0��T>�X�v��?���C�Z>���՜�?����\>O~�up��>[�����A>�,����>��GP�HH����b?ʒd��o��W9um��>�=^"�pg�|�K����>����u�z��xi��>ޛ �R:s��\����>�n�g�p��0���?xs���#q���W�y�>Cջ�Dr�A��,Z�>6��E�m���K2��>�ҕ�+o���N�W?)���q�eZʏ��>���#�u��� #���>"�i��r���Mu�>���"0u�֐>5*H�>�;���h��'�h�#�>Qb��D�2uo�Mz�>^BN dPp��2����>&� U�kp����L���>'P�аl�ɛwO �>�I�޲s�?�̱��>�����p�};�h�>J�U�XDf�����g�> Mk{�u��|A�͟�>���v:�w�j��y�>�p�fx��Od)ԡ>��G\��B� �Ϩ2����Y��g>:h>|z�޾O�p�j>e������ڔ�h�0>b��s����}µ��Z�� ����>Hp�R�A�':(�/��>��W���F�\wy��D�>Wm �@g�;����>sk� �Q�������>FϾ<$�Z��)�R��>'��o�U��Ҭ8�y�>u�� BK>xXUI���>X��l� W>�T�C�?‚���bP��h����>f�D��e>��\̋,�>� D^u>��c,_����ѡe'���f�Kv��ޓ�UP&��;���ܒX��W>��(�BL�>V �ee>԰�t�>6q�Cb>��il:p�>�)� c�e>�P�ti:�>K�W�uc>\��鲵�>.��:�tP>m�5�ѹӾ���>���D�־UfĢ�6�j��@־�ӝ��3�����I�¾��Y&m�F�o�Q߻޾��tf7�g��љ�¾�l��KB���'�p;��aC>؃�l��TR. Q�� � 꾫����e>��/��G�>��Q��^>�FxFc���D�uEBe>㙌�K ʾ�P���;�U��m����3��G��`A� � <ϸ?o6;�ӎ[��> ��2L>N�I�N���{�ծ1>ȑ�T��P����d>NTmR� ��R-��>l>a�6�E�� e%�DW��x�n�X��y�`��pt� �YQ���]�Dz8ı�,���v�N��w%�q���"��Fa>xF� �d �x83x�0Q>�71w!ݾ��ҍaS>e�z);��$����J>Zx�J������Gn�Z>�F'������|}x�[>51;=��ӈO�@9>��OZmF����@��]>6Փ�$���: .#ӐP>���:;����4�^R^�X����Q��$=�xH�g��Gf��_���)+R `�`��2�쾡2'�Ma��=i�X���I��aR��u>r[8��j��d!�Q��:4� Y}�&�V��J̫��j|�8����"%��#���Z�)e�P�ӹ�?WK۾��}l(gu���7pP���[�jt���Ǒ��"��X-�g��� /���n�2�N>p��:"!��cÑ7z�m����ȯ����u�j�k�?�h�K��b���c�R���N;�a�?��TV>�F�Ͷo����5���L�J��iO#R3>�*ԏ��u���B>�c�w �~�K��e�ă�����G[n�`��2q�����dԍZ�f���f�4r�9�`��P�A����LVe��_����:�/��k�/�7f٩���5L�N���" 3� �Tt�09r��t�ͫ ���'�m���u2���!O�~8q��^�]���xq�}��"�����O$]�Zz��0��G�(�k'�'j��R]����q�Xl�֛Oa= �.cB�� u�ϟ�^b���sG�p��������������� /�� �����UR�����¼q�}��b&����xP�M�w�'N������}�4k�������8��#��{�?h64���C6 �>p�;)�0{���c��x�x�_�� ��� ��΀�sċ�� �`��鷾������ q�"�q�cz�%ը����Q��5b�Q8s�7�쾕x4U��z����:ϱ �{�xZ��v��U à����'cA"l��(��!����W�3Z�e�p�`���徜=t��Jc��[~d��Y��x��z��j����a��eq���F������5��~����JF��/[��Uz��TܬC��״v{��?��pO�]Tm�Pe��a�x���j���y��r���q�*�. ��4~˻K�*[r2&���U�D��t;�����a,tͯ�<�'�y�i�6�a�0�����s�%(Y�]��3�A%I~�����V(���zabd���zH(���(�L������L}��(�n��ԏ��E��C�L ��@���4������A��)���V��C3�j��g\���T���$��-t���:]��k��6rz@�����v���P��B8D <拾��w����vg c��g�3���緁i�� ��di�]�o ���� ɹ��a���~��ȋ��$��ҕ����" �="&���8L��+i�1P�TQA*��" ��pɤ�����z�� ����,�ʎ�q��uw^> \���-��cm���۵�\�Ws�����?�1 {�;���d���ol���<@������g�Y{��^R�⾋��մ9�Q����� �~��t��f���S�z����!r];��p���Ĉ���E�r�� Ik����K��x�Y �g}�Ŭё�+�p��# �.)*e�4�� <��i�&��(��B���s�R#���xU���-��� �6�: �����d�!����'?���+3��@1D�y�� Y%}�w�ڊ�;�~��y�`����9���+^��'wF�8��Jlu�B��B�0s12���ɇn��Ć��F���� ��!��OK譌�\�^�� �����jƓ�d�L������W7q���P�m��j7� �ɒ�4Oi�}���3D�邓�ts�DRC�k��d������ʯJ����l ~����C��(���P�Q���=6�J����Q��f9^w���஢�m�̿��V��Eع��B�ap� �[8©����]ںs �RW�9�����h�O������9����B/^�W��y��s���DE���1�׷)N��Oe(�[��:E�W����'�����h�-���g䇂ػ�y�:�Y���s��@����M���l���Q���3�������0����{'k��#����� -���8L ���/�BN�a���G�����9�~��*���P�ǁ��Zԁ ���8�#�㘾�&�\�@bn�T�������!���Ŧ�]�����]����Q��):��[�i��/}�����Z���� ��c���-�N>I�\���ǡ���^�*!����u噾�J�qo��hz�!�显� ��\�EͿ G��q9C�s��<[b��p��>��;:���*����CV�.��1b�)�R��`�����*�f�!���G� ]� �j�F�б0���F��k㖾�����ރ��|���Ҹ�a����y���\��k[ ��]�U���O�^�D��m��pC��U��}�S���겷{�����Z���)�F��z�$ �̺���8�� �����R�kP � ��35����Z\�]� �X��/������@���)w�;b��O�辀����mdu���tJf���=&/���;WD�Q�Aї� ���� ��� �=0��� 52������Ȅ���G$���)����N�ak�[���� �hѐ�zOV�,��g� i����� c������̗��D��t ����j��{�Uú���O4}%O�Q%dY�+���{0��_}��v1O�0�� ]����j��8�-Ii�@6(��텾�����8T!�R��� �J����s}��~w'�Ƃ�L]��ok| ����rp� ����I�9�~����1���҅�I�*���4�1�V��_�k1��ǃ r���ޭ;|�U�P�K4S��UQ�6��0 ��gm����J0ھ(�Q<��z�ZT���6nAc����"�?[����L����,��� l��XB���O��z�����I�Yo���w�M��y�Qݯ�*������2;��u�#}����I?��A�j�����vD�׀��&V��S>�͹����_ ��'��rf29=ԓ�}nc���T��1�摾�s҅���bb5����.�o|�����*���%�������/˺\����? ����eе������xg�����M�n��V��w����p�����d�!���ϑ��������/�n���7u9侔�hVV��M�y���B�����u1j#X�D֔7F`��������驥8����+<���'�"l���Ս�^0��> a�������֩�ɕ�*ìi<�����:����j������ �|���퀻6l����a�����G[ml�����r��G����%� ��Ԏ�ǐ��L�>f\naF���/�����*gg����M~�$ ����"j͗�dnL}�����9������?e���:�5T��qb�YX����� ����04�"��"#R'&����Y� �}L� n����z��' ��6���ܙ��{Jy�� ��QU�4��( $�[,����Ѹ墾�$1���� p;)���8���ɞ�|��E�s��ar�z� ��؏Sm롾�;`x.�#2����ރO�� ��+,�]�� ��zSh�� �e{ƙ�Q:�����-��ŽM�ܚ��VH�"Ȣ��^��F�����0*���� �,�� ���+1 ߕ�>������>�w��W2������l�$$H�K��� 5���4�*`�D�K�n!�������q� t^�P$�Ň.�O a>��3�z�0�d)8y>��������>�a�C�t��þ����)^>R�W�־Sw>�_>�z�s�־����)z��!�|��>�S��\r�*�]�F�>">sχj���u"��>�'���y������>+E$-zKt�-(� ��>�!g/DIy����N���*Q*�U�a��r2��ƾ�BB���>p��5��Q�2�m�g�9\`|�þZ(Δ�ހ����+�>@�z��U�sáK��>Vbϰ:�y��%�*\��>�y-T}�h�{�\��>�&XS<�t�#��� �����{L{k>Aa��A;Ծ,Q���|>�b�r-[޾ǯ�ǒXy��$Qc��>j�����j����>o���O����nگ>3��݊n�8�{|�>-���k;��G�>�|}3}x�Eo>���>����"ep�`n���>�����z�Y鮻e��>�wASgr�T��\[����2� �_q>�"Gq�̾��A��#v�~�B�n�������lh�> J�_��aT $%ͅ>S- τ۾� :���>����W�羃����}>[͡p�&Ᾰ!S��>L�$�g��� �D(�>b�g d��xCG�0�>�M$�A��L�AE���>� {I㾘xY*G�,�yo�c�� \��w�w>�sҐ�̾����(XZ��>݊�r�q��L(�[g�>f_E!�K���ʛ +�>)�Ul@|�v7Q:�>L%�s�]Y�� ��>���E9,t�l>�~�>�6G���>��4?ŒϾn3S�%��>Nҷ� վ��� i>���ܔʶ���~i(�>9(����˾7�4k�s�����UT�>O���BZg�u�@�)�>r�밢D���K�E{>O�p�']��H�ct�-��̞v>x uR�{���pNy%X�m�ȗ��N�$�)�Z�6��V���vn>�*�tY�d�"k�-�>-���`�h�dV�V�>�P8��W��a'9B�n>P���޼Z�o��ˬ?�>ah;+�t>0�y�C_���o���>e&�~�ƾ�@���>%��۾�N��n�>����վw#=���~>q�~<�}��G]��Φ>��m)���a�v��>S����ݾ м?�"�>�VK{�;Ywk�C��> )G飍Ծo!��M)P>=�3������>$��>��c'�Y��h� vU�����.�>�D���J���U�s�>�{'�!,��"���b>P��=��~���p>׏p+7��y;n>�b�9 5{>ڬa�3ٵ��G/J�i>d\��f����;z��>2 ���Uľ^�>�O>��C�[ˋ��+��p0�� �Ah`>���8���=�+��X�?��a8>�Xژw�u�ը�S�XY�]!/D>�&�@q3>p ����r�c���Au>�)��ԯ�� 01��=�絭K��\K�/7|>d{���8���d���J>���'x�����\���=F�[T��T�%��$�j�> 䡉��Ҿ���A�>�8�W�?Ǿ� �.�{�>�L�T?`Ծ�Omީȇ>��3¾��5�dq>�r� ϫ��Q�_��f>��9����*�����>N.ZF�־h�+�w�>i�j��P�V֨���>�γ��&�5P����>Vf�Y׾�t�:�hH>n��5���"\$1��v>����Ѱ�iF�YDr>��&����l$�/(>UY��-8c�'Z�%� 2>�ڱ ;o���nԩ'h>�  k��*�~�J�>J�SЅ����Yw �Bk>�������ܹBU@>(ac�A|��7*ļ�B>��tyy�W��2�h�>%���`�ľ�߈/[�s>�K�,<:��D�L?0�c>�J-+����m��>��agľXl�~d>���W潞��k��y�>[�c��������r>�Z�ǧë�ˁ�Xjj`>��u������c�EQ<>��#!yu�r}�;��6>�w=���j��� ���g>����i����,��9p>_gXL����p���?Y>bw�^ޱ��W�l��@>cr���q�:�E,�d>����R��o���Kv>$�u�q���`�DU>zq�J2���75�r!>�6$���K�D �+O>�M_��r���!\$�5j>~��.�K��(��S�:>=z�jy��#���7>Sxi��k�@!��-@>(��$v�'����C�q�]�t�v>�쫢� !>��{���T� 5aP>ޗ�p�����K�y*$U>�ڌf�`����yW�`I>;��n�|�.��I�{9>�%W3�m�xܾ d�f>~�}G}��6��Z�M>8��.����!|K��b>ᦓ��Ô��t��th> �Rj���`?l�>b>��9�4)��^>I���Q>U�-�у����e7[>��E$ ����dŇk>���<֞�X���5r>^�d"����<7t>hJ�����t�#�p>A�8��&����w�܉d>�r�{YӖ�A�v[��u>��!��ת��:�]Zs>���h�.��u�4��r>��G�Ql�� }��m>������6N>�t>��RA�9��*�p���>��'y����E�Atu> �G���"�~�w>�{�n�������>�j�볾��`���|>�@�N��d ���z>L������i S�{>4q%H��0Cd"�>��e ����q�ce~>W<%!w���`�z+U�>B!zS���C�d�ɂ>�������h]�>mm�^.��g�.�ˋ�>�}Z�cܻ�k����>o�� ���.�� ay>��=��﷾lٝ �(�>���rŸ��.��>º��������b��_w>#�-Wo#��E:�h�>�$x����� ������>��=K.��y ��*0�>-�A��h��y>C��>&aX�k¾�<֥�qw>v�wZ�达��@��R>k(�ȍ��x+sg&�`�q ��ž�����R��k:�P���ª�|n�T>6:�R�����Cy>�m3��7ľ���o��>����>���������e>e�H�+o��-@x��Ն>B�{�:¾�иLq��>�"D+þ :7݀C�>*^ �~��6jSβ�> �6ݵ���"2H��>�s���s��C.͡�>���4����4�ò�>��sf��� ��《>�q�>��ž:H���w�>C��q�fž�{�#mN�>�0|y��þ�xy,b�>����FȾ���G�>=O��msɾD�۝H��>c,��{Ǿ|�Ž�>j�������� �x�>�� ���þ��)�Vۅ> E�)�;�,~ˮ�0>}�@W�Ǿ���8w>��f��ȾY �ޟ�>ww;1 hξ�_��>�X��/Ⱦ}��!���>A�z;��ʾ�M��"Ev>2wr�Ͼ�6��8�>&�~ a�о�‚ŏ V��-E��Ӿu���%N�����˾�G(B�F�^Y��W<޾�(�(�DH��9L��Z�����>�[��_�Ҿh��P�k>��1-N־��?��v>x�ItӾf���> }� ��ξ(�>�>>�Xk�Ծ�A��8�>����> ӾN��%M�>����9mϾ΂�_��>���!!־�x�4kZ>^d74۾f���~>Z��� ۾ Fq���K����T[[ྉ��);p>���wdᾧƊU�[7>XEL��X߾P&��{:{>����s޾���q�t>Γ�B��ݾ������>#z�f�־ʪ��s>�}a}=׾Ϫ�Lh>z�s��IQ#�n t>�!q��ᾊ��m/5>���^��,lM@JP>����Y���N���>�4Z൓f�R.Gv0��p���t�dq���6q��̮�Ӿ���.|��N��������T삾�l��^�>��zD@H� �"�>�F�h�>�9)Y��>.�CL�,�>x��"���>7H�� �>W����>N��i��>B4���> �A�Ò>�9(rY��>OK(I�;�>�B��́�>$сaX��>7���>z�����y> �O��>��5�'�`>�>N^�>wBW4��l>�8���>�1ïM�>�U|8��>!*E�56�> �A�y��>�a���>�2ZE�>k֊��e>1���#)�>���U?~m>�<��Y"�>mˆ���>�-��P�>#T�v��c>� ��>��co�|>��m-O�>����e>�]���&�>I�$��YR>D���L�>Q���(�x>S����>�pi�F�y><��H��>Z�y*�n�>�)���>�%� �q>3'�N���>��<��9�>Mes�L�>��~�g^>�Y��W3�>�ܳ��0�>B)��\,�>�3�;D��>z�_���>W]����g>�:��>�Ţlm>� ���>ܧ�9kf�>�(�C/�>v� �:�>]&�;��>M�eQؘr>?e��`�>l�L�K �>�/�~��>�����>���l��>����I�|> Sy���>0�R�\�>{Z �76�>7{��>w>}�\2�a�>u��E�ډ>�����>��j(�q�>1��+���>����.y>����,�>�٣�u��>�"�����>pzU �l�>�x��G��>p�Qᩄ>I]@���>-�H��k�>��0-2�>��5��e�> ��:��>~�"����>)�m W��n��>�r�K���>&��Mx�>�1��O��>�i���>MT�WiV�>u�jZr�>j�\�;�>:' [�xu>C*���\�>`�m8�2�>�����>�*n?���>�N@G&��>�W~�͠_>�vjɼ�>8�rPDp{>��o��>�c�ҁ>��Q���>|��ጕ>����>�GJ_ B�>V����>sWq�hԋ>�*�-�>�;�w���>A �z���>�@7�l�>�̞��/�>��Q�z>��l�"��>�!�!�i�>��~F��>���3t�>���s��>Q `�{�>�,��>Q!���ˎ>��ic�>k��Źm>N|���j�>��ۿc>Mi$ d�>�]E�E>�߃���>(���/��>�6��6�>ah�en�n>kqń�>g�%r�c>h���+�>G���/8�>��S_��>ܚ5J���>�M��]N�>��A&�A�>)�X%�K�>�}ձ-�>J$N�L��> ��Ԓ>�����>�Y�d�}�>dKY���>^�Սͳ�>G Xݟ�>��ha��>����>8�x���>%��c (�>�m�"Y��>��rr8��>z/��2K�>�}ˌB�>���ɗ>�n^c�>aG\8h��>�[Uu��>ed3��>A�U�B�>�T ���>�*���>L�����>��$�kr�>�9E'��>Ֆ>�w��>Y���8�>�'��a�>b:����>`�Uy��>(�@�5��>h�} !��>άIt�>݆��w�>Ik���>��=!���>4�����>�� >+��>����Ŝ>W�z ��>�{A��>���k?��OLܒ>>���W0�>����3L�>&���}�>���T �|>;A��v�>��"W�s>��X��8�>-@a��z>i��W@��>��iG�> ��h&��>\+�z�I�>y^ }��>����X��>|�I*�n�>W\9gdā>4ဲ�>X h�+�>?�%q=F�>;���rP�>ߥ��*��>j G��>�;�T���>.?��C��>�Bc{�`?D�䩜>F��m?��k%���>bX[�D�?o�d�M�z>mF'u�>��5�BD�>�=O|��>�ݐ��(�>-��L��>6��oH�>�����J�>O���gQ�^��m��>˳�T�ny�l�A���>�����g>Y�m����>�u�b�U��diE���>��� �t>���p�D?Y���N�>İ}d�?��M&�>�c�O ?s��J���>L��'�p?�4B��>�EF�|>?����>�g{y�?S��.^��>��-��^?���A�>�7��?���]�>Մ�j��?�+�n���>� A��_�>�%���T�>c7�+��>a�j��"�>�|�y�6�>t��W�>�W4��|�>Z��[��q>yO��[�>�yROۅ~>sTa���>�ʅ>b�]nD��>�������>0���4��>o� ��~�>��SLp?������>K=�^�?�z?΁��>�Q���>�+� �>��:YZ:�>{�0VZٖ>�؎��v�>�׾�|�>2EFv�$?[}8h��>�2씳�?��W_�u>cId�� ?[����/�>���jU ?���t�>v#�H�'?�`/Fڄ> Rjh(g?z?�ǀ��*�?v>D�>�"Ƕۈ�2+�����>:��I���ÉQ���>;dDw� ��eb�-?+���h�>��B^&?oNb-��>�� ?!s�c9k�>�y��ٔ ?�*]�U�>E��%�� ?��5Zw"�>q�K�; ?K��5�Ӗ>�Nn�Gw?�� ���> �z;� ?�[�Zï�>� ��r�>��S�H��>�O�9~�>,`]_��>=M�GQ1�>�B-�ĥ�>�evVS5?BHvlT�>�R�ن�?jb���ʖ>G|C��?�>���:�>�iF��\�>DN��2�>�I�!h��>C���\��>Rx`Wt?ʙ4/�ʛ>S)ՉZ?��S��>���~!�?]���mt�����É?���\zR[����?S\r��Κ>�p��P?�o˚��>J�Ye?��lf���>!p����>�1��Q�m>'�vy�t�>=�yS��y>nϘ�#��>������c>D�����>x�Kd/�k>�Psl��>#�'��W>��J���>��k:�>�7�G���>bSˌq:�>5�姓��>a٪z�sc>�x@d�@�>224�V>u�s0�>�>���W�w>������>��M��n�>���]��>�.��m�>���T�>bѭ��s>ּm�VE�>�A.�>��>�? �O��>t ϏO��>L_�� ~>�䚕��>�E���>t����� ?���B�'�>��il� ?��[�g֕>����� ?>��&c�p>��BF ?��0��>k�#���?�:Ph��>�E�|�?w�H�>N',�d� ?��Z��>P}�i9\ ?�;]��}�;7���?и?^V_���?�A��>�V�������2m��>@���e�> 0`|��?��_b;�>; ����?�] 'ߏaW� ?���O��y�?7i:�?Tm���m��j�? 4�cB��>T��E� ?�>+gQ��>q�g�� ?�!�1X`�>�4��Yo?~��P$#v>p1��B ?�K'���b����<+?? C���烾kx,�e�>Ԑ ��u�K�&u�?6�B r�c>E�4�*1 ?m`�p�>os�R߫ ?��4uރ>/�6�_?&N >�&^>�h���>�[K.j�q>i3���>��1�%��>����j?a�5�u=�>j^ɮ�?H�J8dQ>�p�;���>21��N?B>���� 5�>�>QI�xq>_����s�>��{��e>Jܴ��>����6/x>�ap��>R.��<�>!P��S�?��XR��>�C7�bT�>r�)��0�>��v�0&?�Q#[ �>�9�ʚ�?K�IfYq�>�"�m` ?��C���u>�Ơ���?��YF�d�3�o��J?��=�^���E�����>��!��C�;��>0�ܘD~��e<F�>e��L�u��`h���þ�5Ѽ*ͅ��Rю���>?H_r�C��݋T��>}NdToz�f1�~= ��՜�\�ei��\�}�_ݾbp�+��_���yD��ᾢ�|T%@A���"��Oᾃ�L��W��r��F��W;J �`�X�B}� � �>�S��z>�Q/n�~?\��x���۞�%�>���fa>�A�(?���� C}>>T����?�9hN2w>�����>(���oY>L希��>.�ѿ?'k>{�V{��>��--q>f�@����>J�c��[�ow��>?��1�^>�����?�d�̋q>���.?_��aP>y<��^?���?y>�u�uW�> �5R?s>�q��B�>q�#��c>���8N��>T��,�r>M|�l���>dE���xn>@,,���>��o�gf>��{����>G�R��!]�G8&����>Hx� �Wk�������>��}s�XM�mֻ>g}'OM�u��k��|�>�Ң�%/z�������>z�e-N�.�,���>ྉ���+v)�9�nF���P�(��l>��=`yj���m+�S>*Ѷ��`侽9�a>F%9J�^�G��Rf>4|���֔(o�4>�.'��j�+��&db>��=Sپ���Z>�x����ھw���>���6Ӿ�='��.��:]���z�OkO>+Wzh�T;*�ιuG>H�Pg$�ھ�KXh�T����BsRɾ'{���c��W��hq>�&����2����?Lb�>�� @��U>s�jC��>,15�+�h>?������>?Tk��=>����S�>� �)x�>>��Ó�)�>WzӠQ_��v��h�>%c,�C����W�YҾ���'�WW��=gH��>g�A��;k�/�����>O�~���_>���$�>�p5�h�S>�Ʃԫ�>ޕ�� �D>J��� O�>+�$Q>�Ҙ�t[�>����H]>���@?W�>^�ANw�\��l�w��>.�0%�7>)̛N��>���s�j���n���>��:�J�e�g��M�>���"�,�:;W?��-��Z>��S����>T� ΢]��=�d �>�).�7\p�@p]S"��>5��k��| ���>��Ť%@R���/��Rܾ����K+��N��_\��Ɗ6qb�N����Pվ�����U���|H83�>s^� D�a��<�$�>(w�{6A����S0���6�x�R�E���7�>n�_lg�A>��`"U�>�`T���R>��� 3 þu|���h>WPA7�ھ�t�nL'>�yz��aо��<��*���1�ξ�cI�6_4�v3���߾N�9H�M���� A�Ѿ�9 ���8�i=ׇ,uܾ���G�T[>��D��ܾd5F�wJK>P����=׾�WV�g>r> ���۾��0��u>�l>� f�+�����;>�=��n�bX��A>(��~|����7?ͷh>h��Ϝ�3�{�8|>2���}�0�6j"f>t�����k���w>�����Z澮�Y�S̅> 0ˎ)P�Ò�'R�>Ď�X, �̖{m�s>{F ���\i���S�O��>�V��P��K� &��x��$T�#U�e��ܝ�⾩ԒX}I���Q�a�.� ���G��S�0�}��ht^�@��n������INa'�y"Y����L�['�=��)�ܾ��,�� N�b�7eX������m��i���ɾ�,����q�fb�@W��>Sҳ�@ts��s�Z�>�����Q>0is6�|�>5�OF�\>\6����>������`>@���?����28?>κ�`:?� ݒ�`�]�9 �?����HxT������?� u��}S>�c�w�?{�i��b>Lm�9�D�>��Eι5g>����Ɨ?,b���k>={-�$?h8�š�E> 9���?�>��i�yb>���K���>��JӾ2>�L^��>�F�~t�q>����?7o��.Km>G��8�4?�ܶ�f>���x2S�>p@�R��j>���M� ?զ>��Lp�-��h?�k�,�v��jx?�%L�^i��j��e? ��Ϸ{� N�B���>;,R*�w�C��ɑ�> �J�$a�ǒA�� �0�a��}s�T>#�H��q�ح�4����K!�<�>Ԟ�`$s��>�'���'����~��B).�>Y���;�x�.E�j�>Q�}@y%y��\�����>k~�fIw���{ � ?�Œp7�\��t� k ?>﷑��n>��A1 ?[|�+�A>��+�l ?��(�T>jd�b� ?����)�l>�]Wq!��>`H��^>;�(\'��>i��Q>]��G��>�qT'w�t>�\�ݸ?���\�'P>b���N�>\��U'�[>������>ru�%�>>-dH���>H ���up>���^n��>���;Z2~>5W�3��?ݩ�z>�C��ݒ?N]��y>�럯" ?9�Xyv�u>�y�x�?���l���p���?�� �{���U'!=v�>�Uy-�u�\�[�\?��*�l>RB�9}@?���ƫ>�ˤ�� ?��C���u>�8�L�� ?�0��"u�S� ���?�d:��e��~]�]��>��I��������>��� �>g�;��� ?�~���7C>u��F�� ?����~>��V��p?\A(hx��>�1f2��?@]�/�<�>~�Kl�?J�=�uv>�: ���?g#��u���R{�A�>j�DH�D{�>!�H���>�-}zЀ��0�elo�>�u2�ބ>2 S覤?���GV�u>�ʹ� ?��fo��q���o/�?)��X�{�\�0k��>��@�5�>��1�'� ?�Q�'�> LJ��L ?��z�c�@>Z���9 ?h��'�E|>��l���?�U��d>X�I�,�>�z�Ib>��� U&�>M��o�s>ȯi�mh�>��k�ڀ>>�Xr��>�Z�ց�q>I9�� ��>A��DU>��R�8q�>�m4��yW>d�`�(�>��4B�{>�c,��?��h��v>$�z2J`?f��f>�9/��>+~UR��N>���"u�>8���PL>ÛK�S�>�&�?ܔ`>�_�6���>c;�7�j>��x ��>S!��g>`��ܙ�>�?�l�n>¸g6B��>�U�O�Vz>���f���>��e��lu>(y����>C۾o]�c>?} BC0�>�[�PDu>��_J�>���I�y>3鷛���>b���&��>�9����>+pydI�>+1���>B" a�N�>/oc�e ?d$���>�n�� ?Q���^͍>� �zE'� ?I:�f�I�>��*Z4?�Ӵ����>I��ڿ ?&��N�d�>�i��>��Y��g>�ֻ~3?!�,Fr��>҂_$ ?���=��w�6xM����>?��q�v>� �5! ?�dQ߄>�&Kc�� ?�c�2T΋>�D��� ?��'^��>�PB�� ?�!�hԆ>9_҈?�?R���>����?��� u�>A���� ?_ʿ:�*�>��|ޅ?����i�=4ig�c�?=1a�i}�>�j)T�> �@��o t?���> �ZEc���Y�8��>@�wj䰄>�O^��A?fc��WU>G6��r?\�ϣI�v>~�t�A}?D �e�F�>��cG! ?�$�̊��>�W�w�L?2Ӹ�ޒ�>{)�J��?�_�~X�>�� �Ͼ?�O �F�>���n?�����>��D�*�?��l�С�>T��̕�?<����~�>�N ���?�X0��(�>o����? ?��_ N�>ky?, ?����\��>\���U?M$A:D�}>9W�15-�>��Ltl�>/�����>K��� �>ba�P�#�>����Ղ>!�кK��>Jp��J_z>�F0���>��ֱv>�9sף�>�.g���>"����?�d�y�'�>K��®�>��8b|��> �p�g��>��-A���>j��j?B?����Rύ>�>� W�?�ST�s�>57�0?�c�[ 1y>���ˁ�>��;�nn>xIԁX6�>i�_��K>|��B��>(��.�A>��[�� �>���3��u>�z+�MG�>�����e>�y��u�>hy�9�/f>�X+�g�>r�����>'|�#��?@~��Z.�>{��a?2�S��ː>-��1|?��.ă��>�y�?6�[�]��>�6��Q�>�lUB&�>�nvn�N?�`��o>ݩ�Tl�>���\ɼ>�����>j�h^a�>��"s�^�>�\=�.j>�p L��>����dq>�ޗ���>�m�/�k>��/c|�>��g���^>�G!&�4�>��O�|>r�q���>�1zgD�k>�Qؙ$>�>���8u>�T�1$�>���~��>��֜: �>���>9;Rr܍�>��E�J�>p�Le�>�%z����>�X V3��>���+W�>���0�2�>��=sj�>�5�� �>w��Z��>~��/m?ţ(W��>!_ꏛ ?���}+�>��.�>�p\C�(�>�<=/�Y�>w)��ڈ>������>���n#�>�V���>q/_�. �>`e �&�>��Ul��>����>)C�2�>�������>Q?�\�>B����>|g�s̀>��揺�>E��F �>\r���>y��.�>nI!>��>"58�h��>8���q��>�P�u�>�ɿu�>���C�!�>ܣ<�3��>�����}>_��V���>{�I1��>u�� ���>�c��z>�-L=,��>v��L#.�>�CJ ��>�g�K2�>ݜ3Mv��>8��;%�>9m+�d�>�n���t�>�B�����>�E��Kq>�k�*�>�^N$�ԃ>1v ���>�G����k>��Ļ��>���J�4{>�fY�E�>��{U�^>��D���>�6K���Q>M� l4�>�D��e>�1��>_ܞ(B�M>�! }���>���z�W>g�糯�>A�Q0U�X>|q>���>ԗ[W<e>,�LP��>s�i/"v>>����P�>��#r ���� 9�>�t�cw>���R��>ztM��aF>�7}d�>f�t�v>W�j(�>vU¦�Be>��O}/��>/:�I�({>��0H�>�"���:o>�%Ѿ �>����.�J>��d+��>/�4���t>l'�5��>.w ��n>�Ѯ(J��>�G�#SK>��7���>3��וx>�#�����>�@7�9p>�k�v�>��c˹�w>�wIQ��>�g��`>�b��>��r���p>�n����>m��SlV>ē����>~mYj�`>E�����>u9!裿_>��9��>̮�TLW`>�կ>��>/M*��>��d�l��>�jԣ��v> <ƥ�x3�> ���̏$J>D)�KM�>�AiF�}q>��Wf���>�Y���7t>�J���>]݌�+Ta>Əw#��>��Lz{}>�G����>6�]�e>��t#��>��%��7{>5���\�>� �U���>犯k�y�>���v>5Y�δO�>o���F�>����EB�>X�b�,.�>!#큦�>�j�̹�j>cGS���>g��?7\>yF=��>���V>�d�B�>M��0܄>}����>�;t��Zp>�D;=}�>(M���]�>��`t�>(6I΂>ņ�O�5�>���J=�>nlh3�a�>&�)+G�>�e(����>���g.�>�+N8�1�>~�,���>:/K� ק� I�>|c"�R��>�������>�Jev��>—���|>��k���>?�I��>58-"j��>�M��}>�13 b�>�%��B>O��c�>G�#G�v>^�̝դ�>2��$�oC��÷@4/�R�D�i�>�O������ ��@�>(>���d�X�͑>b�c��X��K�;�>�w?i� ⾭7���r>���l����A�dQ����2h�޾6��{�>V<��.ྂ^�1M��>�OH�'پv, {mI>aF,��ܾI�; �k>���7N�۾m��N�~�>�;� �׾B��� ��>��H���J�~a�>�`JB��ݾ�%O�b��>��>-��)�Rg��>3��j}U۾ ��t�X�>-�o7g�޾"��#�<�>�q|I� ۾_8�z�`�>�]����۾J�HGa���es��Ҿo��۩_Z>��/U�Ծhx�}�n��6�Nо΅'��`���G��ܾ��GTFR�Y�ɾ�t*�9n��"�`R�ž�x�_ib>�5���ɾgp?\P �>`TC�Ѿ�5��Ĉ>��p�&K־��>8�(�6�ھ�-f(!��>��9�b�ݾ�Q��)��>8� �� Ծ|?�:�؜> '��Z�ھ�(���>���ge�پ�nO7�{>���3 K̾]-��Ĝ>&��-s�׾�H. :�>Qk�3~Ѿ`��ɵ��>�!=1�پI�����>zqHʆ�ξ�T�xQ�>��1��p׾�� ~��>;��x$u־ @����>�0@*$j̾I���:�>S��8b�Ҿ�,��v�>�{1FO׾D��:���>K d�&�Ծ�U��>g��Q�nѾ��u] �>P��:��Ѿ_"�é�>`��Q��վi�?"mq��mB��ܴ���͜�>%Ɇ�����V�kv6��>������оF���w�>.R��Ǿ�����>� ed��Ѿ�����>�w�xϾ����>z�IZ�ƾߑ�گ�>�I3�y�˾���)":�>{����LҾ9�eA��>K��S�Xξ�b� ��>��yDb4ƾo��u�݋>���瑌ľ=6QV��>���d��Ͼ9� u�D�> �� ��ǾQ6p9��><��M�ž��?�F#�>w8Ei߻��Ey��N�>� 0SF仾���M��>�|�{��ľ�� <笊> _�5�f~þ��њב>�%GKA~ʾ%����Ɉ>v�qDx¾S�)��Z�>~`��J¾��9[~i�>P[�x�¾P�1xK��> L�]i���O�_�y>B�@�D���܆=�~>f�;l���<�G���>�%Zgp.���f����>-�@������{u}>�l����z%&8ȏ�>����&����J�ً>��{xorľ{�0r�s>�y~��d����p���u> \x�����͂(�>1�]B����o��g�}>9d3�{��ڥda�h}>:jV�O崾�ЂrM�q>"�Ui���r��*�Pp>��T4����΂�Ȁ>~�4��4��I�Cx>��wsY���T!:<�`j>��r/p����s���c>wI�C�����QtEl>�X7�:��X0��Es>)�*����XO�V>T��0z����,L�b>���dǗ�ҀN���G>���X ޅ���4�^> �e�4J�� hkTB>x�W�t��fp��<>����҄p� �vAPG>˷Afo8y��n�h�(=>M�0^(�o���%}=Y>Y�_FU��D"jqP�G>��wz��X�h�M>Q�wv���� �kIB>P2dpms��L��.Y>+��W~�����m���V>������/�o�B>Cq�9��t���-�pjL>o��c���_$r�cG>@�nz�o�C��+> u��C`��,.�L)C>= �\�u�..�*v<>���Cp���I���->�H:���a���c}� 3>��Δf��v����>I��^d0G�̻�97&>�i�[����a>0:�{��k��2�&I>����9|�Q�a�T�`>T2 L��d8�@6h> ��)L���?,��0�[>�ؒ�ğ��+E��a>+m������*?j^Y>�d�XU����/j�F�b>�n���*���=��N�b>��������m Y�T>�hx�<���"ժZ1[>�tXj���L�����d>�AV/���k�Hg�sd>"��E ���{E�+^>R>Ա��N���1�=�V>__��B��.H����_>��f����G� ~�NZ>R�����1^��m�`>QsY.NB��� ���\>6�9���!��40�K>an}8\�~�Lb��i>=�V����Zb����l>��'��d���F���>g>=��:���kD��Vs>�������� ��p> �ԎBK��@�uSqg> �k����.��j�^_>V��pW���ɲw`h>�i��/���s�zn>���A+��#x��k>��[{���S�bquX>d�����H3(�g>��u暾�./Y��e>�L�_�l��ٚ2�g>�N������<�O��`>�y��Ւ�BF�;�Mu>�Im���@���-s>bҏV�;��� ��'3����:�0���q>]������K��8r>t>c������i��p> �о�Ϣ��_M�m>d`�loc��y1:�q>�a���9������i�a>V� ɓ���T��x>#�H!+����.��t>W��}Ъ�� �g>�nزzH��TO��V�n>�6��]X���s �w�d>�a( r����tյg]q>�N��J˪��M����p>I�伋b������v>m!p�֧��ӣ�q�Sv>�'J�[��#Xv�{>�x.�!���7�ڂ0t>���t\����@�Wu>���P5������ԡv>�s�b���Z�c���p>���.���Sٵ��u> �~������F[�MTs>Fl�j�%����"�-�_>� ^����i���o}>�š����ٝ�x>��R��孾����rZz>�*�_R<����CW^y>��������5��� r>CE�vפ���l�3j><�8qt����b���x>�~�Rh��O����l>�5�]]�UUq>��4����7�-�~>�tV͸���ħ�7y>�+Jy�=��-��s~>r})E���x�=ؼ}> Ɣ����������|>����9��"�!�MFw>�Q )�����O4&���>}��Z������M}>�~N�^����[�@��~>��i�!����!Ag7�p>U�@g�ƣ�_� I��>O���&���.�/X��>!9�қX���J��>��>x iK��G[\=�>,�^:;��6�i]�>�w�������N�v>������d�;a�y>0PO@w���/rv� {>��`�׵��~<��s>��ɸz���Q͎�>`�2yɻ�k� o�>�U���D�D��u�>�Q] C����q�x>\���n��9�n_�M�>�*��� q�� {>����ʰ�S��>�ɥ��͹���#���s>q��ڷ���~��()�>�F�}��̥�Ԏ�>.�/ɹ罾����{�>W� � ��7�9�[v>��ڵ<��Ȥ~%��>�q"��`��y��zag>��i��(��K����>�id��M���@���)�>������ ��"Xt�>r�A��K��{cT���>�ׄ^����5�)�d�s>�˶W۴�ƁmJ�m>s��bյ�&�q�(;O>t0y�ݦ��[+2�"q>��W9+��ݮ0V\g>2���y����r��I �.R"gF��޻c��H>��˧<ׯ��//+R���~MF���4��F�`��E;���þ�*��>�W���� �T��n�����j>-�*B���z<џ�M�ۛ= �ܰ��$�g>�VX�~��������]>��X�!㵾y�նf�q>3Gٙ���U'�:L�>�I��2-¾C�+�-b>����"ձ�4�J]��~>�P�@��4Njy>��A���������>$J�{Ka¾�֩��>iCt(�����ٿbN�>[6�r6���0�";�>���Ů��L�@�ϒ�>8�η����AA���>>o���O���t>-��d��'l�7g{>8���ϱ��Ę�%\�>1rFcy���F��VGz>��5� U���f����y>Ü(�N��(�P�Ɇ>~��23��.T�3_��>���q��¾�m��p�>� Ⴤ=���O܈>���þђ;o��>���/W-ľwӏ`�g�>NHΥ�ľ��s�C�>"v�)Xuľ��k@ }>TCv���vU Gs�>�i��s����6^!�ӊ>�P�_"žP��H�Ӌ>��b�Ǿ���AK'�>���f�`ľ�!�� }>�`�w����w��P�ք>��?TJ ƾ��)a��>�Ӳ�G�ƾ z�4E�>�ُ��ƾ�� �9�>�W{��ƾ1*�3��>E�����9a�K?>�Ɛ����2@��a�>���u긾�paV;;�>~#�y���ג�8��>%u��".Ⱦ�vD���>aOAm� ƾ�'hS��>i�������d�"E�>�Fs�0Ⱦ��O��>Yb?ƾ;E,y�Ł>?�\��ɾ<��l�>E��Ⱦ3����Lk>�{�s����\��TB��dNy����6�/Xj>s.�U�žgM?�ݏ�>�f~��˾�S&�DIx>e�5oƾ遃o�ӊ>� @`@,;(�v|�>����Ⱦ)rU����>E l즨ɾ�U���>H�G�J��1)�E�%�>�2Z+����ɭ��R�>s��JR��hu��3%�>���g7ʾ{�3��>��#��˾Hg^�%��>r����ľG�q�-��>"c,����`�N��~�>b#\}�оK�Z���>��6�bо���3d>�l���D˾�`F�v>�y#��˾z[䡺>��t%�w; !*�mk>��/�f�Ⱦ����\_���9���̾{T��Z�`��8w�9��W��U3\��`�ҒTľ��&/�^�؅0��]��v�{�V�jv�|�QѾ׎��B��aY fܾk˯-''L���q��Ҿ�f�Q}S�����'�پ'�eў\���k)��Ѿ,̒,w�]�>�盺ɾ���T�F�ʒ~��aо@~���X�߅[D�;��\�d\� �0i�ȾV�� �P>����YҾ��`�^\g>�Ak=t�Ͼ��#c��v>�L����Ѿ�P2K�=~>����1о3��.dr�>W��ET�о�nX͝�>�)~���ʾ�R1P�>�X.�yѾr��NҀ>��Xþ��N��׆>R�,��Ӿ���t�>a;Z{_ҾN���(�>wG�29�վV ��G�>�h��ºѾe�=���>A���E�ɾ�^�L}q�>�ƀ+ԾhR��:px>S��mi����]���́>�]�1�ɾ�I�$d��>�^���Ծcz���>�ؤ)aL׾m��͛|>.$˳��վ �.�P�+rG�Ӿͅ3���D>`�H׾�G���>cڕE]پ4 @ew>�̎[�(׾X����>�G�+P;� �*�~>���,7�Ⱦ�T4S<x>ߡ�>�@ƾ9s�D��>5���Ҿ�����>>_����ؾ�JB�@x>΢t�پ)?�hHr>�z�o�ھ [eb��q����׾x:F:U�F��^پ`�=��?Q�iW�;1lھ˳�*r>H���=�b�>���J>�~e;F[ݾZ~ �5~���ܾ����Ӄ}>�%�{Eݾ��k�y>�V����ܾ�@���~>�:R�|�Ҿ��p;��u>'ځ ;ʾ<�V�vu>*o��@�о =�{�{>p�6=��վj��/OQ`>�m������#�G�i>W8յ�nƾ؋r Ct{>%��ooZھ� ����%�վ�TESo�x>����۾�*4�h�k>��6)��'��=�s>By2�5⾿rR�#�i$����⾐*�P L��!R3�2�>�=��^>�#�Mlv�9�d?�\�=ӝT��⾄TVB��@��z[�w���q�{D����&��B��X58��;�߾Bf�N�G��`��ؾž E� �`���׾�?P�Z0��̖�s��7.!ս!��l9��"�� �6��&�c��gI�v��K�ڌ�2�V߾�X��p���n\1ѾDαS�U��Қ=|ؾ'�cBwt��ː ɾ�M�BƠ���1_�6�>�;���&���F�f�>/F��8~������O��Y�i%sx��V�1κ����K�8n�pm��Ǿ�=��r���:ۏ=��>*[haĻ��2���a�>�����z�� K�>��BCy4�D�I�X�>�y��1�w>ܱ�Ҩ�>�Zjzx>Ax�'�O�>�b�kA�>��ض���>(k����>�Hؚ�>w�K��́>ɥ"e��>.��ȋ>B��z�*�>PT��>�>h��%nh�>[JDxlt~>�mE� �>!�����>�ބ�q��>5�8t3�y>�W�hE�>dP ��f>-*7� U�>a���:�~>t��C��>�4=��wr>�i���=�>�6C�;[g>���8��>�jY��x>����>�<���y>[�n��R�>����Ɂ>C�jo~��>��Or(΁>p4Q�X�>�b����v>,�L4Ԗ�>����>벨� ��>-�b� w>l�q(�>� f��Z>��'�ò>���c*D>x|���-�>tF�h>$x]=�>93yO��>Ć�S�>�q{�w>?V�,���> ���|��> >�+���>�n���z�>@��mn�>E��ci>�]�2�a�>�2�j�U>�Y7���>t5�a��C>0A��Nȝ>��K�Z>����z�>���t>��m���>k2>Amj> �Y���>(�3�>�A��O�>���3vy>&�Am���>bN=�L>e�^�,�>e��N3.>�7��8��>��֛�f>Lj_|���>`�S}��>\�M�2�>N��U�>� �K��>ٟ�\rm>�pm'��>X�V>Xb>���>F�>ę��8E>>��ӵ��>�w+�{>B��"A�>Da�d>�Bd>!�>v^�ZL��>$�ק#��>Ǐ0�[gq>[4�<=��>���N�I>�n�#��>��Qԓz>I3*q� �>�ֿ�GZR>^�K�Ch�>��.��F>U��l�>��+��]k>7&��WM�>[�g�g�A>ZA��~(�>b� 2�u�>�Kb��>���0�'�> �v�]�>Ѻ�U��>����H�>s�Vy�3v>����<��>��a4�@`>*:���>�{m��.w>�g��J�>s��=[x>a%5��>e��䕕j>6��.!�>L��F��z>_�s�R��>X�#.�u> k��5�>Y��R0�>?R�Q��>��3�>���Oϝ�>�K����Z>ݲ'+ི>*=�u�S>Ǩ�sC�>���=v�N>��O�m�>-����+u>D��r͟�>Ax#�=��>�"�٥v�>59�B�*�>C;H���>�Rs�c)V>=̠T°>&�6���>�NҜ��>|`��i>sD���#�>�hf-�y�>D$:�>&�ϘMT]>rN�6\*�>.�0�� `> m?�k �>��}[���>�7�J/�>�Yivh�>\�~Cz�>���Z�>�+E���>�֬1���>Bͦ�%��>F*�AV�>�|����>DCs�p>�h�5ں�>��S��Qw>���R�>��6���a>��e��"�>�q�%)�r>����>4†�=�>X͹���>�1�nr�t>�����*�>7Yak"��>R��8��>��sC�>EC�Kr*�>2k�{>��2a��>#Gr:�>+���K�>�� $/�>�H(R`��>?��(u>�a�!��>b�ϸ?�y>���CL��>��VN�݋>�� j=�>��ԕ�> '%a��>J����B�>[�2���>����>/��Q���>�Я"�f�>,�~���>io�F-�>������>����}>� �S'd�>����A�>jN�_�>�6� �>�yOVZ��>g�5�ȼ�>!~� v�>. a+�>�<� �/�>&�$c��>��EJ�>hb���{�>|w�i���>���O�~�>�o��r��>֙K~�V�>��.1��>U�e�҂>���z��>�˺�L�>Vǵ-��>2/��>|�w<���>��)z�>��n��>Ƥ�}9��>E�ؑ2�>�ɭ{~��>�\��g��>L-4Hl�>s�k����>VvӢVȌ>#LӵH+�>l(�P��>^,�����>��%����>�^����>�������>"dU� �>�Y�s���>�x�x��>U���c��>�Gbaz �>����f)�>p�f%,[�>w�24Δ>웰B�>�j����>ӵ�t�>t�W�=�>����L<�>*Qꎊ�>'A����>�H۬���>ӚJd���>��Z`���>U�����>�u12s>+�#�>� 8��>�<�jh�>��~���>o �)���>�ղBGg>-b��o�>�.E����>F�I����>?�q��y>bJ��"{�>��� د�>�o���>^�|=R&�>��$�>MƩ�I�>����>��\�4�>D��Am^�>���]�6�>V��@G��>��1��{>��֧l�>�X�v�1�>�6dΫ��>� z��l>I� ��k�>8f�(7�c>��_���>�O�dZj>�j�y��>T���~Lu>0 ��V�>d�����>�ҭ;x[�>��i5�v>��`���>P��OW؀>{7��)d�>�gmJ�>ѫ��� �>>2x#�ip>��3�P�>�2!�ٮ�>߼�0�y�>C�e�cx�>�:����>–�} �>N��$�>���$BZt>���Q���>,�{2�5�>$�l����>�t��9l�>0�B_��>��b��> w��|��>�I'�?�> �� �>4���Y��>ZQ"����>���H �>��w���>�*FTmK�>)OQ�7U�>%�E.L|>�#�n�>��9�v�>�"V���>am'{��>�f�Z��>��QE�C>�K�!n��>ev� @``>�!cJ9��>k�?�EH>^v�7Ȃ�>�e���X>��$�¶>���U7l>_Dž�]��>1o�|�+T>]�D0K�>�rRZC>t/E4���>[E"Ŭc~>$؉���>�l�k��>���GB�>͑�v� تn��>��ٹq>^8�����>�-'> �X> @�r �>���H>�V��XŨ>�/@��V>�x���>�^;L�q>��!����>a��/v>��?�&�>8FW�@��>��?�>QT>`>��>1����>�QwSގ�>�+X�C'�>�'����>=J�����>��aw<��>ߟ���!�>�Gპ��>� %+�>�]���Α> 걬�>��pG���>��2���>n�$=��>�� 4bP�>wT����>��+�-�>�x�ub�>�&6��0�>|�%|��> �����>�F�`�>���XJx�>����~>O +���>��hR>ϊ>t��:���>&+�T~�>Ɗ�>D�>�<|a�>��Z�S�>j����c�>h� %�>�XI�X�>��yZ��> ݲɭ�>L������>��%:�>��R���>�T)����>`�����>!Фy3��>LQ�B�>��k�Օ>�� �,��>�2�!Q�>���� ��>4��� �>D)x|��>��E�O��>V�Q4j�>` �&` �>�}Ķ��>a�d(mΒ>^��9�>7UD5 �>6C��o�>�P�'�>R�;NI��>�.& ��>t&Fu�>ݼ���p�>�>D����>�����>��dh~�>�.f�y��>�H�Y���>3�]pܙ>y��*��>�>n��ч>uu����> �%%�>ςy�5��>V�[�Po�>ȁ>��6�>۝�^h �>P'&�r��>"��qhP�>6FO�ay�> U (ع�>z�W����>\���� �>��L~���>p-� �6�>[������>��Lp��>��,�>/�5G�o�>j�1pe��>�c�G!��>������>���]�>����X��>և�@�|�>���Vz�>���� �>�b�,�e�>�Cy���>��\��>(���>���|��>��R5\��>Vk����>ڲg �y�>I�����>�9�1Bm�>��z;t��>���>��k��>�%t�6�>E����>�1���>�Х� �>\�(,�>gK����>�����>�X$�I�>�s���>hkP>�>U9J�>��q ������>�=��|��>5!�ݚ>�� �P�>*��w���>�!?���>F�K�LW�>::�YoG�> [.&޻�>�����8�>~�bk8�>���E,�>�����֗>��C0 �>�t���V�>[������>��jW�>�u[�R��>�X�[d�>�$��>^�PbZ�q>Yd����>�WG�%�x>F� ����>��V�(��>p��B���>Z �}��>����>0��&v>��e�4��>P�����^>���Z7�>����UT>�3�R��>�\K���b>i=O����>;�Z Ri>V��q9L�>I�1�e�p>0�2��>�������>)KRS���>�g���>���n�B�>�� �U�>xU�ӯ��>���;n�>}��#g1�>��]�`ف>*`�-�m�>�����>B.�Z--�>�8 ��>�V��}7�>�U�[���>��n=�B�>Q�~=� �>#{�~@�>.�ov��>鶒���>~a+y��>�[�Vc�>rcȿ���>��$���?e@"�Ü>�ݙv?`��go�>bej�#?��i���>�`'b/3�>x�,� ]�>�WtS��>����q�>��+p��>cJ�y���>��+hF�?���~}�>�i��?ec��A��>z����d?K�K1cb>~ �RJ�>G�� `�>������>9�6η�>9��0z�>ײQJ�>�j�l4��>�bQ�Д>�I��&��>0�l{��>3���f�>,Y�j×>u�Ȏ��>pJv��>C'f1�>-��҆�>u~���>'O Q���>L6hϋ��>����=�>�t�߽3�>]�Ԏ�Q>"�Rx��>U�t��>��g�c�>óG|�e>l�� ��>��$4T�g�1�S���>lw|B� v�@�_o�A�>%�{�K�1�Ĝ;�>� �|�u�L���;�>ET�M>���)0�>�H��pk�j'y�*��> u?|O���"�>֎�Z�sp>��d��p�>��6ǻy>�2fE?�o-"3��>v U�/?�p�I��>���$f?zs�����>�݅<?���y˘>����d?�z/��X�>Z/��?�D��V��>�:��?{�D:Fz�>^��qÒ?�� Mu>��~�UI�> Y�&nƂ>���զl�>�UG�"�>��� �Wy�,?W$*ud�>�\t}c7?9iw����>g�Xi?�?�Cq̙>J�`�?���rkZ�>�!�Le\?~��JOz�>do�~���>*�����>���< ?��y�G��>n�2��"?����}�>=���� �>�sޑC��>�[x�v�>JU�Nh�>��,�S�>��]��>�� ���>�� �b�>U0'u 1�>�XZ�oφ>�ʛ���>t]�k *�>�ū��S�>t]gk[��>�8����>�����a>պVI�I�>�u1��x>��Z�mh�>�/C[.p~>������>�d��A�p>!["K�t�>&�3I��v>4 8��a�>M�P�d��>Gc7^EI�>�LR� �>�$2@^�>;�)ن> R�����>#�У]K�>�)ҷYp�>��~S���>Ɍ��c��>��/��> �� ?g����`�>��v�>G?ɒ���[�>Z�䰩?�ur��>���2�D?���|d+�>��ٴ�u?�rı��>���]��?h涐^!�>ʼyT��>�S��(�>�r (�^�>�Q��d֘> ������>ၯA���>�P����>�3S:��>Q���A�>�Y�FP�>�������>*�� ���>�:��J��>��G=��>��ז>� 5)�>)��dN �>mA��'?��;�4�>�p�x�?�L�&�>{2��e�?^9U��ʛ>�Z*ń?DZf ř>=/@z?`cT�P>>4s�sE?��#Y ��>��=o�?�m����> %���r?�Q��K�>�f��-?P��CcD�>��}�? �Ip�k�>Bc���?�w/p�և>�+��V?�9a��p���9���>�����u>��bȡ�?~Y�+7�U�n�߃�d�>M�oU��������>"��p��!�Ն(�>S�2����V)77�>N�N��z����|��>Y��������2��>(�� /х������>�h�?X��U@jI+�>��5H-��Л�:��>M����#��p RK�J�>@�]ч�5n�.�>ޣ��}���|r��[��>��$Z2�fZ;r��>��]��̛�����>�=���p�4g!gO3?���8����D�>3�>AcYu��d>���m?OW����>�ֲ�‚ ?��~�$��>$S �x ?zgjx�u>Ra�M�p?��[ b�>��K�Z ?7���7�=`.��?y�B{9�>|��); ?�����>H����� ?�7�[��>M�핦� ?�a���)�>����o� ?"�� 6��>�H7V�?�i{�� �>D� �N��GN?eO��*�>��8n��>v�h��E�>������>Yz'1I�>��+(;�?6�$؏�>��"���?��Z]A��>|eUN ?�ؕdӖ�>RN"�><?�♿#E�>�y�q�?����C�>����?���'��> n<�?b��=��>@t�6�>��ԐL�>���ݰ?��N�>A� ��2�>��廐��>�Dh|��>����B�>-�L��%�>fA<��E�>���@F��>#M�n�ܙ>t��Tze?u���f�>��ڵ�?���)�>�~���?%�#T�Y�>�s6I��?r1��\D�>�j�>s?~��&ޚ>�$qE��?�$SL�wl>VϾK�W?��W���_�������?U�k�B��>(� �9?����"�>�R�^t ?梓r�o�>�*�4a ?nm���>�Ƀ�?��� �"r�RE�)���>�6(��w��nœ��> $v� R�>K�Y��?7@��Њ>�}�6z?kg�{��>��cMD?o��%w��>�����w?�E�o��>�� \}?����� �>�_�R�?�}�x��>&�����?�<�FE7�>1,��{?rY�>�~�?�]�'J��>3 ��c�?�:V��>�>{��}wc?wfA{���>�5�QW�?�8;A���>>��"|��>���w�̎>{剙K>�> ��{k��>~���&�> �@�{>X|a*�A�>����>�����>��Zp>/Om��O�>�!T|q>&3Q����>O�5�kj>��nƠ�>�=����\>�7 ����> ��|SQ>w��a��>���c>��m%}_�>5Əg�Tt>?u_��$�>����x>�ӘN>�>���}�f~>9+7ڈ�>J�[=�>���_���>i0/c ��>��1G{��>{��� �m>�|w�t�>���6�[x>�D��m�>̔ɢV�U>rF�����>��V��"M>�jY���>�F[��\>�A�{k��>m�N��6K>]J�g�:�>���ވb>�O7w�>� ����a>~D�LY��>EĻ[KhH>D�C�ڴ>���o�b>t��5��>�ƿ.L>c(��|��>�?3>NE2>��[gm�>}s<��}Q>�T"z�>r��Q>���3�>>,�9Ku@>~�,�벷>��/���C>�����>�b� Q">����a�>�zxfxL>s�4~��>���IO>J�Sݷ�>��ˆP�k>W�|�>O���@�p>d�^;ޤ�>7��sۿ�>� {�$�> v�q�>��&�,=�>������>-�d��!�>��~Ex>�,-��>�����>�Ö�J�>~ J�F��>��_� '?��9�c[>Iգ�$��> ����e>�7���B�>$K�8�E>-�ʭI|�>�GV��Uh>Y��D��>XA]-��a>���9G�>66�lҝu>�\|U��>�z#!���>��R�@��>}�s�u�>�u�6�>� ^�L�u>e�ԕ��>K��,�P>K��R�>�.�����>'k��9�>�����T�>���t�R ?��� ��>iQ�VH� ?N�ͦ]ߓ>ޡ(�� ?$�M���x>q/.�� ?<��HX�>d7n�s� ?,�C�w��>9��$?v ��>)�t� ?��D�U�>4_}g�6�>�X>&� �>�� ?Y��^��>N@ZB?mł��>*� ��>�Dp4�>������?�LS�6?�>�D�n ?J"�Sٖ>�!�> ?��� �>:V��� ?�U'���>�L^�� ?�0���x>��G�m ?xC��߭�>���q ?�^��0"�>X��� ?X�Ɛs���2�; r?*m���O���>K�>�0��!�O\��>����'b������8�>+ ���z{�5���=?�Xޅ�c����PA?k�>�yܼ)K>����)?�� ~���������>5�GB_��>s���G ?~����>����?�B-7r�> ��4?/�\�H�>��) ^� ?�oߗ}0�>�s��s� ?�6C�҇�>� s(�1�� ?�E��1�>���� ?If�-Xe>�t)�� ?)!���}�>�g�~?5g%� m�>��� ?n Β�*a>h� �� ?ϻV�`j��{ަ��?���K� j�Z{M��?ku̟͂�̩��?��J-����3�2���>%m�L����"�a?�w� �,�>�U�eP� ?:�_��>26���?�G����>�+�DV] ?������u>���LQ ?�A���z�>f����[?�qV�`�>����]w ?뿁���k>� ��� ?,3��p�3�a�?P���Q��\f=�5? �PMr5��K>�) X�>����h|���0dݑ?E0�Vx�LU�8?'�(�7En>��8�_I ?������>(�r#� ?C�w��>����;?[p�C�}>�R��S� ?����R?�>o��;v� ?�t�D�0~>�ǐ�k��>��w{�\�>�J�� �?Jjn�݀>��πd�>��5�z>����*:�>�~v${b>�N�~���>,,�V?�m>v��e��>�U�j���>�LP�J�>�����?�>�Bw��?�Na3uϋ>I1�I�?М0�Zv}>0��q���>8Z� $J>4N؁(�>��p�ke4>�=�c�>pC1��#>4ItB�>[�`��/:>� 2���>�IP�jc>$�)�\a�>�"x�l>*��}:��>��=3�m>��U\���>�:.&.{`>gE��{K�>q]@7�S>�:P��>L��E>�}n���>%�D�f>���&�>A �g�7z>�v�r ��>jIl�^�>uu�W�?���~��>< %���?�l6�+>'���-�>M��; �>2�8c�U?:~��Fu>�s�E 0�>���`i�v>��c���>ס�z��>x'=u?� -dk��>����S?J��> rKT=�?^5���1�>.Z��k ?/�� �>�&��� ?;�Hdx�>3��� ?y̠���u>O ��� ?ȠJ�(m>>�m��?�[�t���6���"�?��ĵb�z>��U�K� ?�=�-%@�>p�r$� ?��6,HZ�Ӧ�E��?O*�Tln�#�kP?�x㦯����.ߢ�>7G+邾1�)$Ϸ�>"Y7x�N��=¾H�R�Au���� L�7������ �Z���>�n�������tݼ�>�y����8�J� U�> �W����=���>[3�ˍ���E��,�T�>�m��u7��eʞ+���>�>�b����l�\�e�>%.ir��u�]1�f̾����y���XB��>5��0�d�ycvd�۾��=�-rf�����>F׾o�<]�]Z��(��� ����%`�\k��޾gT��M�E��U���k��r8#d�}��=��R4Hps�\� @4_��[�P�x�1}c��>C�V/-q��E?rѾ�>h9g�u�!��>��>I�՝֤|� �P_S'�>Ҧr�y|��Z�V���>F=~�H��$�����>�A|��Iw~����>!�����9�*�"?�҄?.�a>�P�[�o?�4����>˛��W�?ϊ�%��>����?~k���s��j1���?�0$wa>f�ڧ�?�@���Oy>jB���?�xµ�$n> X�/_?�~��_�>G��[�?{�G <ƽ�> ����2�?n�;�t>�/E.xF�>5"q��t>Ի�ujn�>�>ϗ:�w>�}�j�>��h� �\>f�Œ6u�>�]%�Q>^+��$�>q]�ĉeQ>����>��ò�q>����Ŕ�>m�\� �k>�+c��>�~��i>ǭ>�1��>�N� �S>^;}���>є^}��n>�p���>-���;�x>��,z$I�>�t?��s> Y��<�|>bi�t_��>B8:g�{>\�4�Zg?�Ø��li>��C��?^�* �`��P���?�Qi��>p�£?0�or!}>�@M��?:>(+�t>��+��?��9�i�f>��?4$q?.�*U�>9�Ū?��rcG~o�2֔�.��>O�b?l�p>áDm6B?���M#�V>��v���?��KL8Zj>ᔞ��?n���w>/�l*u�>���w�Uv>:}s�p�>,�ە�t>��s@�?s���l�x>���&�V?�+|�L>8�_��>�R�p��R>ZB�Pf�>@�y��c>b�u�>4�r|�[p>�~��x�>���\�g>P�ZY>.�>���[�qI>��x� �>ⱛ�J\>���!Ps�>m��Ã3t>�� �f��>�n�e=q>��_ ���> �ب0�`>Y��{Ȳ�>䷜�Dp>��Wz|9�>=a�-&�A��$�� �>�?j-�(m�Xк!81�>y�j��i�>�Cr�&�>X���.?p���q���>k{L�Gu�N�[vx�>חI �pu�����>ٞ�ܘ�x�P��d�@�>���A�v���n)(�>���b�zu���/h�釾��/��e�޾�X 5߾H�d�hL�<� W�b�ND���"�X4Ad�_�#�:($���[�E�پ�W��6�A\?�C5�u�&�]�+��p�TE��Dv��H�/�]�9�R���@� �'��™����m�t�o6�g[ n��r��<�<������#��N�(C�� -���̳G���k>��Qc�c9 <\jC>��`��F�\�x��<���2ߧ���J�^�_> 4�������7R�n>�<=дdҾu� 1o�u>nΈ �޾��p �q>��j,�ˇ.�(�h>��a���ѾL�Y�:]r>�z<�ͽݾΚ=r�wn>I�`.r���o�7���\b,k����u$�IN>LBD�p後 �ؚ�g>������z~l$~qi>�g�Z*��rx���m>��U eLܾ�@�I�d>�o|��ӾS<9�Ye> j�供p�ޛ4�A��G��-Cc%����5��*:�o<>�I%�徥f&0� `>�/�?�/�S ���e>8���}O�p��k�g>O�x7ھ_�KYhb>� %Q�׾"[Vu�a>��޶྿� �2 S>doE�[�۾d����Y>�Ti��{Ӿ8w^Ȧ'>>� �n�Iྑ�:�J1�s��v'j�7�,�� >,��?ݾ���xP>5 �]e�ȑ�.�)�@c�z�׾�`Z �����NzHʾs�v�te&��Z�/��׾!9�}���� U�;�H��=(5>d�y��׾��Q8������h۾�,��״Q>�$���Ӿ���� ���ۣ�;�e;���J>�hf�˾(�j4�I>�&��o�Ӿ6�@�FD>P+6� ¾�x�~�E>_�Z�8¾ UsQ��@>�dQ����X-:E����F��ξ���=5>,v�dž���:T>2(>sI���*��7F����;>�����ƾ��bp�֘ �J&���t�����ʅ�Kξ��(���-�#�c�G��)睲M����%� о'��u\W�����o�����`xI����XfF�>EK��,�I�\^�< o�>U��]P,$>Ea�C�2�>�^R;r;>�Q}K>�>EN<�4L>g�2'+�>Q�>�lM,>ʢ�ʑ��>��F��V>����>���rƿ`>��Z6[�>kz�l��L>P0ï�C�>]Bɴ��`>�T�Q ��>�.8yȽ`>��n;��>HEs3΁B�9������>��;�BW5>ȑ^_��>�k�6�G������>��^��J>�<����>x ��]��f�ز��.�>έ�@J�_����<���>�M�j8~P���^c�˸���^c�3��Lab|�Ͼ�V��|�l�������>( i5g�\�4Ej`��>��)fh�X�����>���>_]��ܤ�����'�I#�oX� -h� �׾�F]U)�a�8�����ݾ�C��P�땗G��ھ�pG�m�� Vm5�>� �>�E��pZ�+�,����>t���܎q��S ՘�>�#d68�F>�P2�.��>���9;1X>�ܭ��]�>��p><~7�p��>���e n>��BB!�>tY_��i>�Yw�>���&i>�W�hW��>9�3���b>��v�>����&�>�׶�$K�>�iNn�XY>���y�%�>�D!j> e>Gg.���>)��ϡ�f>��9-���>iE��V>���iy8�>��X���k>�U�:��>+2g�L>�ŧ�>So��$�J>�"��DY�>FU�� R>jL�*�^�>�� |[VF>�����>QOo�4V>�c��~�>p-�*?^�jl�����>�Bu�� ��;�X��>:� QRe��0�:�q�>R� ġ�T�9F�����>���_�R>��_GA#?��,C�V>���4X�> x5�0�h�����z��>��6^a�!bJ�-�>��=Zk���D�U�>�נ�i�H<�K�^�>�q!V��f���i����>��� -Z�G���_Gھ��ᓖ�H�nWʯ}�־��l �4� �7]i��CI�8c�KP�Ke¾vK�z�i��U�#��>�3?z�c�\%J���>���`�P�x@�>>+���Nd����V�>%7�<�A�_��}"ھ_��=�TE��>(X�Zɾ�$&�ڥW��N 9޵��car�^�A��0^�>X�Di�(��2�{���>&ǹ(�F>���6f�>�r�ؔ�Y� �� =�>��ęV�E��_���>1Y�=��C�rQ�b�>�cg�K>˻ܨ@'�>Ǒ�J>h^>��>Ɗ�J>�%����>�����]<>�+��s��>�>K^�T7>� 4�;�>��k���e��}�>�v'�y%>1�b [s�(�@>YZbF�.�>ח�,!J������>]�H�d@���=Yc�>$c��KL�0� �F��>�<��� ������w��K�R�BK0��iA���Ͼ��W��M���uɷ+��~����ҫ���q����pj��K>��t�����aZ��4>w"͜���I��h�>���?2���#�NA>�6�r�˾��� �R>�M����^s-T�O>9o��jqž�a�3&�[>.�3�d,ɾ��OCmc>���q*ܾ#D�{>>�?�\7�Ӿ��^���1��ˆ4Ծ�z�E��@�<��˾L��jT>o�덷Ӿ [`��yL>�{�@!Ѿ)ǏCN��� ��lоBv]��[$�/�$�3ؾ��C���!��J�� �̾BdO�g+�k\���ʾ��!c2��1����׾{ѽ�F.�i'f��-�H�O .�!��<Kھȓ�^�C�x�rBn����>ŵFc>g/���*��������%�־ԟ<0t�S>�{�t��پ���]k>7U <��� g�g>jNLDվ����_i>B=2Ծ_���,0u>5�)��2��rq>��>W`��k� w>6<���I��s>����Έپ,o��ew>���*)�”�Ü�3�ۛv�������֝A�A�:�o�f�ā�W>E ��Ś循���fq>;x]���径]c"P�{>�uG��D����x>�(u�$?޾�fM�ךv>S�s��/ؾ�(��%�>P0=E:�O�/U�>�pmq��+>���q>��b꙼�܆�)K�>��}A"߾����0�}>�v}���_�)rp>hI"�v�Ⱦ�%��{�}>.�3��پ�vQ�7�>R~��a�վ4��E*�>���~dWݾ �u�ת�>��;��㾻�3���~>#]�2L澇��d�/m>��l�f�3 ��}Q%>�z}+%�;k�$�R>埐90y��K2���P���Q�[��1��m��N��"Ӻ ;�`gS�!�L���@ng2�ڵ���pG�����0��%�kU�\I���ϗ���dB�J7�5�����Dt�' ��x K��t���㾞˾�Q�'�`۝ g�d�˟ %�B2�d�⾎�U�s&�/�8E.�8�p4:C�@�%���y�S˾?,���h,���-���A����00��h�b "�<�oC<��㾻'�� �I��eX�����O*��Z���q�<�#Hih����XS6Ҿ�&�M�uq��i*�j�>:��p� ���>ĔE�5t��{�D��>�Q6���p�W���,��>q�\���q�� i=��>�İ(�\r���:�~��>!��D�k�'�����>��|[$8U�_�H�?%���K>4 ~�_�?7���,�a>[��-\N�>��&�R>��M���>_�S�nV>�H�;h�> ����MJ>88W{_ �>2 ퟜC>{��ou�>��%D�_>5�N2��>�Yq�_e>�xc^X�?*m�~�b>��@T�d�>�*_��W>���N?�>yOr�J��i���?���xc����8�?V� ��q�R�mo�y�>՝�B�5\�o��@��?? a�|Y>`�R?b�c���g� ��D ?�(��\u�=�[���>�Bö�UxE|I'?�x`�ļ`>]��n�\?���c>6�a�Θ?�㐈�d>�����v�>d C��g>q�"�> 4���=i>w�*��S?�h(.c>�c��q�>��@�fhV>t�<����>nX�D�A>�m���>�}��1;R>�Mq'�>�'�\�G`>�8ֈ���>�j���\>�؛}��>��mz9>˺�{=�>�XW��OJ>��Ï��>K�T�awc>�!��y��>� i��5m>�ނ�?!��n>B�� 9 ?��Gp!i>�@��J��>���#;f>M��mL�>�[V���i>|��J�:�>��3��j>V�"b�?���}i>��Y��?FίZ h>�����?�Apef@���f$�?�KV %�m�Z?�2]?�f�(`u���"2N�>ΧWSr���ݐ�?� ��U�uo����?�� �D�N>���B�� ?E[U)��{���"���>XN��x�<B? L�>.�$�ʑl�CU�@0Ӿ��C���d��@��ܾ�s� �u���/��>��I]t� ,��>�6�Їwu��^�O��>����x�d�=��e�>x�C�u��`A���>� �+.�g��=D@#jپ%��1 �c�p ��oܾ*CvJ��@�6(i.>C��Yt^4N�,f��Y�fAq�L=��"����۾�-+�&]o�U�\J�Kо-N] oP�o�� �پ P��&g��Q��־"����Jk���9-�о�W+��[m�f���>z��d��u��$Nە��=$�d���Y{�}e��> �pe|�������>���2�6}����7� �>��g �t�~�͋�����٠ʃa�A_͇�ھ xM*�y��~����>��"��}�� 2����>����|��l3d"��>�d��ڍq����Q�4?�N�߁p>���ה�D ?�=8aa>���C�� ?��w�q7���iĔ� ?��2��s> � V� ?��E�\MI>�����' ?���`�d�BM�M�?��z9ϵ|��ߜ�uF�>r����s��ʀ|t?m ��R>�P�U ?����d>bn�]�a ?,����Kd�A�+[�?#ml��t>@���T ?r&;�Bls>U"�k\?Ƈ2(IHp>��ȑvn�>�9��b>�,$����>�ӫ���[>j �B���>�ۄ��g>/�˽�F�>Ac���o>1�͠��?j��%xs>���(?�~6&z�q>U�:� ?8��qpr>�.�Y�?�Ӧ|CU>T�%����>�b���`>���Ta�>h �7>��q��>*Yn���G>�d����>�'T�Z�$>���+��>mg'6�1>h�Q�غ>m�z�*>83�>Ѳ>���A'C>�cB�.�>>��W�JR>�y��>��> ��{�Wb>f��`D;�>�$ u�j>��e3��>ϛCP��s>�pV�hW�>�E>�>-��A(;?Kβ�K{>?�L)v?]1*� |>��=�|�? +,w#j|>Iϯ �" ?�b�;��u>0 ֘p8?o����j>�����T�>��z�1j>�g��}��>x�'Lp2v>����4?LIwڒw>�y�< ?*c�/�{q>��ܳv�>x����y>Π���?l�����d�Nw=��M ?��3Z_r>G� ���Iw� ?����l�x���=���?��<���8� [���>)�ݵ/�~�o��5��>`O�:���X���wx�>XD�l���>?��*�Iut�+�- v?5٢$�">QGW�" ?S�\ s>V�)��k?<8j��x>A��H�� ?�o��V>���/�` ?M��y>�LO�M<?����O�v>`[}���? &]�v�>��R�# ?Y���i�Gq�y�P?#��� x�`@Bп�? �:��}�spAj�?fP�{���B�{��>7�P>����8�xt!�>̓{�|�T���r?XZ�'P>#�) � ?3$ŵ3�q>2�}�?B3���>�b��] ?�ݹt'K�>��+ތ� ?��>�j>����� ?�j?�A�2n<�I ?�F�A��{>�����?��B��K�>:B��@.?nC$4ᭂ>�Z� d?p� *�4�>ƈ;���? ���ga�>��z� ?�"1�m�v>P��-�?rߊa5�f>u�mk�/ ?�;}Eje�y�ē?|H6ս����*ֳ�>ᜫ��遾=F����>����y��N�%�n��>ϯ�L߁�,����6�>��Ϯ�[|���zf�?kHQ ����ڕ�B��>G;b��b�T��;[��>]��>f����? �j2v>�Z1�$� ?��h�ͯp��PH��?� {�ev��T� $?��`��f>��F��� ?��Z�%z>\. �͒ ?d(���+�>��4?ie{Ɖ>jp�=Q ?�Z��>J�t]��?R�"�>��>�@ ?ڦ?�͇>o ,H� ?�����>�>�(�+L ?��`��&�>9�ҙ��? ή��a���5Zu|?!U"RF~>��v'f?�0�:�i>!�Y�Y� ?���„>oL��� ?i{0�Lh�>v�B� H ?8Y>΁w>���Ǝ��>�A�&��e>�T�����>g�c��e>������>��I�X:s>Ma#Dl��>We�G��>�����?��K^�{>����5��><����}>V�v�:��>�x��̨u>y��4v��>�1 ��`>�c�m��>��aЖ�V>�� �d�>צ�~I�L>c0���>��Z���^>��p� ��>X�C �>4�Ӭu?K�F4Kx>2��P�H?a�'J�Rm>���.q�>vhq�o>n��À�>r��0�~>������?W�� $@y>�ɷ|�?ޣ[19e>��,j�8�>����)\>+�u�v��>i�}%�K>���C���>�4���8>�š�|#�>���>5h7�oϜ>�q�R�5>6 x�cq�>[�K��$>ʾ��>�]�9�E>W��x��>7�kV E>Lp*0��>�m� %[Q>?l�]��>g|�M��B>Ѱ�׃�>���*ÊA>$�Ӊ.-�>妅�+�@>�5m��>alTϗR>��Ւ�:�>̻N�K�L>�MC�=c�>�ٮ�f>�w�eY��>��ѐ�,T>���5���>��W5�M>!p5��>�} �u�P>�����>h��l!b>c��T�r�>ŏޒzb>SE�U ��>@ �Dj�T>х���>=&�3�7>s?™�M�>m����>~�1/2J�>��Z=>�n>�?��>��V�rbI>�T�dY �>��w�b>q��K��>�m�V9R>օ�C�>�xTh>! ��o�>5X7��k>�=��u�>����8{>kF��P��>^���Gx>?ՍA��>�#�٭{>*��ٌN�>�sp>^1 ���>:m�Tu>�Bq#��>���4xja>�Q�8��>�9�>p0e>�@3�/V�>˟N�I�9>P�ٰDO�>��2�۰W>��v��>���k�`>s�W�e�>�k��7w>6�z�V�>^�X�>�o>��$���>L��O�x>8������>\ƌU1Q�>�ҡ��N? �đ���>A6����>��ձ�!~>$;��+�>�8��>2{ ��{?��Z��…>&**"�?���D�5�>���Q��? H;E���>��d�� ?��t�&��>�>�� ?Q���5W�>;�qh]� ?(�S�)�>@E���?>$��:�>�v��Ȓ?�� ϋ>x�z��?!܌� W�>DJ�v � ?��g<�I��/�Sl#?�{�!��a>z ��G ?޺�םv>�Zv�FH ?mH�"��>:;�g�� ?����fֈ>��咭 ?tK!�>�K �� ?���4����1�?|Y3>�q�M_<���>|#y�]�q>�����^ ?��ĵ@S�>���� ?�,�B�>�EI ?�=P��>�oV�L ?�<�Ɍ>��v M ?�s9��>�׵�?I����>�u�wV?�Q��Ѵ~>5�NT���>����b~>r��v��>��}'��>x�dWG_?3`~��6�>�/p���?�� A��>{�ɦ~�?��I5�>��X�� ?��1��>t�A��� ?ȣ%�L�>�#�ϲ�?�߆�|��><%~��/ ?�D�>��>l�.F�� ?���˟�>+�u�Rl?��Q+F�>K}�<�?���m�>�dר?;��_���>�Mߴ� ?�=Ke���>IBQ�� ?)��9��>��ci� ?�if�e>�����& ?,\�AIKv>~�2�\/ ?�;�r��Z�cZ�>?�Q�rM�{>�A���) ?�hă)aV>LU��?� �t9t��k�ᛩ?�SK{��`�@ځ�^?.���"1��䣼���>ljF��0�?����>њ��)C����>[��>��� �y���S$�>&<�z~�^U4JQ�>ݗ-ѷ�y�s� Bc��>-3�0V|��m���>����9�y��+̭��>�ċ��y��"6P��>�o�v�`Sg\���>�~��p��3� �>&��NgGu��Ԙ�-&�>��0��JJ����v���>̖�I�>(w�qy?�Y+LJ> �:O�:?l*kХ�i>;���~?�^�v>�@�J�*?v e�Ŏ>�%��5� ?-)���W�>tܾ3�� ?�VH��>��l~6)?64l��(�>c��.9�?!����>�7Τ�c?$��g�i�>w�P�S ?�����>�M���?�x)�H��>���?�>��n;�>9�(~V��>�^�db�>z.���>�Z�uDq>'3~ZC�>�����>3W`���>��� B�>V_�J�?�#�a<�>8g�-��?n��>Ҏ�K?kB�����>B�Z�+,?�1��9��>�����?��~���>�O^�?�y��1�>�`��/� ?)����>�-�Óx?2��p�>�>j��Bk?�=n� �>���[�J?k�@k�`�>� �%f�?�uG5KA�>��6o�?g��4 �>:>A�_M?M7M��>� �"P\?|NH�n��>_�=>=+�>���A�>�F�y`�>č!x]b�>��T�3�>�`V�W�>/E���n�>� � +�>q�~-�>@c�Nx>8�r�7 �>�4“��m>ٝo@3t�>�T�"b�v>�/���Z�>��$;v>�����>��R��K�>��I�/�>Y��!���>�9��"�>��h�Z�>�ΤAt?me��h�>������?���>�Ͳ��>=�Љ�=�>3�����>x�Hq��>���FI?�h��>u��:?!��L�>3�-&*?�9�B4$�>���u��?H}02ԓ�>��#�ݶ?����<�>� �?>Y�'2�>��e-�6?g��ƙ�>)Y`�)�?ϼ�Ҕπ>+�%�?��t>/�Cyp�>�&�r>G��uT?��z4�>0���q?�P9v�h>����?e?�Q2ƥ�N��|z89�>m����c�Y�N ���>r�3�fAm�ƿ�g[�>�v���Q@��!�:��>��3�8?G>�y�W�u�>ё��ne{>1S ���>F�,�6�f>�S� �>9.F}�t>�����>�$�F�v|>�;�6��>�ӏ�q�q>�) ��>8 W�wU`>+.�����> �x2��f��Kv�81�> ���� @��QN�L��>u��BI>�=�F,��>z �$��>N)�-�?9�"<��>9�}o8�?;O.��ِ>�S�5�?T`_�5,�>%�o�xs?�J��/̂>����u`?]a�L͋>�H��i2?��Vt�>4y��g�?oX݄��>�옲Vd?���m諏>�1m�d? +e�]T�>��{���>ʆX�/��>7��11Y?�����>w�G�4�>�U=]�r>�Op�'`�>�E��t�>�$\���>ݺN�=i�>�����>Kt�9[��> � �Y�?�G�;،>����b?1�� �u>h��-��>��I:z>������>a���y>��Ə��>����c�m>YВ �{�>WŖ8�[>� =����e>��ԾmH�>ο���o>G�s�HZ�>7��"��q> �)�w�>��]�@>؋R��>�'0�� Q>>�z u�>�t KL`>^;�gM#�>�dc%��d>S�Q����>���d4d>�ɠ���>�$L��}>D�� ��>��Y�g�q>�u�aX��>ɣ�"q>�f�?du�>z���pWr>��>;���>p���1ă>�a���A�>�L/��>��櫓F�>���j�Y�><��a��>�<���>��E �>$d�8�G�>�ʗ�>a�*��>�qz>?��>gT�1�>i폡U_�>�E- �>�7�� ��1z�z>AH��QT�>���̿�x>�D(�$�>�4r�<��>������>���h��>�|��/?�G��uW�>����g��>5�j�H��>�1�?t�>8����> /*z/p?���Z=K�>"8W�]?d��|�>�ad<��?�3��`�>�u��?�ڭ��>���2�> ��+aQ�>���U��?��þM��>pMk���?*)=@��>�6�H� ?~�8Bk�~>h_�ǿt�>��w$(�>�轏i�?�G���>Ui����?e�T��ݏ>�<� g|?dYw���>y�Zŗ�>e�����>(�J����>��#ƽ��>Ct�SyN?^D�҄>����.I�>϶_��e�>�I���>V ����>^^U��>��ɋ��>��6l0�>�ӏ��>��L��>��6[��>g0(��>���Jtk�>|u��d��>������>��D5n�>5��m���>^Nc9d�>zX�:�q>����>�…!" �>�uꘪ�>ED�C�b>�Ww=���>�SqV�x>ܗ"܇��>�'�g'�>������>�`-!�>C��nG�>��c8y�>�ئ�h��>��s 5�>�O+*.�>���G�k�>И��u��>��k�t�>�� ���>㳉� ,�>� �T� �>��q��R�>�"�g��>�T^���>S9G,5 �>&��Y�]�>���7��>6f�)Պ>�%� �a�>r?�j5�>�@ LR�>*'rʧ;v>&����>?0�l�6�>����L�>� �,$�>._, `��>�@�q#B�>8��h1��>ۣ��?�u>���+��>tj\q�>�v����>%��6�>�٠�W8�>���$��>W�}�>��i9��>- �w���>e�� z�>&e�G��>ĸ<(�>�Oފ��>����C�p>g���8��> =6�7|>�}�n��>��R;��>�{p����>l)�ƫ�m>h�4�'n�>=`��Ή>��vh{e�>ɞhۅނ>�(��� �>�����>�7!��>��f�.�>���$���>��`W�>�i�� �>���X>�"���>#Zk�\>U�T��>��iLS�h>�FX�&)�>y;��f�a>��(kE�>V D� i>�g�4��>�3�ﮟq>hm=��d�>�&1Z�Zo>��t�w�>U� ��s>����);�>�."!R��>�9"���>I�����>e{Fn�J�>�,b���> �i��>�;��ą>b_�_Ex�>��F�T΋>���B�=�>;�y��4�>��z�u2�>c��{�5�>��έ��>��Ec�> tEӫ��>v��:}>���_��>���Jz n>;�p��>4�����y>� �ԓ��>LlV��[>���=t�>S`�.AOD>���z�t�>�i��sA>������>�� �J>3-E��>9 a��Q>R�����>��ԋ��O>�?��;�>D&�Y\;D> Se��)�>����:>��_]�>.cd��bk>�}�*Dž�>`Dp��wA>��:��>I`3�C>tH9[�@�>��j�t>��� �>�.��{L>D܄Q�G�>"��x��b>��L3��>�U "Is>���j��>0�n�Do>� lsi �>�_���w>a�H5g�>��o��-y>�������>0�vf ,>�s^�f�>�&x:>�μg��>Ss�1��u>*)�]��>�3;�9�l>5P���>�: �^B>�m���B�>�$��|s[>��VM �>�3S�E�y>!غ ��>�/Tc6n>@!���>ϟ���[>Ͼ�&��>3���R-S>�Z�b'E�>XM�RV>d Z�f��>/����r>I}��d�>,����p> ��.$��>�c�V�=>������>�DH�@>R�G?>�>>wRA?c>�L��>l`��Tg>��8q0|�>�}�;�s>��}�!�>�[�� �y>S�e�E��>4��w��{>V��Y\��>������m>���O�T�>+�&��Jt>���tL8�>�� d�T>lxX���>cڒc�P><�E��>�/F��(C>�@�v�>t�X^>� ��>�\Y0�:Q>�3*Z0Լ>��i^ep>����'F�>�L����s>Pы�%:�>cp?���G>'����߳>���WhA>�g�ң�>�X�vmLv>B �">�>Od�l� p>uxSx$�>��4{P>�2�>�>��?���Z>��g�I�>p����s>X���5�>k��r��d>��0�2\�>^Fˢ�r>3�2�]�>ZP�-g)v>�'�t4�>�p�S�Ik>�h`���>T��-*Z>��L���>���6�h>�����>��)K e>����(��>���(�K`>z�I�!j�>r����i>��#3a�>��+�pp>�� �A]�>��rw�dl>_��탮�> ]� ��*x��>�kkl��V>��u��>.�Ϝb>��;g��>E����]U>r�C��;�>�����Y> �O��>���>�d�A��>G��Ls>���n��>�7Q��;>圍�P��>�9�R�l>�<`j��>I� R'U>l�0Ͳw�>��F�ܚp>U��� �>18�4�H>�f5g�>�S��4?W>տ�p}�>TC��qsz>&���E�>�����g>�f���~�>��.�>\0Vޏ'�>�[����>��T6��>����Jr>����>?��r�~>�e�HT��>u��a�-|>v�(~��>��J� z>`.�^l.�>���+>:�`�z��>��T;�>��9���>�uW`,�>��{�> ��+,/h>�����j�>�"�(�z>��hͫ��>� ��:�y>� �r3R�>;��=�r> |���>Ǵ_}qu>RN���>��� 擄־��>���F�Ie>��v!� �>��Y�>����=�>�mz+(0|>ƯDM3@�>���A��~>�j�NF�>"�v�z>����X��>� Dt��7>=��7kP�>�†�NTF>gb ���>~� � >>�M�e�>�֪{yH>�1�X2�>���ӕ�N>�!�U*�> �[��{L>3gw��>���"�H> ~~�1�>�0!��Q>ּ�G�q�>#&�;S�b>������>P�J���>��|�8�>���k�gh>9��٥�>���?�u> �KG��>"]��*�>dr���>$����>����&�>����9�h>��鼬��>�E�H�}>ʾ`��#�>y� �>�K�S%u�>����g�>������>�.�L�>��<\P�>|i{HUʄ>D�aU"�>3L�b��`>��e&�>�i�h˄>2j��G��>� G [��>��9�8��>-�]JǙ�>z���/��>�$��^>��u��>���i>L���@�>�<��*�>��7���>�(����i>�#�$�>������`>���>��>��8�J��>��C���>T�^:��{>���ah�>p��y>/)[#c.�>"ռ4%~>�ÏL:��>�QtH&��>��)�$�>m�4�=]p>�M��>R�����>yA�4�m�>�ſ��z>��Ϥ���>j,F2z��>��9F��>�LljL�>�R � )�>�Yϵ���>�>y m��>ݍJ�/ �>������>�a\؁�u>� }�~�>�.�!��>")c�p �>F���d�> �R��>�G� �~>�=���>�N��F|>�p֕�>X�U���>�����J�>�e�Nn>�e��K��>L�^���>=Q�W���> *v7rÁ> �� ��>N�| �܄>JM����>e��Թ�>�}�WF��>�ALȫ)�>������>�rn�SAq>x�4k)�>z§�z�>�ܚ���>+:(�xT�>nG83:��>ڣ�2��>.Q�24�>Zn��z>��~ۻ�>�q�����>K9{���>�X�Q�>� y�\��>}�k>�>� M碹�>7�����k>]� *\�>x~F��s>���Č��>Vs��4V}>N2Q����>�� {�s>m���g�>�Z�bNm>��!J���>x�k�(_�>FZ���>'�P)/�w>0o�|��>�w�e�p>mj8;_�>�ځ�!y>ytˌl�>k�.Q��>"lp��x�>����e�g>�7�(��>����nr>�xle,��>�Kײ��Y>��-��> �� �b>d�a �>?.D�dZ>����H�>Ԇ��Bs*��a��r�>pvϳ�S`�]�eW��>l�K�S�����a0ľҩ���f���{c;ʾX'eY@p��%|�褾���w9�m��f��Hbʾ����Z�v�]��?/�>"{�w0w��O�N�F�>�����|�#���>X7؞Os�7/H<���WD>�~c�J�8�w�Ѿ��:�j�'���"�`⾚>P��D����}%߾d�t���@��G0x��}4W��3Ѝ�߾��\[���M��������S�'��s�D߾ɸ���J[��qȐ��߾���hs>Qg��}�侎�4da�V>Af#m��[���[�_w�\���� ׿�0�>��1,c侖��u{�>f!�?��]%\�Є>�xbx�ܾ�I��X݃>����Kվj��E��>��P������)��>�y�,`��dΆK=Ƀ>��?�>��"���|;�>Q b���ݾ�M�&�>�v^jE��b4�>pO@��@Ҿ� ����>�C_�lo׾r�F�e��>$���⾲Ƣϵ�w>b*���z⾚��Kdc��5$�X>ؾV����'a��.�oa)޾��T�T>�F`��&��� ;;{>:h�� "޾-���w>h�V�g;�Nu?A�U�>�*���2c �5�>*��P�Ӿ�Ј�\�>Q���$���\˔>Ƴ��޾ӠX�M��>H�E����-�d�p�>?� ���ھ��\��><܈3�׾�4�ǩ^>�����$ܾOIs�y>s~��H۾7bJ���>-��(ྶ��čje>e�P�I�ؾ�Do�GB��k7�{ؾ����q>#�k�־xj�Y�>*�d�2�޾�z�G��>��汚�߾ �(��r�>���d�i�‰��>~"���޾�$�q���>q�`&�۾cwU@(�>=�$v�b޾�ӆ�m��>�87�g�о�C�L���>�eK!޾�,��g4�>�+,J��ھ{��N�>� w%�j׾{ȎGB��>�u�5�Qݾ���*�>4��ݾk���|��>]=N�%�Ѿ��{A/Ԝ>X� ?h�ܾ��V����>�m��Zݾ��J+%�>���tپ�d+D)�>�vX��־s~;���>���B@�ܾ��S*��>�Іai޾!T�=i>mT��Ҿ �ʰkE��]���Ӿ`0P݋�4>��Gf�о�F/>p��"4��ʾYqZ+�k��esH`Ѿ��R|7o���S�K;�hU�h���H�6־$َ/�=�%�5��{ݾRՋ�gb��K�Ҿ-^2�'ea�o�C�!�׾W-���M�3�c���޾GbZɍR�a����R׾�"G��h\� �;2վW�>� �S�2C�R�þܧ3�ai���;�~*о��`7�q�0���y Ⱦ����e�'؂��`���ڕ��p��ש { ��pXc�5nX�v6ʇ�o��Fr����Cb*�����T��3>�2�&ɾ���)(Ef�l3�g+Ǿ ��)�>���.�Ӿ=,���4�> _~�%־PԶ��>&5���Ҿ�����>���fؾŪ��>&�ʨeݾ�h���c�>S�^s�ؾ���BV��>��|C۾��~� ,�>_�B�$�ؾD)!��ѕ>W�\�1ӾB�?_[�>�� *�۾����켝>�_~�"wܾ>��ᰞ>�+䯬Y۾Ȟx| ��>A��h�Ⱦ�sf�)p�>��+7־�G�B.��>o-h�6%Ͼ����C�>�A%.O6ھ�\L ?��>�MU��ܾ8��{�ˆ>8H���.Ҿ|<�q�^>}�\�Œ��+wLNi�}>�{_0Q�ǾXJ��u��>��)�[�ؾ�E�HS�>O$ՠX^ھ����T@�>c I���վw��x̝>�u}6wھlȋ7X�>(��$�Ѿ���Þ>��f/#Qپ�Y��L��>�iW��Ӿ�f i3�>4Pנ}�Ͼ�FI W�>���O�Sվ~/8�f�><�)��׾/���>�����8ؾ (Ɣ>�-�2͉ӾDe��>:�>7���־� ��d�>9At�oG־g�St��>h�7�6�ؾ)`� �L�>0��i-Ҿ��6+�>�Ȗ;������>@�il�ɾ�"Yه�>1��� Ͼ_�ɬ��>J���Þվ�Q���!�>�qZ�6�־} �q���>*���c�ӾU�R�ɓ>4?���;I���F#�>���b��Ǿ����ț>��� ־;��B��>D��/�վ�o�`b��>Ov)F�Ѿ�Դ�)o�>�n����;w����u�> Y]�S*ľS�T�(�>�R?о�~M]l��>Nw�bFSԾ � �N��>i(a&Ծ����N�>c�%IbǾ�_y��h>�o�����x����r>����U~žf[���0>�y�Q'���g=ȝr��cTys���5�Q�q��d�X c���FM�Co���ߋʍ��`P���Ge��������w�90@�:e�0䣾Q� O�">��|>ߵ�JYP~�Vn>��5 �`��iڇg4�>���l\#¾���5Z-�>q�U��]˾<5-I��>� ����ľ�U6�x>���5�O���-�)��>q����;�6&�Ӥ�>��<�5�;DJ�SqNj>pͯ���ǾK���>™>Gw��Ӿ΍�%�4�>��|��Ӿ�[��K��>��{nd�Ӿ���DSv�>"��,A�Ѿ��J�׆>�Y��k ���(�D���>[�l.��Ⱦ���=�>R�8\�ϾG��ns��>T���þ)�o�F�>���R˾/��u�>�=���;��q��>�;�ނ���3 ֑;��>am�x�о^G�}�2�>F8 !�Ͼ�r*�"�>�F��`Ҿ�b��W$�>��t��aѾcZ��X�>H���˾�v�"̖>ֿ ��Ѿ����]�>��JYsɾ) �2��>�,��ξA��̒>��QH�˾�v�w�>U�u����f��\�Ɛ>���5�Ⱦ_#���7�>�B�P�����f�]�>+�žZA ,��>K`�{)о�G��j��>�B>̃ ʾM=� jB�>m��ƶ�ɾ�z�o؇>��ϯ}��Pro��P�>�`t������Ӌ>��K%�bľy�u�^�>�[X��غ�;��>�5->~���za��M�> ����ľ�4�"2u>���<�t�� ��'h�>��%��¾�Eј=�>�Q�ڶ�Es_���>� �M4�Rƾ��TE��>7�: �ƾ4�: �‹>LU2�Sľz�<��n�>qd M�1���Eh���~>j� U��d�dq��>��'{�Ǿ |V��>�08� þ�m��t�>��cdtƾ�E$����>�.��`ƾd���R@�>����v���l�04�>�3g\��_��N�>[�Oyy�žf�VÛҒ>�P N�=̾c�8��>y���3;��eŴ�>;���_ʾE��4'֍>����z�Ǿ�R%d�ڃ>N��/������$7�>c ��R���9R[�><�6Av�����"y><�+;A����xR�w>X�(�ޥ������'~>�����E��T���ۂ>�bj7?ѽ�ۨ2[��>\��H���NF>��>��zV!��m֥~�{�>Ib�g����pn>��'Ț#�����Ǹ>��T0���]�3�|>��Hp4���˛h�'�>C��0r��1�9�7~>px�$Z��5Y�c��>����DZ����4 �>=��JT����U=�{�>9� j߾�(��z��>'���깾 k��3i�>k�c Ԭ���L�ۗv>�/�����3pC�vhq>�e�SZW����׾�^w> �:Q����Ӂ���y>��L�����9n��>��k���F���΄>�wMzپ�r��<��>+�.�����%qA V̉>������¾Pb�����>��L�B���m�+�>��]ڤ���n���>��0.������+-�hy>��̃�$����g�)r>h��Iө��V�\صo>�������o���g�~>�++K#޶���#K��w>��!m���O1��t>Ot�j����cM�p�>��4��t��?��&ix>E�)��౾���.�s>��vq.��O.���i>��r��ܡ��-ef�Kw>h+i�ۉ����E� w>�I&�U7��ڰh��{>�b[|3�����7BoHu>Z��/ծ��v�g~dn>OP������W�_}>�s���!����x⻰{>�I�U���I�@��u>��2~h���T��z>�Z@������vf�?v>Nj�Ȏ ���p^�q>y=7:v����ҳ��t>||�eǫ��_�%`i>�ƌ��ԡ���.dO>>�+���}� )<�*�W>�d��ƥ�����'r>gf�It&���&Z0v�f>'��oU����ϣ >t> �p�s����f���p>SE��Ҩ�p�a<b>##�+����ׂQ�p>�ѽ�o��m9D�J[>�RR_eÑ�L�S���j>��4��!��"]>Į�~��m���g>1>4ꟾ�"��ݘk>:�.�Dp��:��x]p>f?��c��6�c>t:G?ߛ�Vb/�U}e>��Ld$��Bc�D/m>����.��)�;��uc>l�����w �+����#[�8PW>��}��MnZ��_>ϔc*�&��ߺ[VpX>43bXZ��Gb9#��]>�~��Bג�����,M>f�>�Ӊ�I�/���P>�^a� '����A��G>�{�h��`�J�؅@>��p�,������\>|�����ЕW�j>�������c��|f>���� ��2�p>jы�ڢ� >� ��{>i~�?����$UT8��>�I�5>�Ǿ�?n�%X�>fޯ^�}Ѿ�� P�J�>� ���k׾���� � C�+Ծdcɪ:+����ސ�7�樃����i߮�>r���a x>W:2k�p�>uT�K}��>A���6�>c��� L>����X�>����l��>����f'�> �E;�>��}��>ܦuq:k�>}:�"��>|z0� �>l�i���>;q�;�p>��W��>����J�}>\e�M�>np��k��>cd@��>P1R �>mj��-�>��h�9�>�S�ȼ�>���"��>�y����>7VE�� n>�ӟ� �>�7�0I�>g�ϐt��>w��f�՝>cL���1?�~��]�>�L���>�;L��>[/#�b�?^3 ���>9[����?�#_���>�O��z�>��:ք�>�{�A|?/��-�z��c�� ��>5u0�l���.�B7�>�?����\>Kbz Fz?b�pK�>Hُ�{x ?��~�ص�>eB���h?މқ���>���O]>?��t]�:p>��ߦ�{�>�|V�A]Q>_�Lܼ>�'�pL�?>߯)��ж>D�Bg>Qդk�/�>�'�o��>����;?�����{�> ��X ?kR�h�A>|�� [ ?r�6���>F�؎�m ?��c�Xn|>p����>�'�]l�f>�4��2��>���?�u_>�ݕ?��2�O>q��2�>Tb6^�>o>wg�<^6?��FD�t>v����B�>8��{m>ܡ׺��m ��9�Ⱦ�����g>;��H���>�� 3�Q>���'��>v�ye.+d�X�"/�>�6v�d�e����<���>+��Kro<��"���Lо� B��@C��H���i��&����}>�L���־�R�J�Ws��ᔝ��>�z�ޥe>��@W?�:7� d>B>�v~�>���y�w�wԑ(g��>! ���h���o�;�׾��%�k�~�@/'c��>�H�'Q>�?��� ?���xq>����P�?���`� �>kT�;�?�����=W�Pn,��� ?6~��K4z�w�Bo�?չK�>�>XU� ?�VD�V%v>gH`�c@?��Φ�n���ɳ�?{`�c�ʼn>�~V���?���$4h>N��ɷ�>b���X>��ŀ*�>� �J%3Z>�5~��>�&Ȝ�68>�h��`�>{�#��,�>L!�y��?vF���>�ۦT�� ?'��d��u>Y��,}�?R�";���>h�N�&?�_qG��>� o2�>�{�=��>l�B�/�?���_/�>[�3fo?G���5�>��kT ?DHy���u>B��&�>���T��~>%��L�+�>)�ja�Pu>�X����>��^��<�>!q���>�*���>���p�@?�F�����>>j o��>�ǫ���>yҽ����> i@cN�>�����>͕�ć>H{�w��>ඃ���>�ZZB\�>�~y�'p>�����>^'����_>tʖш��>�#�!�{>1\����>���כ�S>��i��>.��NS�d>\S���H�>8s��V��>�v�H�>V>rH�|>����T��>��$(Zg�>��(��>#j(���~>�����s�>χ�07�>4g�����>�QE� Xy>8�ꯑu�>px$��)d�J�6*ޑ̾ueZ�>P�a�Z 㾷1��t��>�� �ܾĨ�7&�>Φ��@!־J�}#��_�/�#L�Ҿ�6H��ϝ>"E�<�]۾/����Dc>��wv)n����9�֋�>�Z���վp���͸�>�����}ȾN'���Y�> �Ƽ��Ͼ�#�#�>�P��w]̾<�X�rJ�>�ȧ*�Ⱦ�I���Q�>�M���ɾt�D��x>`�HY���7�����i>���>١��\�%��>�[/�8I�_�C4��S>W>� ����pw�T>�.�r3����0k"uF>�W W$�y�~r* �P>k���䂾�Z��_E>2a( /x�y#����8>y���e5m��)�hb2>׫��e�4F�e>,UJ�?���O\V~P>N{�Z�`������b>٦1eؔ����\c>���R_[���Q��_>";���K����~�?T>o��jt������DSX>Κ���؊��:��g�D>�أ�v���kn�n>#�8Bt���������m>J�FrW��X��e�o>;�j�׬������6?p> �N*�#���\��9�c>v��1��������c@j>�rD�r����;J�2n>�������Qs6O�u`>+��$;��y�.�i>+|�p����k|�ZN�e>��� �|���"ϼ�q>rzk0�C��-��栿n> �Tg�p��KA�q> �0��R�� V�p%��?��ش�c>��E� ��� Y&�-Y>�0&���bI��^Ty>'���VԱ���ˢ͝w>�y$>���iLOE�i>x:\�����F+�)ZJw>�8�\4���Z�̒�u>�$ 0�ud����~>渿3�۲�[xK',�y>�2pF���m��|>� ?�氾 q���s>崶������ַ�N�>5�*#�(�����p�>���ڧ��/x�_汁>?QM �*��2�{N�?x>'4�~�B���<����>�lC7���Ɇ��Yc�>}ԋP���=v���>~��2���(u��&>]�v��׷��)\��|> }樣Q����*F�>�o��κ�e�DkE�>�(l G̵�!�W�Į�>�;�,�亾����j>���D*&����=0{��>�~U�����j.�p�>iu-ϵI���P| �>0̇M����Šz��>Y0�����o��ނ><,K����s����s>�0��!ʸ���A-V>��gd���s�ouzi>5A�gBݬ�����U�,�� ��f����!s��\��4=�ƴ��^j�S�����Ϳ��$�Ί�.��Y�_XB��a HTT>҂6�l���� rB��x>�}�H ������_K�>2Ҡ"H žy@8�N�p>��-��r����R϶�>tf������=��. �> �����������>Stmk����5 AS9�q>K�L4ħ�J�z)v�>D�����&~���>���U��¾ ?vI!d�>B��e��Wq�Py�>,����ž7��LW'�>no��s�þ��\B��>w��e�¾�Ѱ�`Ƈ>>��{9žo���Ł>2�E<��ľ˅���>�4�d�ƾ��C� �s>��Qu����.���>0U'��ɾ{hpTn�>6��*��þf���̊�>����xɾ�O�Q��>(�gߟ�ʾIU��F>"�E��ľS4��%��>Qc *.1Ͼ�A��ʀ>�;}a��˾��F��?�>��`N��̾R�͹��>M��R�&ƾ�B�N��>g@jHhƾ�^ Q��>x�]�иϾ&x,D�\�=� ڕξ�v�� m:�,BSz;�ɾT�S�1X����~���E�>�?�j� �\�Ѿ3]��dM�4���Aھ-%⢱R��O.�ZsؾU>F�Q>�tƽ?�Ծ��HA`>kN}�nѾ�A?� �>�ÜLEԾ�q����>8kޡҾEɳ&S�>v��YϾ�}�X �>���Dn�Ҿ�u���>U �ʾTPoNڇ>�M�`�cѾ��Tl�>��|�=.ϾP$��>�>�2�J��վ�7��5��>��0UUӾ�]�+0�q>q&�,��Ծ96ֺ��b>W$��ؾ��!� �>,j�/�־v�c� �>1l�m��پ29�J�<�p���ھ�g�֡5=� F�߾��q�r�v>�5���T�χxh>C�8���߾�c=��/~>�@�۾��,��y>M��߾�ތY��z>܂׾ڕҾX�e��j>�l�� ˾6)-V�7w>L�l0���/��q>]�d��e㾱O��I>���⾡+��WA��z:�"㾻���;��-�J�n�#�х�J�5;�^�g߾�[���b�-&��&Ѿ��[��s�w��?��ƾ.p6 ߆����5 �>x=�A�x��Z�1���h��Q�w���+�|�>� ���=[��D�.62�>��i�e��>>qSY8�>l*v�s>�n��F��>�N��>�a�K��>h�}=�ѐ>��?��v�>��Pcۄ>h[g�'�>���x�>�M[�J�>�:��m�j>� z� �>ɗ�MT>4D4,a�>�J�7`>�p \�ɷ>�cAP�ن>�.���>i��ޟb�>�$8r��>�+�?�f>��3�A��>U�밍�P>k4Y~��>�D'�>6\>�;���>�G��Jp>��v{�>B����u>Q�7lQ��>���1�> ��b: �> ��rr>_�NJ���> ��߱-�>�tDB��>ۥR�Nt>�tAK7~�>�����[>k69Lų> ��@��2>!���>_S^3V>��8�[�>�����}>�����>����{>!�8����>Vw8(��}>���pC �>@�|ȶ�>4�� {�>e�'�H>i�����>�W���]>�0��5��>*K*j��>r�M1�>��Vs�>���r�f�>��3- �@>d�)� i�>‹͎�h�> ���Cg�>Ž�s}Of>J��5�>�����Ć>SJ�ly��>��֕m> +TM�V�>��{�k�o>Ҋ"E �>�;,��wy>� ���w�>�����>bw�0�>�X�x��>��'p�>^��H��>S�ZD���>�,D����>Lt ���> ߒ(�q>� �X���>�cM�0C�>'|ś���>��/��>�?���7�>]���>��_YlL�>c@C��i�>±ȗ���>� 4g��>�P����>�7�����>��>����>y��X�t>�!���3�>?��N�z�> K%��]�>�&�ܢ�>I"�0�q�>���+�>0%_vݢ�>Yy�й��>��M㚚�>��l�cL�>�?! T�>x�~�Ԑ>0� 6d��>6�3,@ے>����nb�>��X�m<�>^��ew��>x�C|Lŕ>���G���>��3��{>���i%��>� 0�呎>��%/���>�_�Ndۃ>'�9�W�>��Ҕz$�>4�N���>/O�>�>�a+R��>F�G9�R�>l��2��>���g��>h�����>ܹ�0��X>߯?�]�>A�y��s> �^����>��T�}>�L�,��>�b'rAt�>��s��>%�S�`�>�{*WN�>W�w��-�>:������>��S3u>T�ytI��>�D$��o�>�ـ��>�����b�>L#^�]}�>�:#^w�>k�I�Е�>KJvD�>:�}��?�>�g �d��>^j�)�>iƿ{� g>.W�����>�p��~�^>v�҉Z`�>����Tg>Ie��l�>�"Y3�>���P�@�>B�c��u>�ᢙ0��>�Ns>��g˪n�>n�R�8h>VM�`M�>O4_> �J=���>^�{��`>����>(Z��Hy>��lgG[�>��uz���>� ډd�>�M�/�>$c��s�>)�!UV�>زr���>���"�*�>��%����>���:�>�bmN��>����j�>G�i�rb�>z_���^�>�x�[��>Soȭ�|�>��C�da�>�(�5H�>,�(�?��>M�X��>���d��>�h��qm�>&>X��B�>(~���>�ʿ����>��<��7�>[∝Q��>Z�k|_e�>3���>�8�rg�>�7����> Hv�%�>+IiW${�>Q�m�Ӝ�>��n���>Q��l���>+G���>BL5��>��|����>��oT�>�7k>G�>w��x�˕>7,I�Z��>L�U�+�>Zq �� �>�c�\�+�> �(���>��(��0�>\��K� �>*߆�y�>��0�z��>�)�+��>�Z�+���>ݒd� "�>z� ���>����|4�>6��t��>�H���>:Pk�&��>�fd _�>�A����>s�yp�|�>���o��>yc'>���>T��X��>�#��+�>q�Pe�>�5���i�>�\)���>�q?o�q>� ��>� �Bψl>!����[�>X����d>|�{��>�'v !Q>gw �濶>h|�6Xv>��X��>.ի9T�>�Ċd�3�>(�a��Y�>n'|�z�>҇�GU'{><�Y���>+M�2��>��ZKӒ�>�����ߑ>zq@���>I^h���>��q�8f�>b�~��0�>gx�)���>/�i��'�>_4��8Y?�R�9F�>r�om?�.�mt��> ̵m�?f�u�^ds>���`�_�>�k�����>�4>���>��֒Ē>�&��f?�5��[�>�*h;f��>��q�:%�>��z���>R��5Ltr>���B�>��SrT�{��>����>��)&RJ>`�O��u�>M�� \>6�'�B��>�V��X�>���!�?���(��>�⃧��?h�.���}>v��#���>�kNѹȆ>����?�_�݇��>��?���?��K"�>��Ћ(=?��c�V��>l �.?;�ɿ��>Ni�3�?�=dҝ>M�y֙?��u#Y�>��{m(�>q�c6��>y���н�>�OQA�>�����>�Zb�0e>��v��>�>#MS�s|>9{g�C�>��D��Gw>��"W��>�K+%iВ>v�?|��>W���>�z��Q�>�thmԍ>��B���>9R�� �>(]��܀?"M�3ܝ>�̃*�z?7ж?7�>��}�?#�I�>�3���J�>� �*G��>��/?F�>ϳ�I���>� !�M�>�~*˧�>u��N>�?H�k?� �>�S��].?*_/Ͷ��>�V^3`+?��ʆ�9�>�o���?���}#�>�5vo��?e w���>qT-�;l?�b\*!>E���:�?����s`>��L�O�?���@_���ڂ�#��>[���I��!��g��>��[���A�Z0K�>�I'�뷉�7��`�>� A�*‡�`Ji���>끕JN�~�[֕�A�?� )��IR���d��$?~�ߠn>�>�l�:� ?J�����w>?���?�Z.ӠÕ>�i��' ?]=����>�f!;�� ?�/N*��>�yN�K�?ĈJ.�"�>p&}V�"?( $�+��>S2ֈ\?����ݑ>���h�>l0]�>.�9�i5 ?����B��>fN� �?�s[�#�>3�Ě5?A��q�Z�>H��|8��>��[|D��>-�7�>brɰ�Q�>���#��>,'�)�w�>s`���>�RZX/=�>�kc��?��ۻ�>w-Q��?��.Q�>���?6��D6�>:o�� ?��e�f~>1Q#��b?]���jl���߷�?���"ŠX>�4�2�L? 6��Ŕ���˝l�>�y�&0�>zR�Ţ�?�Q<�>�wwlJ?�-S���>l*�5#�?�r�S.�>5udX�?=⽦�>uK*��?KĘp'A�>�0��w�>��2h�{>���h��>֡���t>��9d�>C�z�f�Z>��Oǹ�>Sh��b>�OM:G�>L���[��>!X�|��>��u�M�}>.'�I�-�>� �?�`>)�3���>�B\�q8>�@��>�O~ h>;۽�T��>&�A���U>E6�>����P>_�9�$�>��Gw52Z>�Z�7:��>���)�p>֙ �Jy�>��� �Մ>��ڇ�f�>����>z�[~`?�.�h!�U>��hNj��>�� ��yV>ˈ�= ��> �E��$�>I��n��>RJ��=Wq>��T��>ޠy�Ѡ�>�|�W���>�4�@ރ>l� ~G�>S잧ܦ�>� ?W���0�>���ۻ ?�K��:��>6'S��?aEu� ��>�RPk�G?c�䰬��>հ XEO�>&����>����k{ ?6��^(�d>%���X_?9�X�0�>����� ?;Z`����ר����>��%M�v��,�f��?�&�! ;���j=�e��>���=b���/�Y�?�屲�Ă>�wECz ?�M��;�>�d+e �?Z��p �>�4#�ڝ ?�)<�^ �>� �u!{ ?��A�Z��>��D�s�?ڣa8��{�V[�W>�?�ỎFֆ��$j���>�&PU�>�E�z� ?Vpr��o�>�m� ��?aܻ+��~>���>(� ?� x����>E �GG�?åʋQL�>Bm��� ?�d��O�W>���Bt� ?�5��ı���� �Q�>h-��D�p� ���� ?j5dv�>�G�*���>xJ��@�> ��c�.�>�1�c�5t>ړ��;�>u��sBh>��?vi�>*�DM4�>Bއz�/?�B���ˌ>|ƿ@� ?���Z�Pv>:G�ߤ�>dc��B>j�EjA��>D!R�93>b�·��>��ͱ�-I>�8�_�>q�,?6>~\��>�>w H�_�q>��va��>3�I/a>�w$m���>���M�|k>n�h� ��>��v-{|>�� ��r�>��Y$�ā>��9q���>E_\i���>��^k �?H�0Wh�>a �:�9 ?���Bv>x�P�}8 ?�� �|���L-�?��>�Hq>ҏy�M ?�^����~>�\y� ?<���KB������?% l�{bv�8W�?I�J#n��m˅xf��>���S��/��`�>�ޞ�e�y�<�H_bo���^F�Qq�Yv��j־ڬ'n���ě���>��<�����Ve� e�>�P�������a��>�<��#F{�%A"wZ���[��Fn���P!��ؾU�U��R�z*�_o]��7^F7l�q�-_��ھ>�-�p R����'�&�Afe��x��%A�P�>����M��*��F��>����Հ><�7�X(?`0)e�h|�X8W@�>~��qܲr>C0w���?-�cc�|m> ��?�,'0��>��Sx?���1L1{>�7�_���> �iLjOW>���:^��>Q��O�`>�jbg���>wg4?4Cu>���ܧ�>Ӥi90�r>�#����>v��u����Wh�?�g�l7x>]�ę?�b�D��u>)$���?%v�!�`>2�ۑG�?n2�[�E �}�&��%?՟G���d>��<� ?�?�@��u>��x��>dy���s>,U�V�g�>�X��|X>�{��T�>��eE��a>�0�]��>#}@Ƨm>�"���>@��LZ�h>�F�����>�p��p>���CW�>H��?%1q>ٙ\���>�_��Ll>P��҇?���`q]�V��n���>t�j���f�",�o��>o�nhy�=��O��>�`�F%|���)�(��>���>�p���0 Lľ�B����$���f�X�JM��.�*�1�@TI�r�Q5:�3�.�����Y��),R3��6��������1�y�H����‘�d>6�o�0��\�8��YS>]i�E�q5ӡ��[>�/�g��B(z�*p>� �a�a־䨥��&q>�./nC\�0�i{%xZ>%�>N徨z[�(j>�"X�B>��+�A:�����(v{D�p ��9[>��m����P( q䌵1tݾ)���U>�".Ȭl̾ ���qY`>E5�Kӎ۾m��dP&�W��EE׾��'�@>l��L��㾞F�_� ��u�6|ھ�^���,>�1�( ;�h�*�!������׾h�v?� _6���վpI�}�3U>���D`�Ծ"��?�V?>"6"��ҾF��d�4�A������~�����[�gp�u��>6V>�����VB�g�>Ϸi=�=�������>���So�V>�:�&|�>�E���I>�ex�@�>�Lt*��`>�B޵���>� �ey�J~T0�><�L ,>�o�f]�>u�x��BW� #��n%�>�3&k`7����o͊ؾ8TH�ve�K�9!���>u�]�5b���(�v�Ҿ�6�3/eD����]՝۾+5}x*\i��^�~�&þo��Dc�X�>ᒤ�>t���$q���nFU��>�P�BT>x 0̦�>��q�#P>��p�� �>���_��_>�PX~��>A�v(F�U>�%��$�>9����?>��$�>��z�ߪP>��j07��>��*�4�.>!9�84I�>��_�?d��l���L�>#�S8.E�w����m�>s,XO�]>�=a��>��\�R����>M�>���A�n��p�5V��>�!��^�n�n}Q4��> �6N=ng���>>¾���{R��A���sѾ�����I�k�*C �>�N`*�|�n�f�پ1㤀�QZ�2IקP̾��Ê�[��S�J���>4�Ul4�Eʳ_پ���@�P����dד��3J'\U��@O��>�o濱BK���� B�>�gib�N�����t��>��z.��3>(q��I/�>���aEOD>�V��8�>�.��84��7M�'�>iyͅ��Z>w�sE!Ӿw\N�`>�s���Ѿv9x�6>՗9��=ھ�{���W5���*�\~Ծ�F}) O��t�70Ͼ�k���)*� �|e|׾': +�S5�P��u�־` p���9��Dԟ޾?⥽�#��.L;(۾?nv�C?�wam�Raܾ�B�m��Q>�����n9��#����z߾g_�x}�G>��K^f�ݾg�QyX�o>������ܾD�^61�f>$���XϾ��dfK�p>ݧ�C���I�sB>�죿�>�^��!W>��1��)���|i>JK�b!���a+2y>%�S��J��EI4~>���&�ྂ�Y�w>k,G�����Q��.(�>�5�~�B�"k� ��}>_>��.���d�s?�C`��#�� H�R�U�WʇD{���z��Q��[�"��S��ׄP��`���'\LJҠ;�l���5�_�� ]ܕ3��lW���IEX �(S���%�PD�S! ��kn� ��{���J̯.�u�� ?F%#�>���{�Po�#\�E��>INnN�p�А3�L�>(e���N�����?= }lT�V>6��_�>[G쏜\> a]+,�>!��X F>M��^3��>��,�O`>� d t�?j�[}�=���f�6?h�;�Åk�i^�]�g?³���0��6����?��d�[�I>��-/x?�b��(f>�'��K?�� uiHe>�aaǍ��>�o�6�`>����S��>@���?M>��]f&��>^X}�`>��<5��>/r�*?>x�\+y��>��}<�C> :f �q�>�|L�,�p>���hLH?Wڿ?lm>6��D�x?�<�N�d>E+�,�>T�p�x�a>� \<�� ?���Ϻ%f�Z ީ\�?�����bs��$B�E?������`���H0�?��%K4z�Z���e�>��w�Mq�Ŕ�RÈ��� �SR�u��Y��0�>�*�1W��Syz{V�~A(�o���oiH�ϾL�=,�V�}���iD����/�%\��-@t �־�R6�t�x���̩GY�>��1B[�����C���>���TK�{��]�rxU�>������w�Ӡ@S���>n�W�u<^���A1޾N�K�Ίx�$>���D�>��!-w��+�?�yD��l>�} ?�p�wa>*�X� ?5ΐ`b�o��N�?}<��w�{�%�+A�I�>E�mq>��D�� ?�m��`Sg>�NGD ?;�j�s>j��W��?�%'6�f>12z:��>�_!��V>S���ȭ�>2@�J�n> �� ��>ͽ�`p>��v��?���r@;Q>ذ:���>��v�-_W>�����>�vb�->T`^Z�>)U���F>��u|d��>���C�q>���1��>R���}> Թ�j?2��y�z>h� ?����Ys>T2p�nr�>��-Y�n>��_*Y�>�x���Iw>'�����?�U)8�#x>jq��>?�|6�aR��q;g� ?���i&�|�Sg�?��>��^_�Dq���nq�?�f��?�a>){Y�Ǎ ?+���|>J�U�Q� ?�����c{>�� �S ?ĸ��u�2��m�I?�F^X>�{�2Wx�D�?�#�#j���9���t�>�[�\��l�nR_�>A�X�b>5I<� ?\{�[�i�>�=��� ? !ˁYm�>Rʘ��?g�.T^��>N)��i ? �D�>�U�I�1 ? �1f/��>��5�� ?'���|>T�Bx(?�s �:�N�?�":��L�����>��`e��s���:�� ?A���7�����>|�����{�wC�`?�O���ƀ>b�SSr?L_��)w���˳��?�����fg>m#Yq ?Z"�~��>WFJCm� ?�^� pł>NC�i?v8a�=F�>j"(�� ?����f�>�:U?mt�]�D>����B4 ?%%�&f�w>oJ^=�1�>�%f`i�^> 8�h��>�+�Ӳ\m>˸C� ��>�1&���>�S�C0?uĈ{h�p>�@��\��>.���j[>_]5���>&�:\��K>� *?��>MRǘ�w|>�Bb�D�?z����u>w_U!���>������`>!x��b��>��ȶ�->��q �>E6� ;7->��~���>����[�V>|: ���> |>Za"�>�@@�%:`>��J\�>��-.�l\>�����>f2�c<i>)� �'� ��G>�&d���>m�E���i>f�" �>�*.^��t>$��Ϭ�>&��|r> *M��>A�žk>��%-��>.��n�K>�XK�X*�>�IeY��V>Z��[�Y�>�Q*A�wq>!�����>G�FnIs>���@+��>w�uP;N�>��� |�>a$�낏>������ ? ��^�>ﺈ]�� ?�c<�E��>U��kB�?�㡏�5q>~����V?� k{�|>��H� ?y�8@�>�#��M�?�zMn�>�uD�p ? � �S��$P���?�"&��9l����L�?�� ��>խb��@ ?�u;���>�χ�. ?s������>���]k ?[P4�Y��>����/?�|�"琢>�+��۰?!��8�z�>kO2?��>�Z%�΄>p��f�l?��#Ĉ>+��x?%i/�>�uϦ�z ?��>�H�ߓ?�=�$z�>/�?I�h ?T��F5�>1\��:m?ϓzZ��7>'��?�eRa.��>H��� ?�#�q�׀���;R�>�l�������P�k�>/wP=�b}�GdŘ}��>2��Bq��w��ֳ>� �Δ|���k�ު�>����*v�����>�6/v�z��0�k�>b�K���>#1}�vF?��tA[�k>P��.�?E���؏>W 0�� ?�����G�>��LG ?�8K��y�>ⱀ��8 ?���׽J�>��) 9d?M�����>J"�j�? 4׻z~>���U�>��^Lbs�>�c� �?%��� �>B�V p3?�ex]��>-o���?�Z)���>��%?�h���>��M�@?��[�D�>�#D�Ԡ?H���ւ>��F䱽�>�BH_��>��t_?�U��{��>�9��N�>K��>m&2�s��>�[&��{>��6���>�ֽ�rHr>H�M���> �P��d>�Z�x���>��l�)s>�aj����>�:;j9��>��7�d��>�SB2=�>^ 8���>��ru#��>�bB�t?�u��>g����?�r�X�f�>�E�:.�?�Ԍ��v�>E�^��?�Ih�Ѥ�>��r�;y?�f�n%�>10�Ah?j��S3|>u���+?�����a>�?T��>���mR>�d��x? ��V�n�K�DXV�>���np�X>D��90�>���� p>$���ܜ�>47r>��T���>�5�C��j>��p2�>lu�C�P]�Y-$|!��>��DCY��>q�Kb(?������>��9��?��;-F�>���Cu?�#��aE�>?W.�.b?a� C���> ������>���ϸk�>�k��FB?���(t�>�Y9��P�>����mw>ѯ�����>�J{[Z�>%f���W?~����>Ω���>����,�~>������>��س�Hh> �|�p�>�ݖqiym>�$�����> vȘ��U>�w�[:��>�(4�nR>������>ϸS'�d>g$�JN �>St:�|y>@%-\��>@�M���t>�������>12}z�>H���k�>�z�h�Љ>�fR�>��c�͡�>`Z2��>�w<8E��>���?u �_1�>�cH��>�0���b~>`)�ڀ�>?�Y��>�,�'��>�# ���>B?v�f�?�Tփ�>�Z�Hzb?���\ �>�� �?P:7�Eh�>���%?�em2�{�>F��g��>���=&�>�AGM�?��QB���>*��O�6?�8�z>�$���>:%`<��>�cL���>-�ǵ*��>E=o6;A?�]]!�>Q �]D�>�קP�#�>���9�> ��=�ˌ>�����>�G6��>K��6���>��u�|k>����> ���^�>��x#��>������>��gLk��>��E1-�>��&,i��>X����Š>ٓk�HA�>�'7I��{>ૠL�E�>����W�>�B%�8s�>L8�f��>j��JR��>gLm '�>X�c�>�}��9�>��#JA9�>*�0���>M�h^t��>�u�����>�9�k �>���Kohw>y�j�U�>�2�F/�>{�$����>��Q�*�d>�< � ��>�V;��ƀ>��i����>d�{��>dT*����>���S�S>+9��d��>d�_}�`>lB: ����d>!c��� �>v�E�w>�J2��>�>�ݫ8��>4��m g2�E�>s#�"�>f��dg>&�L��Z�>{%HyW>���jv��>���T��R>a����>du��B/>w�����>�2M>�;j>�m�3�>��̶�u>���G���>_� ��P>T8��߼>gY��M�i> Y5V��>M�2rT�y>k�+���>�c��,v>s� D�X�>�'+�+&>�8$� �>W����r>�\~]o�>b/�I'u>��ҡ@�>v[��A[Y>mJ�!�[�>��D��x>�5���h�>3���dGa>�$�I�>�2�r>�$�%���>��p�p�J>���wo�>��U땈->����'�>���1i>b��x�>ԗX��t>���#�>4-��zx>� �"q�>��fs�.>II�qG�>��IF�S\>�rDa`��>��(K.�j>����p�>���!$w>��<�> �� V>#�a��u�>�pT. k>��b���>�(��Ĭe>� ƛ�9�>*`�xE0l>���_��>٤s�$g>g���G�>K�FF��=>|���5i�>�A)��:[>��� �>X��U>-�i(�5�>��c]SR>x���"��>L��)8�>�]~�%J�>$J�ba�p>B1�'��>]>HI+�G>Z���@�>�]t��h>r: � ��>P�s��gu>��o� :�>&F���T>h���ϧ�>xȓ�Ja>Y�q�F�>��'}��>��hД �>����>�*�A1�>uC3aZ>��!>��>��'�ڀ> "q��>o��>8Do>�-*�Q�>����v>�i��E��>�� ���b>�-�>#���~>5���>��q�"�}>�i�M�>�Z�pr�1>��n��v�>�c�Y>Rm�{=�>�pdJ!Wq>��f���>��6�`��>�1� ��>�uY�Jf>}�l<���>�p2��v>8W���>�(�@8�>ލb��c�>Z�N���>)��˷��>��� Ɔ�>�M씣h�>� ����x>�җO��>��8�y>�M��>�� ���>\����>�'[��s>��/��>������>ZE U���>���mԆ>V����>���嶅>U�ϡ�1�> #�1���>,�b�G��>��p�?Ȁ> ��P��> N���v>��7O>��>|/|�N��>�X,�4�>�c3[�~>��{��G�>��y �D�>*���{�>(��:Ⱦ�>��V�R6�>�j����x>�poA��>�٤dS!�>�;�R���>�IS҇>�}� ��>��<�z>������>�1;.:P�>_�x9��>�!�z�gu>���2?�>���w>A�0���>R[jv�Zz>��G��>|�Q%)Tp>�H��_m�>�n�2�x>��׮���>�^>�!�x>�va���>mĚQ�P>c�U��M�>���!��p�q��p0žpr�Μ]o�Tp`�$¾%+�㹰{�n�w���>^v��P�E�J�xN��=;�4�W��6�۾э��U`>6R�PF�)ˍA�I�Z]�i�����LBR�RS����=��Z��>��L���גt*�ֈ>��3Id�ᾔf �� �>��} �Bݾ�w�Տ>��H����V_��>…�X޾EP9U$�>�(^��4_�{?Bg>E�yy���Y��D�f�;�u�ؾ'�P6np>�ɹ��L����9���>X���y���ݼ= �>�[��2tξ04 �� �>1Z��_߾��&L>�>�,��ұվKR��>��\�R�ܾH���Ò;>��Q84p׾PzY�ma� �"t־�6R�I�>���T��ܾ��=N��> ��@�޾���b&�>���=�߾Lv�U�\�>�&o*��־*ۍF�m�>��C��ݾX�z\���>��Z�/۾l�H�#�>�MTv׾v�n~c��>GǑ�[J۾e�'����>R@��&Uپ+�ma�ev>�w��ԷҾU:�=I��>1HIqھ�'KA��g�Kg�ξ�At@X��A �f'ؾac)R^�y+��^ ھ�k��r�B�i �5� ׾�IQ䱼m���s���f���dxj�ev��1���uPM^�>��, ��־�>a�|>�s(q�Ѿ���!}�>˱w��ܾȍP�>�s�} �׾� �m�>�g"��rƾ��l�qΚ>��f�[-ܾ�>���S�>�s��8پm�E�ɦ�>�� 9��ھ.���ă>H��?��ξ:�`�4q>�Tߐ/�ʾ74l��Е>F}��eվ���gӌ>�[ OоX0�#(ƞ>�����پ~e~�YM�>t�J�/վZi�&�>��g��Cľs��� ��>��0:�ؾU�Y��>�&�ԾIb�Km��>�)�wHؾ�V�mM��>y���J뿾0��ŕ>��A�[�о�����Y�>C&��־ \Z<���>� "-��kXҾ�px�ZM�>RK-�MԾWma�& �>��;ڬTѾw������>��:ľ������>��o��Ⱦ��a�Y��>T5a���Ӿ�Ő��k�6}V?�j��ޟl�J��>e�|���Cz�ϑ>$a~ԓ�̾b9c\��>��q �ɾt,�!*�>��ԾVJK���>�_��ѾSr&5 p�>�R &�n��Gɾ���C��>bb�L@�����5���>v{���ɾ�d�W��>���v2/¾� Y{���>����о����>;�t3"Ѿ��l � �>(6�tX;��X�fK�>�ov�3ξ�d�>"����ľ"�(>�5 ���Ⱦ�z�ǥW�>� �٨ Ǿ&�h-�u>و�)`{���1B�UB�>4)\����*�3��0�>�!}�¾� [y6z~>Gж}$浾��#S�#�>,=Zl'Ǿ_I�>1VewJ�ž؁Q �vKr?�����0x�>,��Z[����|P ҭ�>�A�r¾4~l1&�>��,b�kľ#��&ڛ�>�߶ƈ�Ⱦ+S��>D�܁�VϾ�y����>���2.;����Tډ>[ G� &n�����Ӵ�'v>����Z汾��6ԩvx>ڱ#j�[��Rճ'��>� G7Z���) �0Tق>U� 5�����a��>BLߏZ ��\z�T͋t>v�,.ج��1Y��{>1���dz�ܙ}o�G�>���\�����c #��>b�����þIU�l�L�> (V��¾��a0_�>�Rַ軾@����r>xO��#����\�|>�����d���r���q>(�� ������y>����M��hA�f��w>K�zٱ���}TY�>�6<�������}bn>��Z�i����� 16�>� \ŏ��.~�ك~w>��#q��z�,��v>/���(���8����l>wJKYu8����?�td>n�kt�]���P�e>��q*/���b��48g>p�%c[��#4��� c>pr�Y�a��C{�g*q>3wC�s��Hi���k>��:�K㢾Ѩ��Y)J>�dk�#����_���ac>�E {%���7A��Y_>k[��ZJ��w-�ٴ`>0[���i���]\;>Y����z�},�U>�ѓb+���F$ �{Q>��͜����#v��>!H���F̾uq~/'xsrcom.femlab.xmesh.Xmesh��[�{ω� Z initializedLelemIndtLcom/femlab/util/g;Lelementsq~[geomMapt[ILgeomNumq~>L initElemIndq~>L initElementsq~[mcasesq~?[meGrpst[Lcom/femlab/xmesh/MEGrp;[meshNumt[[I[ unitsystemst#[Lcom/femlab/api/client/UnitSystem;Lversionq~xpwq~ur[IM�`&v겥xpuq~ t struct('elem',{'elmesh'},'g',{{'1'}},'frame',{{'ref'}},'geomdim',{{{struct('qualname',{'qual'},'dvolname',{'dvol'},'sshape',{{{'vtx',struct('type',{'fixed'},'sorder',{'2'},'sdimdofs',{{'x$2','y$2'}}),'lvtx',struct('type',{'fixed'},'sorder',{'2'},'sdimdofs',{{'x$2','y$2'}})}}},'ind',{{{'1','2','3','4','5','6','7','8'}}}),struct('qualname',{'qual'},'dvolname',{'dvol'},'sshape',{{{'edg',struct('type',{'fixed'},'sorder',{'2'},'sdimdofs',{{'x$2','y$2'}}),'ledg',struct('type',{'fixed'},'sorder',{'2'},'sdimdofs',{{'x$2','y$2'}}),'edg2',struct('type',{'fixed'},'sorder',{'2'},'sdimdofs',{{'x$2','y$2'}})}}},'ind',{{{'1','2','3','4','5','6','7','8','9'}}}),struct('qualname',{'qual'},'sizename',{'h'},'dvolname',{'dvol'},'detjacname',{'detjac'},'reldetjacname',{'reldetjac'},'reldetjacminname',{'reldetjacmin'},'sshape',{{{'tri',struct('type',{'fixed'},'sorder',{'2'},'sdimdofs',{{'x$2','y$2'}}),'ltri',struct('type',{'fixed'},'sorder',{'2'},'sdimdofs',{{'x$2','y$2'}}),'quad',struct('type',{'fixed'},'sorder',{'2'},'sdimdofs',{{'x$2','y$2'}}),'lquad',struct('type',{'fixed'},'sorder',{'2'},'sdimdofs',{{'x$2','y$2'}}),'tri2',struct('type',{'fixed'},'sorder',{'2'},'sdimdofs',{{'x$2','y$2'}}),'quad2',struct('type',{'fixed'},'sorder',{'2'},'sdimdofs',{{'x$2','y$2'}})}}},'ind',{{{'1','2'}}})}}})tstruct('elem',{'elmesh'},'g',{{'0'}},'frame',{{'ref'}},'geomdim',{{{struct('qualname',{'qual'},'dvolname',{'dvol0'},'ind',{{{'1'}}},'sshape',{{{'vtx',struct('type',{'fixed'},'sorder',{'1'},'sdimdofs',{{}}),'lvtx',struct('type',{'fixed'},'sorder',{'1'},'sdimdofs',{{}})}}})}}})tstruct('elem',{'elshape'},'g',{{'1'}},'tvars',{'on'},'geomdim',{{{struct('shelem',{struct('default',{{{'vtx','shlag',struct('order',{'2'},'basename',{'u'},'frame',{'ref'}),'lvtx','shlag',struct('order',{'2'},'basename',{'u'},'frame',{'ref'}),'vtx','shlag',struct('order',{'2'},'basename',{'v'},'frame',{'ref'}),'lvtx','shlag',struct('order',{'2'},'basename',{'v'},'frame',{'ref'}),'vtx','shlag',struct('order',{'1'},'basename',{'p'},'frame',{'ref'}),'lvtx','shlag',struct('order',{'1'},'basename',{'p'},'frame',{'ref'}),'vtx','shlag',struct('order',{'2'},'basename',{'V2'},'frame',{'ref'}),'lvtx','shlag',struct('order',{'2'},'basename',{'V2'},'frame',{'ref'})}}},'case',{{{}}},'mind',{{}})},'ind',{{{'1','2','3','4','5','6','7','8'}}}),struct('shelem',{struct('default',{{{'edg','shlag',struct('order',{'2'},'basename',{'u'},'frame',{'ref'}),'ledg','shlag',struct('order',{'2'},'basename',{'u'},'frame',{'ref'}),'edg','shlag',struct('order',{'2'},'basename',{'v'},'frame',{'ref'}),'ledg','shlag',struct('order',{'2'},'basename',{'v'},'frame',{'ref'}),'edg','shlag',struct('order',{'1'},'basename',{'p'},'frame',{'ref'}),'ledg','shlag',struct('order',{'1'},'basename',{'p'},'frame',{'ref'}),'edg','shlag',struct('order',{'2'},'basename',{'V2'},'frame',{'ref'}),'ledg','shlag',struct('order',{'2'},'basename',{'V2'},'frame',{'ref'})}}},'case',{{{}}},'mind',{{}})},'ind',{{{'1','2','3','4','5','6','7','8','9'}}}),struct('shelem',{struct('default',{{{'tri','shlag',struct('order',{'2'},'basename',{'u'},'frame',{'ref'}),'ltri','shlag',struct('order',{'2'},'basename',{'u'},'frame',{'ref'}),'tri','shlag',struct('order',{'2'},'basename',{'v'},'frame',{'ref'}),'ltri','shlag',struct('order',{'2'},'basename',{'v'},'frame',{'ref'}),'tri','shlag',struct('order',{'1'},'basename',{'p'},'frame',{'ref'}),'ltri','shlag',struct('order',{'1'},'basename',{'p'},'frame',{'ref'}),'tri','shlag',struct('order',{'2'},'basename',{'V2'},'frame',{'ref'}),'ltri','shlag',struct('order',{'2'},'basename',{'V2'},'frame',{'ref'})}}},'case',{{{}}},'mind',{{}})},'ind',{{{'1','2'}}})}}})t�struct('elem',{'elvar'},'g',{{'1'}},'geomdim',{{{struct('var',{{'p0_mmglf',{'0'},'Qj0_dc',{'0'},'V0_dc',{'0'}}},'ind',{{{'1','2','3','4','5','6','7','8'}}}),struct('var',{{'K_x_mmglf',{'2*nx_mmglf*eta_mmglf*ux+ny_mmglf*eta_mmglf*(uy+vx)','2*nx_mmglf*eta_mmglf*ux+ny_mmglf*eta_mmglf*(uy+vx)','2*nx_mmglf*eta_mmglf*ux+ny_mmglf*eta_mmglf*(uy+vx)'},'T_x_mmglf',{'-nx_mmglf*p+2*nx_mmglf*eta_mmglf*ux+ny_mmglf*eta_mmglf*(uy+vx)','-nx_mmglf*p+2*nx_mmglf*eta_mmglf*ux+ny_mmglf*eta_mmglf*(uy+vx)','-nx_mmglf*p+2*nx_mmglf*eta_mmglf*ux+ny_mmglf*eta_mmglf*(uy+vx)'},'K_y_mmglf',{'nx_mmglf*eta_mmglf*(vx+uy)+2*ny_mmglf*eta_mmglf*vy','nx_mmglf*eta_mmglf*(vx+uy)+2*ny_mmglf*eta_mmglf*vy','nx_mmglf*eta_mmglf*(vx+uy)+2*ny_mmglf*eta_mmglf*vy'},'T_y_mmglf',{'-ny_mmglf*p+nx_mmglf*eta_mmglf*(vx+uy)+2*ny_mmglf*eta_mmglf*vy','-ny_mmglf*p+nx_mmglf*eta_mmglf*(vx+uy)+2*ny_mmglf*eta_mmglf*vy','-ny_mmglf*p+nx_mmglf*eta_mmglf*(vx+uy)+2*ny_mmglf*eta_mmglf*vy'},'ET_x_mmglf',{'','',''},'ET_y_mmglf',{'','',''},'TTx_mmglf',{'','',''},'TTy_mmglf',{'','',''},'uwT_mmglf',{'','',''},'vwT_mmglf',{'','',''},'Nx_mmglf',{'','',''},'Ny_mmglf',{'','',''},'dVolbnd_dc',{'d_dc','d_dc','d_dc'},'tEx_dc',{'-V2Tx','-V2Tx','-V2Tx'},'tEy_dc',{'-V2Ty','-V2Ty','-V2Ty'},'normtE_dc',{'sqrt(abs(tEx_dc)^2+abs(tEy_dc)^2)','sqrt(abs(tEx_dc)^2+abs(tEy_dc)^2)','sqrt(abs(tEx_dc)^2+abs(tEy_dc)^2)'},'nJ_dc',{'nx_dc*Jx_dc+ny_dc*Jy_dc','nx_dc*Jx_dc+ny_dc*Jy_dc','nx_dc*Jx_dc+ny_dc*Jy_dc'},'nJs_dc',{'unx*(Jx_dc_down-Jx_dc_up)+uny*(Jy_dc_down-Jy_dc_up)','unx*(Jx_dc_down-Jx_dc_up)+uny*(Jy_dc_down-Jy_dc_up)','unx*(Jx_dc_down-Jx_dc_up)+uny*(Jy_dc_down-Jy_dc_up)'},'u0_mmglf',{'0','-eo*er*A*(zeta-Vpp)*Ex_dc/eta','-eo*er*A*(zeta+Vpp)*Ex_dc/eta'},'v0_mmglf',{'0','0','0'},'p0_mmglf',{'0','0','0'},'U0_mmglf',{'0','0','0'},'V0_mmglf',{'0','0','0'},'p0_inl_mmglf',{'0','0','0'},'L0_mmglf',{'','',''},'E_x_mmglf',{'0','Ex_dc','Ex_dc'},'E_y_mmglf',{'0','0','0'},'zeta_mmglf',{'','',''},'mueo_mmglf',{'','',''},'uw0_mmglf',{'0','0','0'},'vw0_mmglf',{'0','0','0'},'T_mmglf',{'','',''},'Ls_mmglf',{'','',''},'alphav_mmglf',{'','',''},'sigmat_mmglf',{'','',''},'nx_mmglf',{'nx','nx','nx'},'ny_mmglf',{'ny','ny','ny'},'Vref_dc',{'0','-1','1'},'sigmabnd_dc',{'0','0.001','0.001'},'dbnd_dc',{'1','1e-009','1e-009'},'Jn_dc',{'0','-(zeta-Vpp)/Zdl','-(zeta+Vpp)/Zdl'},'V0_dc',{'0','1','-1'},'nx_dc',{'nx','nx','nx'},'ny_dc',{'ny','ny','ny'},'J0x_dc',{'0','0','0'},'J0y_dc',{'0','0','0'}}},'ind',{{{'1','3','4','5','6','7','9'},{'2'},{'8'}}}),struct('var',{{'U_mmglf',{'sqrt(u^2+v^2)'},'V_mmglf',{'vx-uy'},'divU_mmglf',{'ux+vy'},'cellRe_mmglf',{'rho_mmglf*U_mmglf*h/eta_mmglf'},'res_u_mmglf',{'rho_mmglf*(u*ux+v*uy)+px-F_x_mmglf-eta_mmglf*(2*uxx+uyy+vxy)'},'res_tst_u_mmglf',{'nojac(rho_mmglf)*(nojac(u)*ux+nojac(v)*uy)+px-nojac(eta_mmglf)*(2*uxx+uyy+vxy)'},'res_sc_u_mmglf',{'rho_mmglf*(u*ux+v*uy)+px-F_x_mmglf'},'res_v_mmglf',{'rho_mmglf*(u*vx+v*vy)+py-F_y_mmglf-eta_mmglf*(vxx+uyx+2*vyy)'},'res_tst_v_mmglf',{'nojac(rho_mmglf)*(nojac(u)*vx+nojac(v)*vy)+py-nojac(eta_mmglf)*(vxx+uyx+2*vyy)'},'res_sc_v_mmglf',{'rho_mmglf*(u*vx+v*vy)+py-F_y_mmglf'},'beta_x_mmglf',{'rho_mmglf*u'},'beta_y_mmglf',{'rho_mmglf*v'},'Dm_mmglf',{'eta_mmglf'},'da_mmglf',{'rho_mmglf'},'dVol_dc',{'d_dc'},'normE_dc',{'sqrt(abs(Ex_dc)^2+abs(Ey_dc)^2)'},'normJe_dc',{'sqrt(abs(Jex_dc)^2+abs(Jey_dc)^2)'},'normJi_dc',{'sqrt(abs(Jix_dc)^2+abs(Jiy_dc)^2)'},'normJ_dc',{'sqrt(abs(Jx_dc)^2+abs(Jy_dc)^2)'},'Jix_dc',{'sigmaxx_dc*Ex_dc+sigmaxy_dc*Ey_dc'},'Ex_dc',{'-V2x'},'Jx_dc',{'Jex_dc+Jix_dc'},'Jiy_dc',{'sigmayx_dc*Ex_dc+sigmayy_dc*Ey_dc'},'Ey_dc',{'-V2y'},'Jy_dc',{'Jey_dc+Jiy_dc'},'Q_dc',{'Jx_dc*Ex_dc+Jy_dc*Ey_dc'},'rho_mmglf',{'1000'},'eta_mmglf',{'0.001'},'F_x_mmglf',{'0'},'F_y_mmglf',{'0'},'kappadv_mmglf',{'0'},'thickness_mmglf',{'1'},'epsilonr_mmglf',{'80'},'meanfrp_mmglf',{'1e-006'},'sigma_dc',{'0.001'},'res0_dc',{'1.72e-008'},'alpha_dc',{'0.0039'},'T_dc',{'0'},'T0_dc',{'0'},'Qj_dc',{'0'},'d_dc',{'1'},'sigmaxx_dc',{'0.001'},'sigmayx_dc',{'0'},'sigmaxy_dc',{'0'},'sigmayy_dc',{'0.001'},'Jex_dc',{'0'},'Jey_dc',{'0'}}},'ind',{{{'1','2'}}})}}})tstruct('elem',{'elvar'},'g',{{'1'}},'geomdim',{{{struct('var',{{'epsilon0_mmglf',{'8.854187817000001e-012'},'epsilon0_dc',{'8.854187817000001e-012'},'mu0_dc',{'4e-007*pi'}}},'ind',{{{'1','2','3','4','5','6','7','8'}}}),struct('var',{{'epsilon0_mmglf',{'8.854187817000001e-012'},'epsilon0_dc',{'8.854187817000001e-012'},'mu0_dc',{'4e-007*pi'}}},'ind',{{{'1','2','3','4','5','6','7','8','9'}}}),struct('var',{{'epsilon0_mmglf',{'8.854187817000001e-012'},'epsilon0_dc',{'8.854187817000001e-012'},'mu0_dc',{'4e-007*pi'}}},'ind',{{{'1','2'}}})}}})t�struct('elem',{'elconst'},'var',{{'rho','1e3','eta','1e-3','lamda','3e-8','cond','1e-3','A','0.25','Vpp','10','Vdc','2','eo','8.85e-12','er','80','Cdl','eo*er/lamda','f','1000','w','2*pi*f','Zdl','1/i*w*Cdl','zeta','50e-3'}})t7struct('elem',{'elgeom'},'g',{{'1'}},'frame',{{'ref'}})tOstruct('elem',{'elepspec'},'g',{{'1'}},'geom',{{struct('ep',{{'2','1','1'}})}})tSstruct('elem',{'elgpspec'},'g',{{'1'}},'geom',{{struct('ep',{{'4','2','0','0'}})}})t�struct('elem',{'eleqw'},'g',{{'1'}},'geomdim',{{{struct('coeff',{{{'0','0','0','0','0','0','0'}}},'tcoeff',{{{'0','0','0','0','0','0','0'}}},'ipoints',{{'4'}},'dvolname',{{{'dvol','dvol','dvol','dvol','dvol','dvol','dvol'}}},'ind',{{{'1','2','3','4','5','6','7','8'}}}),struct('coeff',{{{'0','0','0','0','0','0'},{'0','0','0','0','0','+(dVolbnd_dc*Jn_dc)*test(V2)'}}},'tcoeff',{{{'0','0','0','0','0','0'},{'0','0','0','0','0','0'}}},'ipoints',{{{'1','1','2','3','3','1'},{'1','1','2','3','3','1'}}},'dvolname',{{{'dvol','dvol','dvol','dvol','dvol','dvol'},{'dvol','dvol','dvol','dvol','dvol','dvol'}}},'ind',{{{'1','3','4','5','6','7','9'},{'2','8'}}}),struct('coeff',{{{'+(-2*eta_mmglf*ux+p)*test(ux)+(-eta_mmglf*(uy+vx))*test(uy)+(-rho_mmglf*(u*ux+v*uy))*test(u)','+(-eta_mmglf*(vx+uy))*test(vx)+(-2*eta_mmglf*vy+p)*test(vy)+(-rho_mmglf*(u*vx+v*vy))*test(v)','+(-divU_mmglf)*test(p)','+(dVol_dc*(-Jx_dc*test(Ex_dc)-Jy_dc*test(Ey_dc)+Qj_dc*test(V2)))'}}},'tcoeff',{{{'+(+(rho_mmglf)*ut)*test(u)','+(+(rho_mmglf)*vt)*test(v)','0','0'}}},'ipoints',{{{'1','1','2','1'}}},'dvolname',{{{'dvol','dvol','dvol','dvol'}}},'ind',{{{'1','2'}}})}}},'nonlintest',{{'off'}})tstruct('elem',{'elpconstr'},'g',{{'1'}},'geomdim',{{{{},struct('constr',{{{'+(-u)','+(-v)','0','0','0','0'},{'+(-u+u0_mmglf)','+(-v)','0','0','0','0'}}},'cpoints',{{{'1','1','2','2','2','1'},{'1','1','2','2','2','1'}}},'ind',{{{'1','3','4','6','7','9'},{'2','8'}}}),{}}}})tfstruct('elem',{'elcplextr'},'var',{{}},'g',{{'1'}},'src',{{{{}}}},'geomdim',{{{{},{},{}}}},'map',{{}})tqstruct('elem',{'elcplscalar'},'var',{{}},'g',{{'1'}},'src',{{{{},{},{}}}},'geomdim',{{{{},{},{}}}},'global',{{}})tstruct('elem',{'elcplextr'},'var',{{'d_dc'}},'g',{{'1'}},'src',{{{{},{},struct('expr',{{{'d_dc'}}},'map',{{{'1'}}},'ind',{{{'1','2'}}})}}},'geomdim',{{{struct('map',{{{'1'}}},'ind',{{{'1','2','3','4','5','6','7','8'}}}),{},{}}}},'map',{{struct('type',{'local'},'expr',{{'x','y'}})}})uq~Duq~ t(struct('elem',{'elvar'},'g',{{'1'}},'geomdim',{{{struct('var',{{'x$2',{'xg'},'y$2',{'yg'}}},'ind',{{{'1','2','3','4','5','6','7','8'}}}),struct('var',{{'x$2',{'xg'},'y$2',{'yg'}}},'ind',{{{'1','2','3','4','5','6','7','8','9'}}}),struct('var',{{'x$2',{'xg'},'y$2',{'yg'}}},'ind',{{{'1','2'}}})}}})t}struct('elem',{'elvar'},'g',{{'1'}},'geomdim',{{{struct('var',{{'u',{''},'v',{''},'p',{''},'lmx_mmglf',{''},'lmy_mmglf',{''},'Pinl_mmglf',{''},'V2',{''},'ut',{''},'vt',{''},'pt',{''},'lmx_mmglft',{''},'lmy_mmglft',{''},'Pinl_mmglft',{''},'V2t',{''}}},'ind',{{{'1','2','3','4','5','6','7','8'}}}),struct('var',{{'u',{''},'v',{''},'p',{''},'lmx_mmglf',{''},'lmy_mmglf',{''},'V2',{''},'ut',{''},'vt',{''},'pt',{''},'lmx_mmglft',{''},'lmy_mmglft',{''},'V2t',{''}}},'ind',{{{'1','2','3','4','5','6','7','8','9'}}}),struct('var',{{'u',{'0'},'v',{'0'},'p',{'0'},'V2',{'0'},'ut',{'0'},'vt',{'0'},'pt',{'0'},'V2t',{'0'}}},'ind',{{{'1','2'}}})}}})uq~Duq~Dur[Lcom.femlab.xmesh.MEGrp;5q�|Y�xpsrcom.femlab.xmesh.MEGrp�f�����I bmTypeIndIeDimIgeomNumImeshCaseL bmTypeStrq~[coordst[[D[domainsq~?[namest[Ljava/lang/String;xpwtls(0)uq~Duq~ ur[[Dǭ �dg�Expxsq~]wtls(0)uq~Duq~ tV2tptutvuq~dxsq~]wts(1)uq~D  uq~ tV2tV2tV2tptptutututvtvtvtx$2ty$2uq~dur[D>���cZxp ?�?�?�?�?�?�?�?�?�xsq~]wts(2)uq~Duq~ tV2tV2tV2tV2tV2tV2tptptptututututututvtvtvtvtvtvtx$2tx$2tx$2ty$2ty$2ty$2uq~duq~�?�?�?�?�?�?�?�?�?�?�?�?�?�?�uq~�?�?�?�?�?�?�?�?�?�?�?�?�?�?�xsq~]wtls(2)uq~Duq~ tV2tV2tV2tV2tV2tV2tptptptututututututvtvtvtvtvtvuq~duq~�?�?�?�?�?�?�?�?�?�?�uq~�?�?�?�?�?�?�?�?�?�?�xuq~Dxq~3q~6q~:q~Csrcom.femlab.api.client.MFileInfo��3$�$LfemNameq~[historyq~_[mfileTagsAndTypest[[Ljava/lang/String;[ resetHistoryq~_[ storedNamesq~_Lversionq~xpwsq~wq~q~q~ q~t COMSOL 3.3tw�t $Name: $t$Date: 2006/08/31 18:03:47 $xuq~ t�`% COMSOL Multiphysics Model M-file % Generated by COMSOL 3.3 (COMSOL 3.3.0.405, $Date: 2006/08/31 18:03:47 $) flclear fem % COMSOL version clear vrsn vrsn.name = 'COMSOL 3.3'; vrsn.ext = ''; vrsn.major = 0; vrsn.build = 405; vrsn.rcs = '$Name: $'; vrsn.date = '$Date: 2006/08/31 18:03:47 $'; fem.version = vrsn; % Geometry g2=rect2(3.5E-5,6.0E-5,'base','corner','pos',[-6.5E-5,-3.0E-5]); g3=rect2('40e-6','44e-6','base','corner','pos',{'-50e-6','-22'},'rot','0'); g4=rect2('40e-6','44e-6','base','corner','pos',{'-50e-6','-22e-6'},'rot','0'); [g5]=geomcopy({g4}); [g6]=geomcopy({g5}); g6=move(g6,[6.0E-5,0]); g7=rect2(2.0E-5,4.4E-5,'base','corner','pos',[-1.0E-5,-2.2E-5]); g8=geomcomp({g4,g6,g7},'ns',{'R1','R2','R3'},'sf','R1+R2+R3','edge','all'); g9=geomcomp({g8},'ns',{'CO1'},'sf','CO1','edge','all'); % Analyzed geometry clear s s.objs={g9}; s.name={'CO2'}; s.tags={'g9'}; fem.draw=struct('s',s); fem.geom=geomcsg(fem); % COMSOL Multiphysics Model M-file % Generated by COMSOL 3.3 (COMSOL 3.3.0.405, $Date: 2006/08/31 18:03:47 $) % Geometry g1=rect2('2e-5','4.4e-5','base','center','pos',{'-6e-5','0'},'rot','0'); [g2]=geomcopy({g1}); [g3]=geomcopy({g2}); g3=move(g3,[1.2E-4,0]); g4=geomcomp({g9,g1,g3},'ns',{'CO2','R1','R2'},'sf','CO2+R1+R2','edge','all'); g5=geomcomp({g4},'ns',{'CO1'},'sf','CO1','edge','all'); % Analyzed geometry clear s s.objs={g5}; s.name={'CO2'}; s.tags={'g5'}; fem.draw=struct('s',s); fem.geom=geomcsg(fem); % COMSOL Multiphysics Model M-file % Generated by COMSOL 3.3 (COMSOL 3.3.0.405, $Date: 2006/08/31 18:03:47 $) % Geometry carr={curve2([0,0],[-2.5E-5,3.5000000000000004E-5],[1,1])}; g1=geomcoerce('curve',carr); carr={curve2([0,4.0E-5],[0,0],[1,1]), ... curve2([4.0E-5,7.500000000000001E-5],[0,0],[1,1]), ... curve2([7.500000000000001E-5,7.500000000000001E-5],[0,4.5E-5],[1,1]), ... curve2([7.500000000000001E-5,0],[4.5E-5,4.5E-5],[1,1]), ... curve2([0,0],[4.5E-5,0],[1,1])}; g2=geomcoerce('solid',carr); gg=geomedit(g2); gg{1}=beziercurve2([0,0],[0,2.0E-4],[1,1]); gg{2}=beziercurve2([0,0.8],[0,0],[1,1]); gg{3}=beziercurve2([0,1.6E-4],[2.0E-4,2.0E-4],[1,1]); gg{3}=beziercurve2([0,9.0E-5],[2.0E-4,2.0E-4],[1,1]); gg{4}=beziercurve2([8.0E-5,9.0E-5],[0,0],[1,1]); gg{5}=beziercurve2([9.0E-5,9.0E-5],[0,2.0E-4],[1,1]); g4=geomedit(g2,gg); carr={curve2([9.000000000000002E-5,1.15E-4],[0,0],[1,1]), ... curve2([1.15E-4,1.6E-4],[0,0],[1,1]), ... curve2([1.6E-4,1.6E-4],[0,2.0E-4],[1,1]), ... curve2([1.6E-4,9.0E-5],[2.0E-4,2.0E-4],[1,1]), ... curve2([9.0E-5,9.000000000000002E-5],[2.0E-4,0],[1,1])}; g7=geomcoerce('solid',carr); gg=geomedit(g7); gg{2}=beziercurve2([9.0E-5,1.0E-4],[0,0],[1,1]); gg{3}=beziercurve2([1.0E-4,1.6E-4],[2.0E-4,2.0E-4],[1,1]); gg{3}=beziercurve2([9.0E-5,1.6E-4],[2.0E-4,2.0E-4],[1,1]); gg{4}=beziercurve2([9.0E-5,1.6E-4],[0,0],[1,1]); g8=geomedit(g7,gg); gg=geomedit(g8); gg{3}=beziercurve2([9.0E-5,1.8E-4],[2.0E-4,2.0E-4],[1,1]); gg{4}=beziercurve2([1.0E-4,1.8E-4],[0,0],[1,1]); gg{5}=beziercurve2([1.8E-4,1.8E-4],[0,2.0E-4],[1,1]); g9=geomedit(g8,gg); % Analyzed geometry clear s s.objs={g4,g9}; s.name={'CO1','CO2'}; s.tags={'g4','g9'}; fem.draw=struct('s',s); fem.geom=geomcsg(fem); % COMSOL Multiphysics Model M-file % Generated by COMSOL 3.3 (COMSOL 3.3.0.405, $Date: 2006/08/31 18:03:47 $) % Geometry gg=geomedit(g4); gg{1}=beziercurve2([0,0],[0,5.0E-5],[1,1]); gg{2}=beziercurve2([0,4.0E-5],[0,0],[1,1]); gg{2}=beziercurve2([0,1.6E-4],[0,0],[1,1]); gg{3}=beziercurve2([0,2.0E-4],[5.0E-5,5.0E-5],[1,1]); gg{4}=beziercurve2([1.6E-4,2.0E-4],[0,0],[1,1]); gg{5}=beziercurve2([2.0E-4,2.0E-4],[0,5.0E-5],[1,1]); g1=geomedit(g4,gg); gg=geomedit(g9); gg{1}=beziercurve2([2.0E-4,2.4E-4],[0,5.0E-5],[1,1]); gg{1}=beziercurve2([2.0E-4,2.0E-4],[0,5.0E-5],[1,1]); gg{2}=beziercurve2([2.0E-4,2.4E-4],[0,0],[1,1]); gg{3}=beziercurve2([2.0E-4,2.4E-4],[5.0E-5,5.0E-5],[1,1]); gg{4}=beziercurve2([2.4E-4,4.0E-4],[0,0],[1,1]); gg{5}=beziercurve2([4.0E-4,4.0E-4],[0,5.0E-5],[1,1]); gg{5}=beziercurve2([4.0E-4,4.0E-4],[0,5.0E-5],[1,1]); gg{3}=beziercurve2([2.0E-4,4.0E-4],[5.0E-5,5.0E-5],[1,1]); g3=geomedit(g9,gg); % Analyzed geometry clear s s.objs={g1,g3}; s.name={'CO1','CO2'}; s.tags={'g1','g3'}; fem.draw=struct('s',s); fem.geom=geomcsg(fem); % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxvtx',[1,10e-9,3,10e-9,6,10e-9,7,10e-9]); % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxvtx',[1,10e-9,3,10e-9,6,10e-9,7,10e-9]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,+0.04,-0.1,-0.04}; bnd.eotype = {'mueo','zeta','mueo','zeta'}; bnd.type = {'noslip','eovel','neutral','eovel'}; bnd.E_x = {0,'-Ex_dc',0,'-Ex_dc'}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,-1,0,+1}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'u','p','lmy_mmglf','lmx_mmglf','V2','v'}, ... 'outcomp',{'u','p','lmy_mmglf','lmx_mmglf','V','V2','v'}, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'u','cont','internal','unit','m/s'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: x-velocity [m/s] Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-2.000003978873242E-5,4.6611113978873236E-4,-1.306667E-4,1.848889E-4,-1,1]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,+0.04,-0.1,-0.04}; bnd.eotype = {'mueo','zeta','mueo','zeta'}; bnd.type = {'noslip','eovel','neutral','eovel'}; bnd.E_x = {0,'-Ex_dc',0,'-Ex_dc'}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,-1,0,+1}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'u','p','lmy_mmglf','lmx_mmglf','v','V2'}, ... 'outcomp',{'u','p','lmy_mmglf','lmx_mmglf','V','v','V2'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'u','cont','internal','unit','m/s'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: x-velocity [m/s] Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-2.000003978873242E-5,4.200000221830986E-4,-1.2344447676056338E-4,1.848889E-4,-1,1]); % Refine mesh fem.mesh=meshrefine(fem, ... 'mcase',0, ... 'rmethod','regular'); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,+0.04,-0.1,-0.04}; bnd.eotype = {'mueo','zeta','mueo','zeta'}; bnd.type = {'noslip','eovel','neutral','eovel'}; bnd.E_x = {0,'-Ex_dc',0,'-Ex_dc'}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,-1,0,+1}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Mapping current solution to extended mesh init = asseminit(fem,'init',fem0.sol,'xmesh',fem0.xmesh); % Mapping current solution to current extended mesh u = asseminit(fem,'init',fem0.sol,'xmesh',fem0.xmesh); % Solve problem fem.sol=femstatic(fem, ... 'init',init, ... 'u',u, ... 'solcomp',{'u','p','lmy_mmglf','lmx_mmglf','v','V2'}, ... 'outcomp',{'u','p','lmy_mmglf','lmx_mmglf','V','V2','v'}, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'u','cont','internal','unit','m/s'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: x-velocity [m/s] Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-2.000003978873242E-5,4.6611113978873236E-4,-1.270555883802817E-4,1.8850001161971832E-4,-1,1]); % Animate solution postmovie(fem, ... 'tridata',{'u','cont','internal','unit','m/s'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'axis',[-2.000003978873242E-5,4.200000221830986E-4,-1.1983336514084507E-4,1.8850001161971832E-4,-1,1], ... 'statnframes',11, ... 'fps',1); % Animate solution postmovie(fem, ... 'tridata',{'u','cont','internal','unit','m/s'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'axis',[-2.000003978873242E-5,4.200000221830986E-4,-1.1983336514084507E-4,1.8850001161971832E-4,-1,1], ... 'statnframes',20, ... 'fps',1); % Plot solution postplot(fem, ... 'tridata',{'u','cont','internal','unit','m/s'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: x-velocity [m/s] Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-2.000003978873242E-5,4.200000221830986E-4,-1.1983336514084507E-4,1.8850001161971832E-4,-1,1]); % Animate solution postmovie(fem, ... 'tridata',{'u','cont','internal','unit','m/s'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'axis',[-2.000003978873242E-5,4.200000221830986E-4,-1.1983336514084507E-4,1.8850001161971832E-4,-1,1], ... 'statfunctype','linear', ... 'statnframes',11, ... 'fps',1); % Plot solution postplot(fem, ... 'tridata',{'u','cont','internal','unit','m/s'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: x-velocity [m/s] Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-2.000003978873242E-5,4.200000221830986E-4,-1.1983336514084507E-4,1.8850001161971832E-4,-1,1]); % Animate solution postmovie(fem, ... 'tridata',{'u','cont','internal','unit','m/s'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'axis',[-2.000003978873242E-5,4.200000221830986E-4,-1.1983336514084507E-4,1.8850001161971832E-4,-1,1], ... 'statfunctype','half', ... 'statnframes',11, ... 'fps',1); % Animate solution postmovie(fem, ... 'tridata',{'u','cont','internal','unit','m/s'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'axis',[-2.000003978873242E-5,4.200000221830986E-4,-1.1983336514084507E-4,1.8850001161971832E-4,-1,1], ... 'statfunctype','linear', ... 'statnframes',11, ... 'fps',1); % Animate solution postmovie(fem, ... 'tridata',{'u','cont','internal','unit','m/s'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'axis',[-2.000003978873242E-5,4.200000221830986E-4,-1.1983336514084507E-4,1.8850001161971832E-4,-1,1], ... 'statfunctype','linear', ... 'statnframes',11, ... 'fps',1, ... 'reverse','on'); % Animate solution postmovie(fem, ... 'tridata',{'u','cont','internal','unit','m/s'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'axis',[-2.000003978873242E-5,4.6611113978873236E-4,-1.3598972263524325E-4,2.046563691141165E-4,-1,1], ... 'statfunctype','linear', ... 'statnframes',11, ... 'fps',1, ... 'reverse','on'); % Plot solution postplot(fem, ... 'tridata',{'u','cont','internal','unit','m/s'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: x-velocity [m/s] Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-2.000003978873242E-5,4.6611113978873236E-4,-1.3598972263524325E-4,2.046563691141165E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'u','cont','internal','unit','m/s'}, ... 'trimap','jet(1024)', ... 'deformsub',{'u','v'}, ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: x-velocity [m/s] Arrow: Velocity field [m/s] Streamline: Velocity field [m/s] Subdomain deformation: Velocity field [m/s] Boundary deformation: grad(V)', ... 'axis',[-1.9999999494757503E-5,4.1999998938990757E-4,-1.2917653369489324E-4,1.79156791849285E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'u','cont','internal','unit','m/s'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: x-velocity [m/s] Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.1999998938990757E-4,-1.2917653369489324E-4,1.79156791849285E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'u','cont','internal','unit','m/s'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'maxminsub','V', ... 'title','Surface: x-velocity [m/s] Arrow: Velocity field [m/s] Streamline: Velocity field [m/s] Subdomain marker: V', ... 'axis',[-1.9999999494757503E-5,4.1999998938990757E-4,-1.2917653369489324E-4,1.79156791849285E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'u','cont','internal','unit','m/s'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: x-velocity [m/s] Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.1999998938990757E-4,-1.2917653369489324E-4,1.79156791849285E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'u','cont','internal','unit','m/s'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'partmasstype','mass', ... 'partstart',{[0],[0]}, ... 'partlinecolor',[1.0,0.0,0.0], ... 'partdata',{'sign(u-partu)*pi*partr^2*rho_mmglf*(u-partu)^2*(1.84*(abs(u-partu)*2*partr*rho_mmglf/eta_mmglf)^(-0.31)+0.293*(abs(u-partu)*2*partr*rho_mmglf/eta_mmglf)^0.06)^3.45+partq*Ex_dc','sign(v-partv)*pi*partr^2*rho_mmglf*(v-partv)^2*(1.84*(abs(v-partv)*2*partr*rho_mmglf/eta_mmglf)^(-0.31)+0.293*(abs(v-partv)*2*partr*rho_mmglf/eta_mmglf)^0.06)^3.45+partq*Ey_dc'}, ... 'partmass','4*pi/3*1e-9', ... 'const',{'partr','1e-4','partq','1.602e-19'}, ... 'partedgetol',0.001, ... 'partvelvar',{'partu','partv','partw'}, ... 'parttvar','partt', ... 'partres',5, ... 'title','Surface: x-velocity [m/s] Arrow: Velocity field [m/s] Streamline: Velocity field [m/s] Particle tracing: [Khan and Richardson force (mmglf), Electromagnetic force (dc)]', ... 'axis',[-1.9999999494757503E-5,4.1999998938990757E-4,-1.2917653369489324E-4,1.79156791849285E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'u','cont','internal','unit','m/s'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: x-velocity [m/s] Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.1999998938990757E-4,-1.252876449042459E-4,1.752679030586377E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'u','cont','internal','unit','m/s'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: x-velocity [m/s] Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.1999998938990757E-4,-1.252876449042459E-4,1.752679030586377E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'u','cont','internal','unit','m/s'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'partmasstype','massless', ... 'partstart',{[0],[0]}, ... 'partlinecolor',[1.0,0.0,0.0], ... 'partdata',{'u','v'}, ... 'partedgetol',0.001, ... 'parttvar','partt', ... 'partres',5, ... 'title','Surface: x-velocity [m/s] Arrow: Velocity field [m/s] Streamline: Velocity field [m/s] Particle tracing: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.1999998938990757E-4,-1.2917653369489324E-4,1.79156791849285E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'u','cont','internal','unit','m/s'}, ... 'trimap','jet(1024)', ... 'contdata',{'Vx','cont','internal'}, ... 'contlevels',100, ... 'contlabel','off', ... 'contmap','cool(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: x-velocity [m/s] Contour: Vx Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.1999998938990757E-4,-1.2917653369489324E-4,1.79156791849285E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'u','cont','internal','unit','m/s'}, ... 'trimap','jet(1024)', ... 'contdata',{'Vx','cont','internal'}, ... 'contlevels',100, ... 'contlabel','off', ... 'contmap','cool(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: x-velocity [m/s] Contour: Vx Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.1999998938990757E-4,-1.2917653369489324E-4,1.79156791849285E-4,-1,1]); % Plot solution postplot(fem, ... 'contdata',{'Vx','cont','internal'}, ... 'contlevels',100, ... 'contlabel','off', ... 'contmap','cool(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Contour: Vx Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.1999998938990757E-4,-1.2917653369489324E-4,1.79156791849285E-4,-1,1]); % Plot solution postplot(fem, ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.1999998938990757E-4,-1.1455272454051222E-4,1.64532982694904E-4,-1,1]); % Plot solution postplot(fem, ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Arrow: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.1999998938990757E-4,-1.1455272454051222E-4,1.64532982694904E-4,-1,1]); % Plot solution postplot(fem, ... 'contdata',{'Vx','cont','internal'}, ... 'contlevels',100, ... 'contlabel','off', ... 'contmap','cool(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Contour: Vx Arrow: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.1999998938990757E-4,-1.1455272454051222E-4,1.64532982694904E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'u','cont','internal','unit','m/s'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: x-velocity [m/s] Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.1999998938990757E-4,-1.1455272454051222E-4,1.64532982694904E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'u','cont','internal','unit','m/s'}, ... 'trimap','jet(1024)', ... 'lindata',{'V','cont','internal'}, ... 'linmap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: x-velocity [m/s] Boundary: V Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.1999998938990757E-4,-1.2917653369489324E-4,1.79156791849285E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'u','cont','internal','unit','m/s'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: x-velocity [m/s] Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.1999998938990757E-4,-1.406815085286312E-4,1.9066176668302299E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'u','cont','internal','unit','m/s'}, ... 'trimap','jet(1024)', ... 'lindata',{'V','cont','internal'}, ... 'linmap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: x-velocity [m/s] Boundary: V Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.1999998938990757E-4,-1.2917653369489324E-4,1.79156791849285E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'u','cont','internal','unit','m/s'}, ... 'trimap','jet(1024)', ... 'lindata',{'V','cont','internal'}, ... 'linmap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',2, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: x-velocity [m/s] Boundary: V Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.1999998938990757E-4,-1.406815085286312E-4,1.9066176668302299E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'u','cont','internal','unit','m/s'}, ... 'trimap','jet(1024)', ... 'lindata',{'V','cont','internal'}, ... 'linmap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1.5, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: x-velocity [m/s] Boundary: V Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.1999998938990757E-4,-1.406815085286312E-4,1.9066176668302299E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'u','cont','internal','unit','m/s'}, ... 'trimap','jet(1024)', ... 'lindata',{'V','cont','internal'}, ... 'linmap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1.1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: x-velocity [m/s] Boundary: V Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.1999998938990757E-4,-1.406815085286312E-4,1.9066176668302299E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'u','cont','internal','unit','m/s'}, ... 'trimap','jet(1024)', ... 'lindata',{'V','cont','internal'}, ... 'linmap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: x-velocity [m/s] Boundary: V Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.1999998938990757E-4,-1.406815085286312E-4,1.9066176668302299E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'u','cont','internal','unit','m/s'}, ... 'trimap','jet(1024)', ... 'lindata',{'V','cont','internal'}, ... 'linmap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',30, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: x-velocity [m/s] Boundary: V Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.1999998938990757E-4,-1.406815085286312E-4,1.9066176668302299E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'u','cont','internal','unit','m/s'}, ... 'trimap','jet(1024)', ... 'lindata',{'V','cont','internal'}, ... 'linmap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',35, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: x-velocity [m/s] Boundary: V Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.1999998938990757E-4,-1.406815085286312E-4,1.9066176668302299E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'u','cont','internal','unit','m/s'}, ... 'trimap','jet(1024)', ... 'lindata',{'V','cont','internal'}, ... 'linmap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',35, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: x-velocity [m/s] Boundary: V Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.1999998938990757E-4,-1.406815085286312E-4,1.9066176668302299E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'u','cont','internal','unit','m/s'}, ... 'trimap','jet(1024)', ... 'lindata',{'V','cont','internal'}, ... 'linmap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: x-velocity [m/s] Boundary: V Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.1999998938990757E-4,-1.406815085286312E-4,1.9066176668302299E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'u','cont','internal','unit','m/s'}, ... 'trimap','jet(1024)', ... 'lindata',{'V','cont','internal'}, ... 'linmap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: x-velocity [m/s] Boundary: V Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.1999998938990757E-4,-1.406815085286312E-4,1.9066176668302299E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'u','cont','internal','unit','m/s'}, ... 'trimap','jet(1024)', ... 'lindata',{'V','cont','internal'}, ... 'linmap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: x-velocity [m/s] Boundary: V Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.1999998938990757E-4,-1.406815085286312E-4,1.9066176668302299E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'u','cont','internal','unit','m/s'}, ... 'trimap','jet(1024)', ... 'lindata',{'V','cont','internal'}, ... 'linmap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: x-velocity [m/s] Boundary: V Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.1999998938990757E-4,-1.406815085286312E-4,1.9066176668302299E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'u','cont','internal','unit','m/s'}, ... 'trimap','jet(1024)', ... 'lindata',{'V','cont','internal'}, ... 'linmap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',[0,0], ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: x-velocity [m/s] Boundary: V Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.1999998938990757E-4,-1.406815085286312E-4,1.9066176668302299E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'u','cont','internal','unit','m/s'}, ... 'trimap','jet(1024)', ... 'lindata',{'V','cont','internal'}, ... 'linmap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',[0, 400e-6], ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: x-velocity [m/s] Boundary: V Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.1999998938990757E-4,-1.406815085286312E-4,1.9066176668302299E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'u','cont','internal','unit','m/s'}, ... 'trimap','jet(1024)', ... 'lindata',{'V','cont','internal'}, ... 'linmap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: x-velocity [m/s] Boundary: V Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.1999998938990757E-4,-1.406815085286312E-4,1.9066176668302299E-4,-1,1]); % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxvtx',[1,10e-9,3,10e-9,6,10e-9,7,10e-9]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,+0.04,-0.1,-0.04}; bnd.eotype = {'mueo','zeta','mueo','zeta'}; bnd.type = {'noslip','eovel','neutral','eovel'}; bnd.E_x = {0,'-Ex_dc',0,'-Ex_dc'}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,-1,0,+1}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = {5e-3,1e-3}; equ.ind = [1,2]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'u','p','lmy_mmglf','lmx_mmglf','V2','v'}, ... 'outcomp',{'u','p','lmy_mmglf','lmx_mmglf','V','V2','v'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'u','cont','internal','unit','m/s'}, ... 'trimap','jet(1024)', ... 'lindata',{'V','cont','internal'}, ... 'linmap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: x-velocity [m/s] Boundary: V Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,5.023880470101026E-4,-1.4456210544552443E-4,1.945423635999162E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'u','cont','internal','unit','m/s'}, ... 'trimap','jet(1024)', ... 'lindata',{'V','cont','internal'}, ... 'linmap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: x-velocity [m/s] Boundary: V Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.1999998938990757E-4,-1.3680091161173794E-4,1.945423635999162E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'u','cont','internal','unit','m/s'}, ... 'trimap','jet(1024)', ... 'lindata',{'V','cont','internal'}, ... 'linmap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: x-velocity [m/s] Boundary: V Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.1999998938990757E-4,-1.3680091161173794E-4,1.945423635999162E-4,-1,1]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,+0.04,-0.1,-0.04}; bnd.eotype = {'mueo','zeta','mueo','zeta'}; bnd.type = {'noslip','eovel','neutral','eovel'}; bnd.E_x = {0,'-Ex_dc',0,'-Ex_dc'}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,-1,0,+1}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = {1e-3,5e-3}; equ.ind = [1,2]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'u','p','lmy_mmglf','lmx_mmglf','v','V2'}, ... 'outcomp',{'u','p','lmy_mmglf','lmx_mmglf','V','v','V2'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'u','cont','internal','unit','m/s'}, ... 'trimap','jet(1024)', ... 'lindata',{'V','cont','internal'}, ... 'linmap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: x-velocity [m/s] Boundary: V Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-2.611805769706667E-5,5.085061052124117E-4,-1.4068150852863118E-4,1.9842296051680945E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'lindata',{'V','cont','internal'}, ... 'linmap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: Electric potential [V] Boundary: V Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,5.023880470101026E-4,-1.6782219517972184E-4,2.255636471679001E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'sigma_dc','cont','internal','unit','S/m'}, ... 'trimap','jet(1024)', ... 'lindata',{'V','cont','internal'}, ... 'linmap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: Electrical conductivity [S/m] Boundary: V Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.1999998938990757E-4,-1.4158674164564973E-4,1.915646824075414E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'sigma_dc','cont','internal','unit','S/m'}, ... 'trimap','jet(1024)', ... 'lindata',{'V','cont','internal'}, ... 'linmap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: Electrical conductivity [S/m] Boundary: V Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.1999998938990757E-4,-1.3934480743264037E-4,1.8932274819453203E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'Qj_dc','cont','internal','unit','A/m^3'}, ... 'trimap','jet(1024)', ... 'lindata',{'V','cont','internal'}, ... 'linmap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: Current source [A/m^3] Boundary: V Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.1999998938990757E-4,-1.3934480743264037E-4,1.8932274819453203E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'u','cont','internal','unit','m/s'}, ... 'trimap','jet(1024)', ... 'lindata',{'V','cont','internal'}, ... 'linmap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: x-velocity [m/s] Boundary: V Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.1999998938990757E-4,-1.3375612364803136E-4,1.8373406440992302E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'u','cont','internal','unit','m/s'}, ... 'trimap','jet(1024)', ... 'lindata',{'V','cont','internal'}, ... 'linmap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: x-velocity [m/s] Boundary: V Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.1999998938990757E-4,-1.4068266722488124E-4,1.906606079867729E-4,-1,1]); % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2'}; % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2'}; % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'Zdl','0'}; % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'Zdl','0'}; % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'Zdl','0'}; % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'Zdl','0'}; % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'Zdl','0'}; % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er't�`,'80', ... 'Cdl','eo*er/lamda', ... 'Zdl','0'}; % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'Zdl','0'}; % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'Zdl','0'}; % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxvtx',[1,10e-9,3,10e-9,6,10e-9,7,10e-9]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,+0.04,-0.1,-0.04}; bnd.eotype = {'mueo','zeta','mueo','zeta'}; bnd.type = {'noslip','eovel','neutral','eovel'}; bnd.E_x = {0,'-Ex_dc',0,'-Ex_dc'}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,+1,0,-1}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = {1e-3,5e-3}; equ.ind = [1,2]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','eo','Absolute Permittivity [F/m]','Zdl','Impedance DL [ohm]','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'u','p','lmy_mmglf','lmx_mmglf','V2','v'}, ... 'outcomp',{'u','p','lmy_mmglf','lmx_mmglf','V','V2','v'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'u','cont','internal','unit','m/s'}, ... 'trimap','jet(1024)', ... 'lindata',{'V','cont','internal'}, ... 'linmap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: x-velocity [m/s] Boundary: V Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.1999998938990757E-4,-1.1781142559526155E-4,1.6781142433215532E-4,-1,1]); % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxvtx',[1,10e-9,3,10e-9,6,10e-9,7,10e-9]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,+0.04,-0.1,-0.04}; bnd.eotype = {'mueo','zeta','mueo','zeta'}; bnd.type = {'noslip','eovel','neutral','eovel'}; bnd.E_x = {0,'-Ex_dc',0,'-Ex_dc'}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,+1,0,-1}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','eo','Absolute Permittivity [F/m]','Zdl','Impedance DL [ohm]','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'u','p','lmy_mmglf','lmx_mmglf','v','V2'}, ... 'outcomp',{'u','p','lmy_mmglf','lmx_mmglf','V','v','V2'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'u','cont','internal','unit','m/s'}, ... 'trimap','jet(1024)', ... 'lindata',{'V','cont','internal'}, ... 'linmap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: x-velocity [m/s] Boundary: V Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.1999998938990757E-4,-1.145428542492612E-4,1.7107999567815568E-4,-1,1]); % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxvtx',[1,10e-9,3,10e-9,6,10e-9,7,10e-9]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,+0.04,-0.1,-0.04}; bnd.eotype = {'mueo','zeta','mueo','zeta'}; bnd.type = {'noslip','eovel','neutral','eovel'}; bnd.E_x = {0,'-Ex_dc',0,'-Ex_dc'}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,-1,0,+1}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','eo','Absolute Permittivity [F/m]','Zdl','Impedance DL [ohm]','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'u','p','lmy_mmglf','lmx_mmglf','V2','v'}, ... 'outcomp',{'u','p','lmy_mmglf','lmx_mmglf','V','V2','v'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'u','cont','internal','unit','m/s'}, ... 'trimap','jet(1024)', ... 'lindata',{'V','cont','internal'}, ... 'linmap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: x-velocity [m/s] Boundary: V Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.1999998938990757E-4,-1.1127428290326084E-4,1.7434856702415604E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'u','cont','internal','unit','m/s'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: x-velocity [m/s] Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.1999998938990757E-4,-1.4068263766630346E-4,1.9066063754535073E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'u','cont','internal','unit','m/s'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: x-velocity [m/s] Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.1999998938990757E-4,-1.2917766283256546E-4,1.7915566271161273E-4,-1,1]); % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxvtx',[1,10e-9,3,10e-9,6,10e-9,7,10e-9]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,+0.04,-0.1,-0.04}; bnd.eotype = {'mueo','zeta','mueo','zeta'}; bnd.type = {'noslip','eovel','neutral','eovel'}; bnd.E_x = {0,'-Ex_dc',0,'-Ex_dc'}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'-1-Ex_dc',0,'+1-Ex_dc'}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','eo','Absolute Permittivity [F/m]','Zdl','Impedance DL [ohm]','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'u','p','lmy_mmglf','lmx_mmglf','v','V2'}, ... 'outcomp',{'u','p','lmy_mmglf','lmx_mmglf','V','v','V2'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'u','cont','internal','unit','m/s'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: x-velocity [m/s] Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.66111099336154E-4,-1.3278877385245223E-4,1.827667737314995E-4,-1,1]); % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxvtx',[1,10e-9,3,10e-9,6,10e-9,7,10e-9]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,+0.04,-0.1,-0.04}; bnd.eotype = {'mueo','zeta','mueo','zeta'}; bnd.type = {'noslip','eovel','neutral','eovel'}; bnd.E_x = {0,'-Ex_dc',0,'-Ex_dc'}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'-1-(Ey_dc*10e-9)',0,'+1-(Ey_dc*10e-9)'}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','eo','Absolute Permittivity [F/m]','Zdl','Impedance DL [ohm]','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'u','p','lmy_mmglf','lmx_mmglf','v','V2'}, ... 'outcomp',{'u','p','lmy_mmglf','lmx_mmglf','V','v','V2'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'u','cont','internal','unit','m/s'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: x-velocity [m/s] Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,5.211542135803666E-4,-1.470430850558299E-4,2.042433069746507E-4,-1,1]); % COMSOL Multiphysics Model M-file % Generated by COMSOL 3.3 (COMSOL 3.3.0.405, $Date: 2006/08/31 18:03:47 $) % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxvtx',[1,10e-9,3,10e-9,6,10e-9,7,10e-9]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,+0.04,-0.1,-0.04}; bnd.eotype = {'mueo','zeta','mueo','zeta'}; bnd.type = {'noslip','eovel','neutral','eovel'}; bnd.E_x = {0,'-Ex_dc',0,'-Ex_dc'}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'V2-Vpp',0,'V2-Vpp'}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','eo','Absolute Permittivity [F/m]','A','Correction Factor [N.A]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','Vdc','DC Voltage [V]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'u','p','lmy_mmglf','lmx_mmglf','v','V2'}, ... 'outcomp',{'u','p','lmy_mmglf','lmx_mmglf','V','v','V2'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'u','cont','internal','unit','m/s'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: x-velocity [m/s] Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-1.9999999494757557E-5,5.778660818698052E-4,-1.6143013443778667E-4,2.2667036180800947E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-1.9999999494757557E-5,5.170545604510097E-4,-1.525475526575132E-4,2.2667036180800947E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-2.9565856796590557E-5,5.266204177528427E-4,-1.525475526575132E-4,2.2667036180800947E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'Ex_dc','cont','internal','unit','V/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: Electric field, x component [V/m] Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-2.9565856796590557E-5,5.266204177528427E-4,-1.525475526575132E-4,2.2667036180800947E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-2.204982605943609E-5,5.191043870156882E-4,-1.525475526575132E-4,2.2667036180800947E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-2.204982605943609E-5,5.191043870156882E-4,-1.525475526575132E-4,2.2667036180800947E-4,-1,1]); % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxvtx',[1,10e-9,3,10e-9,6,10e-9,7,10e-9]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,+0.04,-0.1,-0.04}; bnd.eotype = {'mueo','zeta','mueo','zeta'}; bnd.type = {'noslip','eovel','neutral','eovel'}; bnd.E_x = {0,'-Ex_dc',0,'-Ex_dc'}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'V2-Vpp',0,'-V2-Vpp'}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','eo','Absolute Permittivity [F/m]','A','Correction Factor [N.A]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','Vdc','DC Voltage [V]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'u','p','lmy_mmglf','lmx_mmglf','V2','v'}, ... 'outcomp',{'u','p','lmy_mmglf','lmx_mmglf','V','V2','v'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-2.320104907727492E-5,5.609814776081693E-4,-1.525475526575132E-4,2.2667036180800947E-4,-1,1]); % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxvtx',[1,10e-9,3,10e-9,6,10e-9,7,10e-9]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,+0.04,-0.1,-0.04}; bnd.eotype = {'mueo','zeta','mueo','zeta'}; bnd.type = {'noslip','eovel','neutral','eovel'}; bnd.E_x = {0,'-Ex_dc',0,'-Ex_dc'}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'V2-Vpp',0,'V2+Vpp'}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','eo','Absolute Permittivity [F/m]','A','Correction Factor [N.A]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','Vdc','DC Voltage [V]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'u','p','lmy_mmglf','lmx_mmglf','v','V2'}, ... 'outcomp',{'u','p','lmy_mmglf','lmx_mmglf','V','v','V2'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-2.320104907727492E-5,5.609814776081693E-4,-1.4820791103070706E-4,2.310100034348156E-4,-1,1]); % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxvtx',[1,10e-9,3,10e-9,6,10e-9,7,10e-9]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,+0.04,-0.1,-0.04}; bnd.eotype = {'mueo','zeta','mueo','zeta'}; bnd.type = {'noslip','eovel','neutral','eovel'}; bnd.E_x = {0,'-Ex_dc',0,'-Ex_dc'}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'-(V2+Vpp)',0,'-(V2-Vpp)'}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','eo','Absolute Permittivity [F/m]','A','Correction Factor [N.A]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','Vdc','DC Voltage [V]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'u','p','lmy_mmglf','lmx_mmglf','V2','v'}, ... 'outcomp',{'u','p','lmy_mmglf','lmx_mmglf','V','V2','v'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-2.320104907727492E-5,5.609814776081693E-4,-1.4386826940390092E-4,2.3534964506162175E-4,-1,1]); % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'f','1000', ... 'w','2*pi*f', ... 'Zdl','1/w*Cdl'}; % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'f','1000', ... 'w','2*pi*f', ... 'Zdl','1/w*Cdl'}; % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,+0.04,-0.1,-0.04}; bnd.eotype = {'mueo','zeta','mueo','zeta'}; bnd.type = {'noslip','eovel','neutral','eovel'}; bnd.E_x = {0,'-Ex_dc',0,'-Ex_dc'}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'-(V2+Vpp)/Zdl',0,'-(V2-Vpp)/Zdl'}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','w','Frequency [rad]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','eo','Absolute Permittivity [F/m]','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','f','Frequency [Hz]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'u','p','lmy_mmglf','lmx_mmglf','v','V2'}, ... 'outcomp',{'u','p','lmy_mmglf','lmx_mmglf','V','v','V2'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-3.004282641683417E-5,5.678232549477285E-4,-1.3952862777709478E-4,2.396892866884279E-4,-1,1]); % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'f','1000', ... 'w','2*pi*f', ... 'Zdl','-i/w*Cdl'}; % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'f','1000', ... 'w','2*pi*f', ... 'Zdl','-i/w*Cdl'}; % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxvtx',[1,10e-9,3,10e-9,6,10e-9,7,10e-9]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,+0.04,-0.1,-0.04}; bnd.eotype = {'mueo','zeta','mueo','zeta'}; bnd.type = {'noslip','eovel','neutral','eovel'}; bnd.E_x = {0,'-Ex_dc',0,'-Ex_dc'}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'-(V2+Vpp)/Zdl',0,'-(V2-Vpp)/Zdl'}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','w','Frequency [rad]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','eo','Absolute Permittivity [F/m]','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','f','Frequency [Hz]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'u','p','lmy_mmglf','lmx_mmglf','V2','v'}, ... 'outcomp',{'u','p','lmy_mmglf','lmx_mmglf','V','V2','v'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.529729615299132E-4,-1.326221689439351E-4,1.7440485032693684E-4,-1,1]); % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxvtx',[1,10e-9,3,10e-9,6,10e-9,7,10e-9]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,'+0.04-V2',-0.1,'-0.04-V2'}; bnd.eotype = {'mueo','zeta','mueo','zeta'}; bnd.type = {'noslip','eovel','neutral','eovel'}; bnd.E_x = {0,'Ex_dc',0,'-Ex_dc'}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'-(V2+Vpp)/Zdl',0,'-(V2-Vpp)/Zdl'}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','w','Frequency [rad]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','eo','Absolute Permittivity [F/m]','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','f','Frequency [Hz]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'u','p','lmy_mmglf','lmx_mmglf','v','V2'}, ... 'outcomp',{'u','p','lmy_mmglf','lmx_mmglf','V','v','V2'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.529729615299132E-4,-1.291086555191804E-4,1.7791836375169153E-4,-1,1]); % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxvtx',[1,10e-9,3,10e-9,6,10e-9,7,10e-9]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,'0.04-V2',-0.1}; bnd.eotype = {'mueo','zeta','mueo'}; bnd.type = {'noslip','eovel','neutral'}; bnd.E_x = {0,'Ex_dc',0}; bnd.ind = [1,2,1,1,3,1,1,2,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'-(V2+Vpp)/Zdl',0,'-(V2-Vpp)/Zdl'}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','w','Frequency [rad]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','eo','Absolute Permittivity [F/m]','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','f','Frequency [Hz]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'u','p','lmy_mmglf','lmx_mmglf','V2','v'}, ... 'outcomp',{'u','p','lmy_mmglf','lmx_mmglf','V','V2','v'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.529729615299132E-4,-1.255951420944257E-4,1.8143187717644622E-4,-1,1]); % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxvtx',[1,10e-9,3,10e-9,6,10e-9,7,10e-9]); % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxvtx',[1,10e-9,3,10e-9,6,10e-9,7,10e-9]); % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'f','1000', ... 'w','2*pi*f', ... 'Zdl','-i/w*Cdl'}; % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'f','1000', ... 'w','2*pi*f', ... 'Zdl','-i/w*Cdl'}; % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxvtx',[1,10e-9,3,10e-9,6,10e-9,7,10e-9]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,'0.04-V2',-0.1}; bnd.eotype = {'mueo','zeta','mueo'}; bnd.type = {'noslip','uv','neutral'}; bnd.E_x = {0,'Ex_dc',0}; bnd.u0 = {0,'diff((abs(V2-Vpp))^2,x)',0}; bnd.ind = [1,2,1,1,3,1,1,2,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'-(V2+Vpp)/Zdl',0,'-(V2-Vpp)/Zdl'}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','w','Frequency [rad]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','eo','Absolute Permittivity [F/m]','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','f','Frequency [Hz]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'u','p','v','V2'}, ... 'outcomp',{'u','p','V','v','V2'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.529729615299132E-4,-1.2208162866967102E-4,1.849453906012009E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.1351350306728353E-4,-1.1505460182016164E-4,1.849453906012009E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.1351350306728353E-4,-1.1505460182016164E-4,1.849453906012009E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.1351350306728353E-4,-1.1505460182016164E-4,1.849453906012009E-4,-1,1]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,'0.04-V2',-0.1}; bnd.eotype = {'mueo','zeta','mueo'}; bnd.type = {'noslip','uv','neutral'}; bnd.E_x = {0,'Ex_dc',0}; bnd.u0 = {0,'-diff((abs(V2-Vpp))^2,x)',0}; bnd.ind = [1,2,1,1,3,1,1,2,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'-(V2+Vpp)/Zdl',0,'-(V2-Vpp)/Zdl'}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','w','Frequency [rad]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','eo','Absolute Permittivity [F/m]','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','f','Frequency [Hz]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'u','p','V2','v'}, ... 'outcomp',{'u','p','V','V2','v'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[-2.5622205099622662E-5,4.6567206929474847E-4,-1.3081047051091086E-4,1.8081046924780457E-4,-1,1]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,'0.04-V2',-0.1,'0.04-V2'}; bnd.eotype = {'mueo','zeta','mueo','zeta'}; bnd.type = {'noslip','uv','neutral','uv'}; bnd.E_x = {0,'Ex_dc',0,'Ex_dc'}; bnd.u0 = {0,'-diff((abs(V2-Vpp))^2,x)',0,'diff((abs(V2-Vpp))^2,x)'}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weat�`kconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'-(V2+Vpp)/Zdl',0,'-(V2-Vpp)/Zdl'}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','w','Frequency [rad]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','eo','Absolute Permittivity [F/m]','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','f','Frequency [Hz]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'u','p','v','V2'}, ... 'outcomp',{'u','p','V','v','V2'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[-2.6133951993831086E-5,5.098791279252148E-4,-1.44992720263022E-4,1.9499271899991566E-4,-1,1]); % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxvtx',[1,10e-9,3,10e-9,6,10e-9,7,10e-9]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,'0.04-V2',-0.1,'0.04-V2'}; bnd.eotype = {'mueo','zeta','mueo','zeta'}; bnd.type = {'noslip','uv','neutral','uv'}; bnd.E_x = {0,'Ex_dc',0,'Ex_dc'}; bnd.u0 = {0,'-diff((abs(V2-Vpp))^2,y)',0,'diff((abs(V2-Vpp))^2,y)'}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'-(V2+Vpp)/Zdl',0,'-(V2-Vpp)/Zdl'}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','w','Frequency [rad]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','eo','Absolute Permittivity [F/m]','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','f','Frequency [Hz]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'u','p','V2','v'}, ... 'outcomp',{'u','p','V','V2','v'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,5.514177412231806E-4,-1.604658730474325E-4,2.104658717843262E-4,-1,1]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,'0.04-V2',-0.1,'0.04-V2'}; bnd.eotype = {'mueo','zeta','mueo','zeta'}; bnd.type = {'noslip','uv','neutral','uv'}; bnd.E_x = {0,'Ex_dc',0,'Ex_dc'}; bnd.u0 = {0,'-diff((abs(V2))^2,x)',0,'diff((abs(V2))^2,x)'}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'-(V2+Vpp)/Zdl',0,'-(V2-Vpp)/Zdl'}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','w','Frequency [rad]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','eo','Absolute Permittivity [F/m]','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','f','Frequency [Hz]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'u','p','v','V2'}, ... 'outcomp',{'u','p','V','v','V2'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[-2.669227934100362E-5,5.581100210694267E-4,-1.562210555449564E-4,2.147106892868023E-4,-1,1]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,'0.04-V2',-0.1}; bnd.eotype = {'mueo','zeta','mueo'}; bnd.type = {'noslip','uv','neutral'}; bnd.E_x = {0,'Ex_dc',0}; bnd.u0 = {0,'Ex_dc',0}; bnd.ind = [1,2,1,1,3,1,1,2,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'-(V2+Vpp)/Zdl',0,'-(V2-Vpp)/Zdl'}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','w','Frequency [rad]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','eo','Absolute Permittivity [F/m]','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','f','Frequency [Hz]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'u','p','V2','v'}, ... 'outcomp',{'u','p','V','V2','v'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[-2.730142700780664E-5,6.107310079786356E-4,-1.7310261251049158E-4,2.3159224625233742E-4,-1,1]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,'0.04-V2',-0.1,'0.04-V2'}; bnd.eotype = {'mueo','zeta','mueo','zeta'}; bnd.type = {'noslip','uv','neutral','uv'}; bnd.E_x = {0,'Ex_dc',0,'Ex_dc'}; bnd.u0 = {0,'Ex_dc',0,'-Ex_dc'}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'-(V2+Vpp)/Zdl',0,'-(V2-Vpp)/Zdl'}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','w','Frequency [rad]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','eo','Absolute Permittivity [F/m]','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','f','Frequency [Hz]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'u','p','v','V2'}, ... 'outcomp',{'u','p','V','v','V2'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[-2.7966020783931985E-5,6.681416857162386E-4,-1.9152077004770261E-4,2.5001040378954846E-4,-1,1]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,'0.04-V2',-0.1,'0.04-V2'}; bnd.eotype = {'mueo','zeta','mueo','zeta'}; bnd.type = {'noslip','uv','neutral','uv'}; bnd.E_x = {0,'Ex_dc',0,'Ex_dc'}; bnd.u0 = {0,'Ex_dc',0,'-Ex_dc'}; bnd.ind = [1,4,1,1,3,1,1,2,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'-(V2+Vpp)/Zdl',0,'-(V2-Vpp)/Zdl'}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','w','Frequency [rad]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','eo','Absolute Permittivity [F/m]','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','f','Frequency [Hz]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'u','p','V2','v'}, ... 'outcomp',{'u','p','V','V2','v'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[-2.86911075097546E-5,7.307780236469152E-4,-2.1161539329590665E-4,2.701050270377525E-4,-1,1]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,'0.04-V2',-0.1,'0.04-V2'}; bnd.eotype = {'mueo','zeta','mueo','zeta'}; bnd.type = {'noslip','uv','neutral','uv'}; bnd.E_x = {0,'Ex_dc',0,'Ex_dc'}; bnd.u0 = {0,'Ex_dc',0,'-diff(V2,x)'}; bnd.ind = [1,4,1,1,3,1,1,2,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'-(V2+Vpp)/Zdl',0,'-(V2-Vpp)/Zdl'}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','w','Frequency [rad]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','eo','Absolute Permittivity [F/m]','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','f','Frequency [Hz]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'u','p','v','V2'}, ... 'outcomp',{'u','p','V','v','V2'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[-2.9553667224810843E-5,8.052899128783125E-4,-2.3551986139035337E-4,2.9400949513219915E-4,-1,1]); % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxvtx',[1,10e-9,3,10e-9,6,10e-9,7,10e-9]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,'0.04-V2',-0.1,'0.04-V2'}; bnd.eotype = {'mueo','zeta','mueo','zeta'}; bnd.type = {'noslip','uv','neutral','uv'}; bnd.E_x = {0,'Ex_dc',0,'Ex_dc'}; bnd.u0 = {0,'(0.04-V2)*Ex_dc',0,'-(0.04-V2)*Ex_dc'}; bnd.ind = [1,4,1,1,3,1,1,2,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'-(V2+Vpp)/Zdl',0,'-(V2-Vpp)/Zdl'}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','w','Frequency [rad]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','eo','Absolute Permittivity [F/m]','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','f','Frequency [Hz]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'u','p','v','V2'}, ... 'outcomp',{'u','p','V','v','V2'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.600498636898833E-4,-1.3088697379461887E-4,1.8073396596409656E-4,-1,1]); % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxvtx',[1,10e-9,3,10e-9,6,10e-9,7,10e-9]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,'0.04-V2',-0.1,'0.04-V2'}; bnd.eotype = {'mueo','zeta','mueo','zeta'}; bnd.type = {'noslip','uv','neutral','uv'}; bnd.E_x = {0,'Ex_dc',0,'Ex_dc'}; bnd.u0 = {0,'(-0.04-V2)*Ex_dc',0,'-(0.04-V2)*Ex_dc'}; bnd.ind = [1,4,1,1,3,1,1,2,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'-(V2+Vpp)/Zdl',0,'-(V2-Vpp)/Zdl'}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','w','Frequency [rad]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','eo','Absolute Permittivity [F/m]','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','f','Frequency [Hz]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'u','p','V2','v'}, ... 'outcomp',{'u','p','V','V2','v'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.1999998938990757E-4,-1.1781142559526155E-4,1.6781142433215532E-4,-1,1]); % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxvtx',[1,10e-9,3,10e-9,6,10e-9,7,10e-9]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,'0.04-V2',-0.1,'0.04-V2'}; bnd.eotype = {'mueo','zeta','mueo','zeta'}; bnd.type = {'noslip','uv','neutral','uv'}; bnd.E_x = {0,'Ex_dc',0,'Ex_dc'}; bnd.u0 = {0,'(-0.04-V2)*Ex_dc',0,'-(-0.04-V2)*Ex_dc'}; bnd.ind = [1,4,1,1,3,1,1,2,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'-(V2+Vpp)/Zdl',0,'-(V2-Vpp)/Zdl'}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','w','Frequency [rad]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','eo','Absolute Permittivity [F/m]','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','f','Frequency [Hz]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'u','p','v','V2'}, ... 'outcomp',{'u','p','V','v','V2'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.1999998938990757E-4,-1.1781142559526155E-4,1.6781142433215532E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-1.9999999494757547E-5,3.8329141888867273E-4,-1.1127428290326084E-4,1.6781142433215532E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[-4.249999949475756E-5,3.607914188886727E-4,-1.1127428290326084E-4,1.6781142433215532E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[-4.249999949475756E-5,3.607914188886727E-4,-1.1127428290326084E-4,1.6781142433215532E-4,-1,1]); % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxvtx',[1,10e-9,3,10e-9,6,10e-9,7,10e-9]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,'0.04-V2',-0.1,'0.04-V2'}; bnd.eotype = {'mueo','zeta','mueo','zeta'}; bnd.type = {'noslip','uv','neutral','uv'}; bnd.E_x = {0,'Ex_dc',0,'Ex_dc'}; bnd.u0 = {0,'eo*er*(0.04-V2)*Ex_dc',0,'-eo*er*(0.04-V2)*Ex_dc'}; bnd.ind = [1,4,1,1,3,1,1,2,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'-(V2+Vpp)/Zdl',0,'-(V2-Vpp)/Zdl'}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','w','Frequency [rad]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','eo','Absolute Permittivity [F/m]','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','f','Frequency [Hz]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'u','p','V2','v'}, ... 'outcomp',{'u','p','V','V2','v'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[-4.249999949475756E-5,3.974999893899076E-4,-1.1454285424926123E-4,1.710799956781557E-4,-1,1]); % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'f','1000', ... 'w','2*pi*f', ... 'Zdl','-i/w*Cdl', ... 'vis','1e-3'}; % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'f','1000', ... 'w','2*pi*f', ... 'Zdl','-i/w*Cdl', ... 'vis','1e-3'}; % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxvtx',[1,10e-9,3,10e-9,6,10e-9,7,10e-9]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,'0.04-V2',-0.1,'0.04-V2'}; bnd.eotype = {'mueo','zeta','mueo','zeta'}; bnd.type = {'noslip','uv','neutral','uv'}; bnd.E_x = {0,'Ex_dc',0,'Ex_dc'}; bnd.u0 = {0,'eo*er*A*(0.04-V2)*Ex_dc/vis',0,'-eo*er*A*(0.04-V2)*Ex_dc/vis'}; bnd.ind = [1,4,1,1,3,1,1,2,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'-(V2+Vpp)/Zdl',0,'-(V2-Vpp)/Zdl'}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','w','Frequency [rad]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','eo','Absolute Permittivity [F/m]','vis','Viscosity []','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','f','Frequency [Hz]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'u','p','v','V2'}, ... 'outcomp',{'u','p','V','v','V2'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[1.0783042121612397E-4,3.4127112775229597E-4,-5.718539923177985E-5,9.435096798255807E-5,-1,1]); % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxvtx',[1,10e-9,3,10e-9,6,10e-9,7,10e-9]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,'0.04-V2',-0.1}; bnd.eotype = {'mueo','zeta','mueo'}; bnd.type = {'noslip','uv','neutral'}; bnd.E_x = {0,'Ex_dc',0}; bnd.u0 = {0,'-eo*er*A*(0.04-V2)*Ex_dc/vis',0}; bnd.ind = [1,2,1,1,3,1,1,2,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'-(V2+Vpp)/Zdl',0,'-(V2-Vpp)/Zdl'}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','w','Frequency [rad]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','eo','Absolute Permittivity [F/m]','vis','Viscosity []','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','f','Frequency [Hz]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'u','p','V2','v'}, ... 'outcomp',{'u','p','V','V2','v'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[1.0783042121612397E-4,3.4127112775229597E-4,-5.545126826893972E-5,9.60850989453982E-5,-1,1]); % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxvtx',[1,10e-9,3,10e-9,6,10e-9,7,10e-9]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,'0.04-V2',-0.1}; bnd.eotype = {'mueo','zeta','mueo'}; bnd.type = {'noslip','uv','neutral'}; bnd.E_x = {0,'Ex_dc',0}; bnd.u0 = {0,'-eo*er*A*(-0.04-V2)*Ex_dc/vis',0}; bnd.ind = [1,2,1,1,3,1,1,2,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'-(V2+Vpp)/Zdl',0,'-(V2-Vpp)/Zdl'}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','w','Frequency [rad]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','eo','Absolute Permittivity [F/m]','vis','Viscosity []','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','f','Frequency [Hz]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'u','p','v','V2'}, ... 'outcomp',{'u','p','V','v','V2'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[1.0783042121612397E-4,3.4127112775229597E-4,-5.371713730609957E-5,9.781922990823835E-5,-1,1]); % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxvtx',[1,10e-9,3,10e-9,6,10e-9,7,10e-9]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,'0.04-V2',-0.1,'0.04-V2'}; bnd.eotype = {'mueo','zeta','mueo','zeta'}; bnd.type = {'noslip','uv','neutral','uv'}; bnd.E_x = {0,'Ex_dc',0,'Ex_dc'}; bnd.u0 = {0,'-eo*er*A*(-0.04-V2)*Ex_dc/vis',0,'-eo*er*A*(-0.04+V2)*Ex_dc/vis'}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'-(V2+Vpp)/Zdl',0,'-(V2-Vpp)/Zdl'}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','w','Frequency [rad]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','eo','Absolute Permittivity [F/m]','vis','Viscosity []','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','f','Frequency [Hz]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'u','p','V2','v'}, ... 'outcomp',{'u','p','V','V2','v'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[8.478802778325744E-7,4.6772929335017657E-4,-1.2775118995042838E-4,1.7532154447824747E-4,-1,1]); % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxvtx',[1,10e-9,3,10e-9,6,10e-9,7,10e-9]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,'0.04-V2',-0.1}; bnd.eotype = {'mueo','zeta','mueo'}; bnd.type = {'noslip','uv','neutral'}; bnd.E_x = {0,'Ex_dc',0}; bnd.u0 = {0,'-eo*er*A*(-0.04+V2)*Ex_dc/vis',0}; bnd.ind = [1,2,1,1,3,1,1,2,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'-(V2+Vpp)/Zdl',0,'-(V2-Vpp)/Zdl'}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','w','Frequency [rad]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','eo','Absolute Permittivity [F/m]','vis','Viscosity []','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','f','Frequency [Hz]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'u','p','v','V2'}, ... 'outcomp',{'u','p','V','v','V2'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[7.554890636940762E-5,3.922253696008493E-4,-8.11332698332548E-5,1.2443499429869818E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.1999998938990757E-4,-1.2788310939010767E-4,1.7660566097272163E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.1999998938990757E-4,-1.2788310939010767E-4,1.7660566097272163E-4,-1,1]); % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxvtx',[1,10e-9,3,10e-9,6,10e-9,7,10e-9]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,'0.04-V2',-0.1}; bnd.eotype = {'mueo','zeta','mueo'}; bnd.type = {'noslip','uv','neutral'}; bnd.E_x = {0,'Ex_dc',0}; bnd.u0 = {0,'-eo*er*A*(-0.04-V2)*Ex_dc/vis',0}; bnd.ind = [1,2,1,1,3,1,1,2,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'-(V2+Vpp)/Zdl',0,'-(V2-Vpp)/Zdl'}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','w','Frequency [rad]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','eo','Absolute Permittivity [F/m]','vis','Viscosity []','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','f','Frequency [Hz]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'u','p','V2','v'}, ... 'outcomp',{'u','p','V','V2','v'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.600498636898833E-4,-1.3144919408805073E-4,1.801717456706647E-4,-1,1]); % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxvtx',[1,10e-9,3,10e-9,6,10e-9,7,10e-9]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,'0.04-V2',-0.1}; bnd.eotype = {'mueo','zeta','mueo'}; bnd.type = {'noslip','uv','neutral'}; bnd.E_x = {0,'Ex_dc',0}; bnd.u0 = {0,'eo*er*A*(-0.04-V2)*Ex_dc/vis',0}; bnd.ind = [1,2,1,1,3,1,1,2,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'-(V2+Vpp)/Zdl',0,'-(V2-Vpp)/Zdl'}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','w','Frequency [rad]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','eo','Absolute Permittivity [F/m]','vis','Viscosity []','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','f','Frequency [Hz]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'u','p','v','V2'}, ... 'outcomp',{'u','p','V','v','V2'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[7.577054677649255E-5,3.4939801347456804E-4,-4.861369603232141E-5,1.2900961949282932E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowt�`xspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'Ex_dc','Ey_dc'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s] Streamline: Electric field [V/m]', ... 'axis',[1.0728179280105585E-4,2.9381545392423057E-4,-4.0991995221261245E-5,8.809301964577364E-5,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[1.0728179280105585E-4,2.9381545392423057E-4,-4.0991995221261245E-5,8.809301964577364E-5,-1,1]); % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxvtx',[1,10e-9,3,10e-9,6,10e-9,7,10e-9]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,'0.04-V2',-0.1,'0.04-V2'}; bnd.eotype = {'mueo','zeta','mueo','zeta'}; bnd.type = {'noslip','uv','neutral','eovel'}; bnd.E_x = {0,'Ex_dc',0,'Ex_dc'}; bnd.u0 = {0,'eo*er*A*(-0.04-V2)*Ex_dc/vis',0,'eo*er*A*(-0.04-V2)*Ex_dc/vis'}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'-(V2+Vpp)/Zdl',0,'-(V2-Vpp)/Zdl'}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','w','Frequency [rad]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','eo','Absolute Permittivity [F/m]','vis','Viscosity []','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','f','Frequency [Hz]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'u','p','lmy_mmglf','lmx_mmglf','V2','v'}, ... 'outcomp',{'u','p','lmy_mmglf','lmx_mmglf','V','V2','v'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'Ex_dc','cont','internal','unit','V/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Vx','Vy'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric field, x component [V/m] Arrow: grad(V)', ... 'axis',[-1.9999999494757503E-5,5.037451754261412E-4,-1.456192647966104E-4,1.9436617446632725E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Vx','Vy'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: grad(V)', ... 'axis',[-2.6133951993831086E-5,5.098791279252148E-4,-1.4172858635434088E-4,1.9825685290859678E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Vx','Vy'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: grad(V)', ... 'axis',[-1.9999999494757503E-5,5.037451754261412E-4,-1.5161122073345296E-4,2.0813948728770886E-4,-1,1]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,'0.04-V2',-0.1}; bnd.eotype = {'mueo','zeta','mueo'}; bnd.type = {'noslip','uv','neutral'}; bnd.E_x = {0,'Ex_dc',0}; bnd.u0 = {0,'eo*er*A*(-0.04-V2)*Ex_dc/vis',0}; bnd.ind = [1,2,1,1,3,1,1,2,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'-(V2+Vpp)/Zdl',0,'-(V2-Vpp)/Zdl'}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','w','Frequency [rad]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','eo','Absolute Permittivity [F/m]','vis','Viscosity []','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','f','Frequency [Hz]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'u','p','v','V2'}, ... 'outcomp',{'u','p','V','v','V2'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Vx','Vy'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: grad(V)', ... 'axis',[-1.9999999494757503E-5,5.471745401782453E-4,-1.6652662756353826E-4,2.2305489411779416E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Vx','Vy'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field', ... 'axis',[-1.9999999494757503E-5,5.471745401782453E-4,-1.6798391505112425E-4,2.2451218160538016E-4,-1,1]); % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxvtx',[1,10e-9,3,10e-9,6,10e-9,7,10e-9]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,'0.04-V2',-0.1}; bnd.eotype = {'mueo','zeta','mueo'}; bnd.type = {'noslip','uv','neutral'}; bnd.E_x = {0,'Ex_dc',0}; bnd.u0 = {0,'eo*er*A*(-0.04-V2)*Ex_dc/vis',0}; bnd.ind = [1,2,1,1,3,1,1,2,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'-(V2+Vpp)/Zdl',0,'-(V2-Vpp)/Zdl'}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','w','Frequency [rad]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','eo','Absolute Permittivity [F/m]','vis','Viscosity []','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','f','Frequency [Hz]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'u','p','V2','v'}, ... 'outcomp',{'u','p','V','V2','v'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Vx','Vy'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field', ... 'axis',[-1.9999999494757503E-5,5.988001528916234E-4,-1.725807161831374E-4,2.2910898273739326E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Vx','Vy'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Electric field', ... 'axis',[-1.9999999494757503E-5,5.471745401782453E-4,-1.633871139191112E-4,2.2910898273739326E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Vx','Vy'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Electric field', ... 'axis',[-1.9999999494757503E-5,5.471745401782453E-4,-1.633871139191112E-4,2.2910898273739326E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Vx','Vy'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field', ... 'axis',[-1.9999999494757503E-5,5.471745401782453E-4,-1.633871139191112E-4,2.2910898273739326E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Vx','Vy'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field', ... 'axis',[-1.9999999494757503E-5,5.471745401782453E-4,-1.633871139191112E-4,2.2910898273739326E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Vx','Vy'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field', ... 'axis',[-1.9999999494757503E-5,5.471745401782453E-4,-1.633871139191112E-4,2.2910898273739326E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Vx','Vy'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field', ... 'axis',[-1.9999999494757503E-5,5.471745401782453E-4,-1.633871139191112E-4,2.2910898273739326E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Vx','Vy'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field', ... 'axis',[-1.9999999494757503E-5,5.471745401782453E-4,-1.633871139191112E-4,2.2910898273739326E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Vx','Vy'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field', ... 'axis',[-1.9999999494757503E-5,5.471745401782453E-4,-1.633871139191112E-4,2.2910898273739326E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Vx','Vy'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field', ... 'axis',[-1.9999999494757503E-5,5.471745401782453E-4,-1.633871139191112E-4,2.2910898273739326E-4,-1,1]); % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxvtx',[1,10e-9,3,10e-9,6,10e-9,7,10e-9]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,'0.04-V2',-0.1}; bnd.eotype = {'mueo','zeta','mueo'}; bnd.type = {'noslip','uv','neutral'}; bnd.E_x = {0,'Ex_dc',0}; bnd.u0 = {0,'-eo*er*A*(-0.04-V2)*Ex_dc/vis',0}; bnd.ind = [1,2,1,1,3,1,1,2,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'-(V2+Vpp)/Zdl',0,'-(V2-Vpp)/Zdl'}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','w','Frequency [rad]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','eo','Absolute Permittivity [F/m]','vis','Viscosity []','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','f','Frequency [Hz]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'u','p','v','V2'}, ... 'outcomp',{'u','p','V','v','V2'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Vx','Vy'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field', ... 'axis',[-1.9999999494757503E-5,4.600498636898833E-4,-1.3081047051091086E-4,1.8081046924780457E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Vx','Vy'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field', ... 'axis',[-1.9999999494757503E-5,4.1999998938990757E-4,-1.2367830111502476E-4,1.808104692478046E-4,-1,1]); % COMSOL Multiphysics Model M-file % Generated by COMSOL 3.3 (COMSOL 3.3.0.405, $Date: 2006/08/31 18:03:47 $) % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxvtx',[1,10e-9,3,10e-9,6,10e-9,7,10e-9]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,'0.04-V2',-0.1}; bnd.eotype = {'mueo','zeta','mueo'}; bnd.type = {'noslip','uv','neutral'}; bnd.E_x = {0,'Ex_dc',0}; bnd.u0 = {0,'-eo*er*A*(-0.04-V2)*Ex_dc/vis',0}; bnd.ind = [1,2,1,1,3,1,1,2,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'-(V2+Vpp)/Zdl',0,'-(V2-Vpp)/Zdl'}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','w','Frequency [rad]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','eo','Absolute Permittivity [F/m]','vis','Viscosity []','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','f','Frequency [Hz]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'u','p','V2','v'}, ... 'outcomp',{'u','p','V','V2','v'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Vx','Vy'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: grad(V)', ... 'axis',[-1.9999999494757503E-5,4.600498636898833E-4,-1.272443858129678E-4,1.8437655394574763E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.1999998938990757E-4,-1.201122164170817E-4,1.8437655394574765E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.1999998938990757E-4,-1.201122164170817E-4,1.8437655394574765E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'U_mmglf','cont','internal','unit','m/s'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Velocity field [m/s] Arrow: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.600498636898833E-4,-1.417455256931614E-4,1.9045855668523714E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'u','cont','internal','unit','m/s'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: x-velocity [m/s] Arrow: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.600498636898833E-4,-1.417455256931614E-4,1.9045855668523714E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.600498636898833E-4,-1.417455256931614E-4,1.9045855668523714E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.600498636898833E-4,-1.417455256931614E-4,1.9045855668523714E-4,-1,1]); % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxvtx',[1,10e-9,3,10e-9,6,10e-9,7,10e-9]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,'0.04-V2',-0.1,'0.04-V2'}; bnd.eotype = {'mueo','zeta','mueo','mueo'}; bnd.type = {'noslip','uv','neutral','eovel'}; bnd.mueo = {7e-8,7e-8,7e-8,'-eo*er*A*(-0.04-V2)/vis'}; bnd.E_x = {0,'Ex_dc',0,'Ex_dc'}; bnd.u0 = {0,'-eo*er*A*(-0.04-V2)*Ex_dc/vis',0,'-eo*er*A*(-0.04-V2)*Ex_dc/vis'}; bnd.ind = [1,4,1,1,3,1,1,2,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'-(V2+Vpp)/Zdl',0,'-(V2-Vpp)/Zdl'}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','w','Frequency [rad]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','eo','Absolute Permittivity [F/m]','vis','Viscosity []','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','f','Frequency [Hz]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'u','p','lmy_mmglf','lmx_mmglf','v','V2'}, ... 'outcomp',{'u','p','lmy_mmglf','lmx_mmglf','V','v','V2'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,5.037451754261412E-4,-1.4563620413543098E-4,1.9434923512750668E-4,-1,1]); % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxvtx',[1,10e-9,3,10e-9,6,10e-9,7,10e-9]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,'0.04-V2',-0.1,'0.04-V2'}; bnd.eotype = {'mueo','zeta','mueo','mueo'}; bnd.type = {'noslip','uv','neutral','uv'}; bnd.mueo = {7e-8,7e-8,7e-8,'-eo*er*A*(-0.04-V2)/vis'}; bnd.E_x = {0,'Ex_dc',0,'Ex_dc'}; bnd.u0 = {0,'eo*er*A*(-0.04-V2)*Ex_dc/vis',0,'eo*er*A*(-0.04-V2)*Ex_dc/vis'}; bnd.ind = [1,4,1,1,3,1,1,2,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'-(V2+Vpp)/Zdl',0,'-(V2-Vpp)/Zdl'}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','w','Frequency [rad]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','eo','Absolute Permittivity [F/m]','vis','Viscosity []','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','f','Frequency [Hz]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'u','p','V2','v'}, ... 'outcomp',{'u','p','V','V2','v'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.600498636898833E-4,-1.3146671379817785E-4,1.8015422596053758E-4,-1,1]); % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxvtx',[1,10e-9,3,10e-9,6,10e-9,7,10e-9]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,'0.04-V2',-0.1,'0.04-V2'}; bnd.eotype = {'mueo','zeta','mueo','mueo'}; bnd.type = {'noslip','uv','neutral','uv'}; bnd.v0 = {0,'eo*er*A*(-0.04-V2)*Ex_dc/vis',0,'eo*er*A*(-0.04-V2)*Ex_dc/vis'}; bnd.mueo = {7e-8,7e-8,7e-8,'-eo*er*A*(-0.04-V2)/vis'}; bnd.E_x = {0,'Ex_dc',0,'Ex_dc'}; bnd.ind = [1,4,1,1,3,1,1,2,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'-(V2+Vpp)/Zdl',0,'-(V2-Vpp)/Zdl'}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','w','Frequency [rad]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','eo','Absolute Permittivity [F/m]','vis','Viscosity []','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','f','Frequency [Hz]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'u','p','v','V2'}, ... 'outcomp',{'u','p','V','v','V2'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.600498636898833E-4,-1.2790062910023482E-4,1.837203106584806E-4,-1,1]); % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'f','1000', ... 'w','2*pi*f', ... 'Zdl','-i/w*Cdl', ... 'vis','1e-3', ... 'zeta','0.04'}; % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'f','1000', ... 'w','2*pi*f', ... 'Zdl','-i/w*Cdl', ... 'vis','1e-3', ... 'zeta','-0.04'}; % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'f','1000', ... 'w','2*pi*f', ... 'Zdl','-i/w*Cdl', ... 'vis','1e-3', ... 'zeta','-0.04'}; % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxvtx',[1,10e-9,3,10e-9,6,10e-9,7,10e-9]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,'0.04-V2',-0.1,'0.04-V2'}; bnd.type = {'noslip','eovel','neutral','eovel'}; bnd.mueo = {7e-8,'eo*er*A*(-0.04-V2)/vis',7e-8,'-eo*er*A*(-0.04-V2)/vis'}; bnd.E_x = {0,'Ex_dc',0,'Ex_dc'}; bnd.u0 = {0,'-eo*er*A*(-0.04-V2)*Ex_dc/vis',0,'-eo*er*A*(-0.04-V2)*Ex_dc/vis'}; bnd.ind = [1,4,1,1,3,1,1,2,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'-(zeta+Vpp)/Zdl',0,'-(zeta-Vpp)/Zdl'}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','w','Frequency [rad]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','eo','Absolute Permittivity [F/m]','vis','Viscosity []','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','f','Frequency [Hz]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'u','p','lmy_mmglf','lmx_mmglf','v','V2'}, ... 'outcomp',{'u','p','lmy_mmglf','lmx_mmglf','V','v','V2'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.1999998938990757E-4,-1.1781142559526155E-4,1.6781142433215532E-4,-1,1]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,'0.04-V2',-0.1,'0.04-V2'}; bnd.type = {'noslip','eovel','neutral','eovel'}; bnd.mueo = {7e-8,'eo*er*A*(-0.04-V2)/vis',7e-8,'-eo*er*A*(-0.04-V2)/vis'}; bnd.E_x = {0,'Ex_dc',0,'Ex_dc'}; bnd.u0 = {0,'-eo*er*A*(-0.04-V2)*Ex_dc/vis',0,'-eo*er*A*(-0.04-V2)*Ex_dc/vis'}; bnd.ind = [1,4,1,1,3,1,1,2,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'-(zeta+Vpp)/Zdl',0,'-(zeta-Vpp)/Zdl'}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','w','Frequency [rad]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','eo','Absolute Permittivity [F/m]','vis','Viscosity []','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','f','Frequency [Hz]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'method','spring', ... 'solcomp',{'u','p','lmy_mmglf','lmx_mmglf','V2','v'}, ... 'outcomp',{'u','p','lmy_mmglf','lmx_mmglf','V','V2','v'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[-1.999999949475755E-5,3.92342847231443E-4,-1.1127428290326084E-4,1.6781142433215532E-4,-1,1]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,'0.04-V2',-0.1,'0.04-V2'}; bnd.type = {'noslip','eovel','neutral','eovel'}; bnd.mueo = {7e-8,'eo*er*A*(-0.04-V2)/vis',7e-8,'-eo*er*A*(-0.04-V2)/vis'}; bnd.E_x = {0,'Ex_dc',0,'Ex_dc'}; bnd.u0 = {0,'-eo*er*A*(-0.04-V2)*Ex_dc/vis',0,'-eo*er*A*(-0.04-V2)*Ex_dc/vis'}; bnd.ind = [1,4,1,1,3,1,1,2,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'-(zeta+Vpp)/Zdl',0,'-(zeta-Vpp)/Zdl'}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','w','Frequency [rad]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','eo','Absolute Permittivity [F/m]','vis','Viscosity []','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','f','Frequency [Hz]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'V2'}, ... 'outcomp',{'u','p','lmy_mmglf','lmx_mmglf','V','V2','v'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[-1.999999949475755E-5,3.92342847231443E-4,-1.1127428290326084E-4,1.6781142433215532E-4,-1,1]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,'0.04-V2',-0.1,'0.04-V2'}; bnd.type = {'noslip','eovel','neutral','eovel'}; bnd.mueo = {7e-8,'eo*er*A*(-0.04-V2)/vis',7e-8,'-eo*er*A*(-0.04-V2)/vis'}; bnd.E_x = {0,'Ex_dc',0,'Ex_dc'}; bnd.u0 = {0,'-eo*er*A*(-0.04-V2)*Ex_dc/vis',0,'-eo*er*A*(-0.04-V2)*Ex_dc/vis'}; bnd.ind = [1,4,1,1,3,1,1,2,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'-(zeta+Vpp)/Zdl',0,'-(zeta-Vpp)/Zdl'}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','w','Frequency [rad]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','eo','Absolute Permittivity [F/m]','vis','Viscosity []','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','f','Frequency [Hz]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'V2'}, ... 'outcomp',{'u','p','lmy_mmglf','lmx_mmglf','V','v','V2'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[-2.5153152517731054E-5,4.2515314241288113E-4,-1.145428542492612E-4,1.7107999567815568E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'Ex_dc','cont','internal','unit','V/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric field, x component [V/m] Arrow: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.1999998938990757E-4,-1.2063386454835102E-4,1.771710059772455E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.1999998938990757E-4,-1.2063386454835102E-4,1.771710059772455E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.1999998938990757E-4,-1.2063386454835102E-4,1.771710059772455E-4,-1,1]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,'0.04-V2',-0.1,'0.04-V2'}; bnd.type = {'noslip','eovel','neutral','eovel'}; bnd.mueo = {7e-8,'eo*er*A*(-0.04-V2)/vis',7e-8,'-eo*er*A*(-0.04-V2)/vis'}; bnd.E_x = {0,'Ex_dc',0,'Ex_dc'}; bnd.u0 = {0,'-eo*er*A*(-0.04-V2)*Ex_dc/vis',0,'-eo*er*A*(-0.04-V2)*Ex_dc/vis'}; bnd.ind = [1,4,1,1,3,1,1,2,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'-(zeta-Vpp)/Zdl',0,'-(zeta-Vpp)/Zdl'}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','w','Frequency [rad]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','eo','Absolute Permittivity [F/m]','vis','Viscosity []','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','f','Frequency [Hz]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'V2'}, ... 'outcomp',{'u','p','lmy_mmglf','lmx_mmglf','V','V2','v'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[-2.5498790830247573E-5,4.550109751018081E-4,-1.2412166933829043E-4,1.806588107671849E-4,-1,1]); % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxvtx',[1,10e-9,3,10e-9,6,10e-9,7,10e-9]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,'0.04-V2',-0.1,'0.04-V2'}; bnd.type = {'noslip','eovel','neutral','eovel'}; bnd.mueo = {7e-8,'eo*er*A*(-0.04-V2)/vis',7e-8,'-eo*er*A*(-0.04-V2)/vis'}; bnd.E_x = {0,'Ex_dc',0,'Ex_dc'}; bnd.u0 = {0,'-eo*er*A*(-0.04-V2)*Ex_dc/vis',0,'-eo*er*A*(-0.04-V2)*Ex_dc/vis'}; bnd.ind = [1,4,1,1,3,1,1,2,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'-(zeta-Vpp)/Zdl',0,'-(zeta+Vpp)/Zdl'}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','w','Frequency [rad]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','eo','Absolute Permittivity [F/m]','vis','Viscosity []','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','f','Frequency [Hz]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'V2'}, ... 'outcomp',{'u','p','lmy_mmglf','lmx_mmglf','V','v','V2'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... t�`'axis',[-1.9999999494757503E-5,4.1999998938990757E-4,-1.1781142559526155E-4,1.6781142433215532E-4,-1,1]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,'0.04-V2',-0.1,'0.04-V2'}; bnd.type = {'noslip','eovel','neutral','eovel'}; bnd.mueo = {7e-8,'eo*er*A*(-0.04-V2)/vis',7e-8,'-eo*er*A*(-0.04-V2)/vis'}; bnd.E_x = {0,'Ex_dc',0,'Ex_dc'}; bnd.u0 = {0,'-eo*er*A*(-0.04-V2)*Ex_dc/vis',0,'-eo*er*A*(-0.04-V2)*Ex_dc/vis'}; bnd.ind = [1,4,1,1,3,1,1,2,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'-(zeta-Vpp)/Zdl',0,'-(zeta+Vpp)/Zdl'}; bnd.type = {'nJ0','V','cont','V'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','w','Frequency [rad]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','eo','Absolute Permittivity [F/m]','vis','Viscosity []','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','f','Frequency [Hz]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'V2'}, ... 'outcomp',{'u','p','lmy_mmglf','lmx_mmglf','V','V2','v'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[-2.5153152517731054E-5,4.2515314241288113E-4,-1.145428542492612E-4,1.7107999567815568E-4,-1,1]); % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxvtx',[1,10e-9,3,10e-9,6,10e-9,7,10e-9]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,'0.04-V2',-0.1,'0.04-V2'}; bnd.type = {'noslip','eovel','neutral','eovel'}; bnd.mueo = {7e-8,'eo*er*A*(-0.04-V2)/vis',7e-8,'-eo*er*A*(-0.04-V2)/vis'}; bnd.E_x = {0,'Ex_dc',0,'Ex_dc'}; bnd.u0 = {0,'-eo*er*A*(-0.04-V2)*Ex_dc/vis',0,'-eo*er*A*(-0.04-V2)*Ex_dc/vis'}; bnd.ind = [1,4,1,1,3,1,1,2,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'-(zeta-Vpp)/Zdl',0,'-(zeta+Vpp)/Zdl'}; bnd.type = {'nJ0','V','cont','V'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','w','Frequency [rad]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','eo','Absolute Permittivity [F/m]','vis','Viscosity []','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','f','Frequency [Hz]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'V2'}, ... 'outcomp',{'u','p','lmy_mmglf','lmx_mmglf','V','v','V2'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.529729615299132E-4,-1.2524493892098872E-4,1.817820803498832E-4,-1,1]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,'0.04-V2',-0.1,'0.04-V2'}; bnd.type = {'noslip','eovel','neutral','eovel'}; bnd.mueo = {7e-8,'eo*er*A*(-0.04-V2)/vis',7e-8,'-eo*er*A*(-0.04-V2)/vis'}; bnd.E_x = {0,'Ex_dc',0,'Ex_dc'}; bnd.u0 = {0,'-eo*er*A*(-0.04-V2)*Ex_dc/vis',0,'-eo*er*A*(-0.04-V2)*Ex_dc/vis'}; bnd.ind = [1,4,1,1,3,1,1,2,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'-(zeta-Vpp)/Zdl',0,'-(zeta+Vpp)/Zdl'}; bnd.type = {'nJ0','V','cont','V'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','w','Frequency [rad]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','eo','Absolute Permittivity [F/m]','vis','Viscosity []','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','f','Frequency [Hz]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'u','p','lmy_mmglf','lmx_mmglf','V2','v'}, ... 'outcomp',{'u','p','lmy_mmglf','lmx_mmglf','V','v','V2'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.529729615299132E-4,-1.2945869802829946E-4,1.9302286630670332E-4,-1,1]); % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxvtx',[1,10e-9,3,10e-9,6,10e-9,7,10e-9]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,'0.04-V2',-0.1,'0.04-V2'}; bnd.type = {'noslip','eovel','neutral','eovel'}; bnd.mueo = {7e-8,'eo*er*A*(-0.04-Vpp)/vis',7e-8,'-eo*er*A*(-0.04-Vpp)/vis'}; bnd.E_x = {0,'Ex_dc',0,'Ex_dc'}; bnd.u0 = {0,'-eo*er*A*(-0.04-V2)*Ex_dc/vis',0,'-eo*er*A*(-0.04-V2)*Ex_dc/vis'}; bnd.ind = [1,4,1,1,3,1,1,2,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'-(zeta-Vpp)/Zdl',0,'-(zeta+Vpp)/Zdl'}; bnd.type = {'nJ0','V','cont','V'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','w','Frequency [rad]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','eo','Absolute Permittivity [F/m]','vis','Viscosity []','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','f','Frequency [Hz]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'u','p','lmy_mmglf','lmx_mmglf','v','V2'}, ... 'outcomp',{'u','p','lmy_mmglf','lmx_mmglf','V','V2','v'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,5.265169177285784E-4,-1.4560169242242943E-4,2.0916586070083323E-4,-1,1]); % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxvtx',[1,10e-9,3,10e-9,6,10e-9,7,10e-9]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,'0.04-V2',-0.1,'0.04-V2'}; bnd.type = {'noslip','eovel','neutral','eovel'}; bnd.mueo = {7e-8,'-eo*er*A*(-0.04+Vpp)/vis',7e-8,'-eo*er*A*(-0.04-Vpp)/vis'}; bnd.E_x = {0,'Ex_dc',0,'Ex_dc'}; bnd.u0 = {0,'-eo*er*A*(-0.04-V2)*Ex_dc/vis',0,'-eo*er*A*(-0.04-V2)*Ex_dc/vis'}; bnd.ind = [1,4,1,1,3,1,1,2,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'-(zeta-Vpp)/Zdl',0,'-(zeta+Vpp)/Zdl'}; bnd.type = {'nJ0','V','cont','V'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','w','Frequency [rad]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','eo','Absolute Permittivity [F/m]','vis','Viscosity []','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','f','Frequency [Hz]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'u','p','lmy_mmglf','lmx_mmglf','V2','v'}, ... 'outcomp',{'u','p','lmy_mmglf','lmx_mmglf','V','v','V2'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,5.265169177285784E-4,-1.4154185246591323E-4,2.1322570065734943E-4,-1,1]); % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxvtx',[1,10e-9,3,10e-9,6,10e-9,7,10e-9]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,'0.04-V2',-0.1,'0.04-V2'}; bnd.type = {'noslip','eovel','neutral','eovel'}; bnd.mueo = {7e-8,'-eo*er*A*(-V2+Vpp)/vis',7e-8,'-eo*er*A*(-V2-Vpp)/vis'}; bnd.E_x = {0,'Ex_dc',0,'Ex_dc'}; bnd.u0 = {0,'-eo*er*A*(-0.04-V2)*Ex_dc/vis',0,'-eo*er*A*(-0.04-V2)*Ex_dc/vis'}; bnd.ind = [1,4,1,1,3,1,1,2,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'-(zeta-Vpp)/Zdl',0,'-(zeta+Vpp)/Zdl'}; bnd.type = {'nJ0','V','cont','V'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','w','Frequency [rad]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','eo','Absolute Permittivity [F/m]','vis','Viscosity []','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','f','Frequency [Hz]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'u','p','lmy_mmglf','lmx_mmglf','v','V2'}, ... 'outcomp',{'u','p','lmy_mmglf','lmx_mmglf','V','V2','v'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,5.265169177285784E-4,-1.3748201250939702E-4,2.1728554061386564E-4,-1,1]); % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxvtx',[1,10e-9,3,10e-9,6,10e-9,7,10e-9]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,'0.04-V2',-0.1,'0.04-V2'}; bnd.type = {'noslip','eovel','neutral','eovel'}; bnd.mueo = {7e-8,'-eo*er*A*(-zeta+Vpp)/vis',7e-8,'-eo*er*A*(-zeta-Vpp)/vis'}; bnd.E_x = {0,'Ex_dc',0,'Ex_dc'}; bnd.u0 = {0,'-eo*er*A*(-0.04-V2)*Ex_dc/vis',0,'-eo*er*A*(-0.04-V2)*Ex_dc/vis'}; bnd.ind = [1,4,1,1,3,1,1,2,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'-(zeta-Vpp)/Zdl',0,'-(zeta+Vpp)/Zdl'}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','w','Frequency [rad]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','eo','Absolute Permittivity [F/m]','vis','Viscosity []','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','f','Frequency [Hz]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'u','p','lmy_mmglf','lmx_mmglf','V2','v'}, ... 'outcomp',{'u','p','lmy_mmglf','lmx_mmglf','V','v','V2'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,5.265169177285784E-4,-1.3342217255288082E-4,2.2134538057038184E-4,-1,1]); % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxvtx',[1,10e-9,3,10e-9,6,10e-9,7,10e-9]); % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxvtx',[1,10e-9,3,10e-9,6,10e-9,7,10e-9]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,'0.04-V2',-0.1,'0.04-V2'}; bnd.type = {'noslip','eovel','neutral','eovel'}; bnd.mueo = {7e-8,'-eo*er*A*(-zeta+Vpp)/vis',7e-8,'-eo*er*A*(-zeta-Vpp)/vis'}; bnd.E_x = {0,'Ex_dc',0,'Ex_dc'}; bnd.u0 = {0,'-eo*er*A*(-0.04-V2)*Ex_dc/vis',0,'-eo*er*A*(-0.04-V2)*Ex_dc/vis'}; bnd.ind = [1,4,1,1,3,1,1,2,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'-(zeta-Vpp)/Zdl',0,'-(zeta+Vpp)/Zdl'}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','w','Frequency [rad]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','eo','Absolute Permittivity [F/m]','vis','Viscosity []','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','f','Frequency [Hz]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'V2'}, ... 'outcomp',{'u','p','lmy_mmglf','lmx_mmglf','V','V2','v'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,5.265169177285784E-4,-1.2936233259636462E-4,2.2540522052689804E-4,-1,1]); % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'f','1000', ... 'w','2*pi*f', ... 'Zdl','1/w*Cdl', ... 'vis','1e-3', ... 'zeta','-0.04'}; % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'f','1000', ... 'w','2*pi*f', ... 'Zdl','1/w*Cdl', ... 'vis','1e-3', ... 'zeta','-0.04'}; % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxvtx',[1,10e-9,3,10e-9,6,10e-9,7,10e-9]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,'0.04-V2',-0.1,'0.04-V2'}; bnd.type = {'noslip','eovel','neutral','eovel'}; bnd.mueo = {7e-8,'-eo*er*A*(-zeta+Vpp)/vis',7e-8,'-eo*er*A*(-zeta-Vpp)/vis'}; bnd.E_x = {0,'Ex_dc',0,'Ex_dc'}; bnd.u0 = {0,'-eo*er*A*(-0.04-V2)*Ex_dc/vis',0,'-eo*er*A*(-0.04-V2)*Ex_dc/vis'}; bnd.ind = [1,4,1,1,3,1,1,2,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'-(zeta-Vpp)/Zdl',0,'-(zeta+Vpp)/Zdl'}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','w','Frequency [rad]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','eo','Absolute Permittivity [F/m]','vis','Viscosity []','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','f','Frequency [Hz]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'V2'}, ... 'outcomp',{'u','p','lmy_mmglf','lmx_mmglf','V','v','V2'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,5.265169177285784E-4,-1.2936233259636462E-4,2.2540522052689804E-4,-1,1]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,'0.04-V2',-0.1,'0.04-V2'}; bnd.type = {'noslip','eovel','neutral','eovel'}; bnd.mueo = {7e-8,'-eo*er*A*(-zeta+Vpp)/vis',7e-8,'-eo*er*A*(-zeta-Vpp)/vis'}; bnd.E_x = {0,'Ex_dc',0,'Ex_dc'}; bnd.u0 = {0,'-eo*er*A*(-0.04-V2)*Ex_dc/vis',0,'-eo*er*A*(-0.04-V2)*Ex_dc/vis'}; bnd.ind = [1,4,1,1,3,1,1,2,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'-(zeta-Vpp)/Zdl',0,'-(zeta+Vpp)/Zdl'}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','w','Frequency [rad]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','eo','Absolute Permittivity [F/m]','vis','Viscosity []','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','f','Frequency [Hz]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'u','p','lmy_mmglf','lmx_mmglf','V2','v'}, ... 'outcomp',{'u','p','lmy_mmglf','lmx_mmglf','V','V2','v'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[-1.9999999494757557E-5,4.709283398624334E-4,-1.2124265268333216E-4,2.2540522052689804E-4,-1,1]); % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'f','1000', ... 'w','2*pi*f', ... 'Zdl','1/w*Cdl', ... 'vis','1e-3', ... 'zeta','-0.04'}; % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'f','1000', ... 'w','2*pi*f', ... 'Zdl','1/w*Cdl', ... 'vis','1e-3', ... 'zeta','-0.04'}; % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxvtx',[1,10e-9,3,10e-9,6,10e-9,7,10e-9]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,'0.04-V2',-0.1,'0.04-V2'}; bnd.type = {'noslip','uv','neutral','uv'}; bnd.mueo = {7e-8,'-eo*er*A*(-zeta+Vpp)/vis',7e-8,'-eo*er*A*(-zeta-Vpp)/vis'}; bnd.E_x = {0,'Ex_dc',0,'Ex_dc'}; bnd.u0 = {0,'-eo*er*A*(zeta-Vpp)*Ex_dc/vis',0,'-eo*er*A*(zeta-Vpp)*Ex_dc/vis'}; bnd.ind = [1,4,1,1,3,1,1,2,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'-(zeta-Vpp)/Zdl',0,'-(zeta+Vpp)/Zdl'}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','w','Frequency [rad]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','eo','Absolute Permittivity [F/m]','zeta','Zeta Potential [V]','vis','Viscosity []','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','f','Frequency [Hz]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'u','p','v','V2'}, ... 'outcomp',{'u','p','V','v','V2'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,5.265169177285783E-4,-1.2530249263984836E-4,2.2946506048341424E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'u','cont','internal','unit','m/s'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: x-velocity [m/s] Arrow: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.7092833986243335E-4,-1.171828127268159E-4,2.2946506048341424E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'u','cont','internal','unit','m/s'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: x-velocity [m/s] Arrow: Velocity field [m/s]', ... 'axis',[-2.1249181019839397E-5,4.7217752138751525E-4,-1.171828127268159E-4,2.2946506048341424E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[-2.1249181019839397E-5,4.7217752138751525E-4,-1.171828127268159E-4,2.2946506048341424E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.7092833986243335E-4,-1.171828127268159E-4,2.2946506048341424E-4,-1,1]); % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'f','1000', ... 'w','2*pi*f', ... 'Zdl','-i/w*Cdl', ... 'vis','1e-3', ... 'zeta','-0.04'}; % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'f','1000', ... 'w','2*pi*f', ... 'Zdl','-i/w*Cdl', ... 'vis','1e-3', ... 'zeta','-0.04'}; % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'f','1000', ... 'w','2*pi*f', ... 'Zdl','-i/w*Cdl', ... 'vis','1e-3', ... 'zeta','-0.04'}; % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'f','1000', ... 'w','2*pi*f', ... 'Zdl','-i/w*Cdl', ... 'vis','1e-3', ... 'zeta','-0.04'}; % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'f','1000', ... 'w','2*pi*f', ... 'Zdl','-i/w*Cdl', ... 'zeta','-0.04'}; % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'f','1000', ... 'w','2*pi*f', ... 'Zdl','-i/w*Cdl', ... 'zeta','-0.04'}; % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'f','1000', ... 'w','2*pi*f', ... 'Zdl','-i/w*Cdl', ... 'zeta','-0.04'}; % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'f','1000', ... 'w','2*pi*f', ... 'Zdl','1/i*w*Cdl', ... 'zeta','-0.04'}; % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'f','1000', ... 'w','2*pi*f', ... 'Zdl','1/i*w*Cdl', ... 'zeta','-0.04'}; % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxvtx',[1,10e-9,3,10e-9,6,10e-9,7,10e-9]); % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxvtx',[1,10e-9,3,10e-9,6,10e-9,7,10e-9]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,'0.04-V2',-0.1,'0.04-V2'}; bnd.type = {'noslip','uv','neutral','uv'}; bnd.mueo = {7e-8,'-eo*er*A*(-zeta+Vpp)/eta',7e-8,'-eo*er*A*(-zeta-Vpp)/eta'}; bnd.E_x = {0,'Ex_dc',0,'Ex_dc'}; bnd.u0 = {0,'-eo*er*A*(zeta-Vpp)*Ex_dc/eta',0,'-eo*er*A*(zeta-Vpp)*Ex_dc/eta'}; bnd.ind = [1,4,1,1,3,1,1,2,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'-(zeta-Vpp)/Zdl',0,'-(zeta+Vpp)/Zdl'}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','w','Frequency [rad]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','eo','Absolute Permittivity [F/m]','zeta','Zeta Potential [V]','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','f','Frequency [Hz]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'u','p','v','V2'}, ... 'outcomp',{'u','p','V','v','V2'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.1999998938990757E-4,-1.1781142559526156E-4,1.6781142433215532E-4,-1,1]); % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'f','1000', ... 'w','2*pi*f', ... 'Zdl','1/i*w*Cdl', ... 'zeta','-0.04'}; % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxvtx',[1,10e-9,3,10e-9,6,10e-9,7,10e-9]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,'0.04-V2',-0.1,'0.04-V2'}; bnd.type = {'noslip','uv','neutral','uv'}; bnd.mueo = {7e-8,'-eo*er*A*(-zeta+Vpp)/eta',7e-8,'-eo*er*A*(-zeta-Vpp)/eta'}; bnd.E_x = {0,'Ex_dc',0,'Ex_dc'}; bnd.u0 = {0,'-eo*er*A*(zeta+Vpp)*Ex_dc/eta',0,'-eo*er*A*(zeta-Vpp)*Ex_dc/eta'}; bnd.ind = [1,4,1,1,3,1,1,2,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'-(zeta-Vpp)/Zdl',0,'-(zeta+Vpp)/Zdl'}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','w','Frequency [rad]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','eo','Absolute Permittivity [F/m]','zeta','Zeta Potential [V]','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','f','Frequency [Hz]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'u','p','V2','v'}, ... 'outcomp',{'u','p','V','V2','v'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[8.71085692280238E-5,4.4259653847104446E-4,-8.158123887102312E-5,1.4918123716330345E-4,-1,1]); % Refine mesh fem.mesh=meshrefine(fem, ... 'mcase',0, ... 'rmethod','regular'); % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxvtx',[1,10e-9,3,10e-9,6,10e-9,7,10e-9]); % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxvtx',[1,10e-9,3,10e-9,6,10e-9,7,10e-9]); % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxvtx',[1,10e-9,3,10e-9,6,10e-9,7,10e-9]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,'0.04-V2',-0.1,'0.04-V2'}; bnd.type = {'noslip','uv','neutral','uv'}; bnd.mueo = {7e-8,'-eo*er*A*(-zeta+Vpp)/eta',7e-8,'-eo*er*A*(-zeta-Vpp)/eta'}; bnd.E_x = {0,'Ex_dc',0,'Ex_dc'}; bnd.u0 = {0,'-eo*er*A*(zeta-Vpp)*Ex_dc/eta',0,'-eo*er*A*(zeta-Vpp)*Ex_dc/eta'}; bnd.ind = [1,4,1,1,3,1,1,2,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'-(zeta-Vpp)/Zdl',0,'-(zeta-Vpp)/Zdl'}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','w','Frequency [rad]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','eo','Absolute Permittivity [F/m]','zeta','Zeta Potential [V]','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','f','Frequency [Hz]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'u','p','v','V2'}, ... 'outcomp',{'u','p','V','v','V2'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[8.71085692280238E-5,4.4259653847104446E-4,-7.894047109950354E-5,1.5182200493482303E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'u','cont','internal','unit','m/s'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: x-velocity [m/s] Arrow: Velocity field [m/s]', ... 'axis',[8.71085692280238E-5,4.113135971776586E-4,-7.365893555646435E-5,1.5182200493482303E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'u','cont','internal','unit','m/s'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: x-velocity [m/s] Arrow: Velocity field [m/s]', ... 'axis',[8.71085692280238E-5,4.113135971776586E-4,-7.451303002802226E-5,1.5267609940638094E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[8.71085692280238E-5,4.113135971776586E-4,-7.451303002802226E-5,1.5267609940638094E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[8.71085692280238E-5,4.113135971776586E-4,-7.451303002802226E-5,1.5267609940638094E-4,-1,1]); % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxvtx',[1,10e-9,3,10e-9,6,10e-9,7,10e-9]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,'0.04-V2',-0.1,'0.04-V2'}; bnd.type = {'noslip','uv','neutral','uv'}; bnd.mueo = {7e-8,'-eo*er*A*(-zeta+Vpp)/eta',7e-8,'-eo*er*A*(-zeta-Vpp)/eta'}; bnd.E_x = {0,'Ex_dc',0,'Ex_dc'}; bnd.u0 = {0,'-eo*er*A*(zeta-Vpp)*Ex_dc/eta',0,'-eo*er*A*(zeta-Vpp)*Ex_dc/eta'}; bnd.ind = [1,4,1,1,3,1,1,2,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'-(zeta-Vpp)/Zdl',0,'-(zeta+Vpp)/Zdl'}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','w','Frequency [rad]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','eo','Absolute Permittivity [F/m]','zeta','Zeta Potential [V]','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','f','Frequency [Hz]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'u','p','V2','v'}, ... 'outcomp',{'u','p','V','V2','v'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[8.71085692280238E-5,4.4259653847104446E-4,-7.629970332798396E-5,1.544627727063426E-4,-1,1]); % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxvtx',[1,10e-9,3,10e-9,6,10e-9,7,10e-9]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,'0.04-V2',-t��0.1,'0.04-V2'}; bnd.type = {'noslip','uv','neutral','uv'}; bnd.mueo = {7e-8,'-eo*er*A*(-zeta+Vpp)/eta',7e-8,'-eo*er*A*(-zeta-Vpp)/eta'}; bnd.E_x = {0,'Ex_dc',0,'Ex_dc'}; bnd.u0 = {0,'-eo*er*A*(zeta+Vpp)*Ex_dc/eta',0,'-eo*er*A*(zeta-Vpp)*Ex_dc/eta'}; bnd.ind = [1,4,1,1,3,1,1,2,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'-(zeta-Vpp)/Zdl',0,'-(zeta+Vpp)/Zdl'}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','w','Frequency [rad]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','eo','Absolute Permittivity [F/m]','zeta','Zeta Potential [V]','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','f','Frequency [Hz]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'u','p','v','V2'}, ... 'outcomp',{'u','p','V','v','V2'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[8.71085692280238E-5,4.7495392220513487E-4,-8.4161217819872E-5,1.676058227412698E-4,-1,1]); % COMSOL Multiphysics Model M-file % Generated by COMSOL 3.3 (COMSOL 3.3.0.405, $Date: 2006/08/31 18:03:47 $) % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'f','1000', ... 'w','2*pi*f', ... 'Zdl','1/i*w*Cdl', ... 'zeta','50e-3'}; % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxvtx',[1,10e-9,3,10e-9,6,10e-9,7,10e-9]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,'0.04-V2',-0.1,'0.04-V2'}; bnd.type = {'noslip','uv','neutral','uv'}; bnd.mueo = {7e-8,'-eo*er*A*(-zeta+Vpp)/eta',7e-8,'-eo*er*A*(-zeta-Vpp)/eta'}; bnd.E_x = {0,'Ex_dc',0,'Ex_dc'}; bnd.u0 = {0,'-eo*er*A*(zeta+Vpp)*Ex_dc/eta',0,'-eo*er*A*(zeta-Vpp)*Ex_dc/eta'}; bnd.ind = [1,4,1,1,3,1,1,2,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'-(zeta-Vpp)/Zdl',0,'-(zeta+Vpp)/Zdl'}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','w','Frequency [rad]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','eo','Absolute Permittivity [F/m]','zeta','Zeta Potential [V]','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','f','Frequency [Hz]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'u','p','v','V2'}, ... 'outcomp',{'u','p','V','v','V2'}, ... 'ntol',1.0E-4, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.1999998938990757E-4,-1.1781142559526155E-4,1.6781142433215532E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'flowdata',{'u','v'}, ... 'flowcolor',[0.2,1.0,0.6], ... 'flowdens','uniform', ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s] Streamline: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.1999998938990757E-4,-1.280075155632506E-4,1.7800751430014435E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.1999998938990757E-4,-1.280075155632506E-4,1.7800751430014435E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.1999998938990757E-4,-1.280075155632506E-4,1.7800751430014435E-4,-1,1]); % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxvtx',[1,10e-9,3,10e-9,6,10e-9,7,10e-9]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,'0.04-V2',-0.1,'0.04-V2'}; bnd.type = {'noslip','uv','neutral','uv'}; bnd.mueo = {7e-8,'-eo*er*A*(-zeta+Vpp)/eta',7e-8,'-eo*er*A*(-zeta-Vpp)/eta'}; bnd.E_x = {0,'Ex_dc',0,'Ex_dc'}; bnd.u0 = {0,'-eo*er*A*(zeta+Vpp)*Ex_dc/eta',0,'-eo*er*A*(zeta-Vpp)*Ex_dc/eta'}; bnd.ind = [1,4,1,1,3,1,1,2,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'-(zeta-Vpp)/Zdl',0,'-(zeta+Vpp)/Zdl'}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','w','Frequency [rad]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','eo','Absolute Permittivity [F/m]','zeta','Zeta Potential [V]','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','f','Frequency [Hz]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'u','p','V2','v'}, ... 'outcomp',{'u','p','V','V2','v'}, ... 'ntol',1.0E-3, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.6,0.6], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,5.090089129646833E-4,-1.5063095956808746E-4,1.9277139731986952E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.0,0.0], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.5648513698306667E-4,-1.3864433896397415E-4,1.886443377008679E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[0.0,0.0,0.0], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.5648513698306667E-4,-1.3864433896397415E-4,1.886443377008679E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.0,0.0], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.5648513698306667E-4,-1.3864433896397415E-4,1.886443377008679E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.0,0.0], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.5648513698306667E-4,-1.3864433896397415E-4,1.886443377008679E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',2, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.0,0.0], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.5648513698306667E-4,-1.3864433896397415E-4,1.886443377008679E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1.1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.0,0.0], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.5648513698306667E-4,-1.3864433896397415E-4,1.886443377008679E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.0,0.0], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.5648513698306667E-4,-1.3864433896397415E-4,1.886443377008679E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1.2, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.0,0.0], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.5648513698306667E-4,-1.3864433896397415E-4,1.886443377008679E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.0,0.0], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.5648513698306667E-4,-1.3864433896397415E-4,1.886443377008679E-4,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.0,0.0], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.5648513698306667E-4,-1.3864433896397415E-4,1.886443377008679E-4,-1,1]); % COMSOL Multiphysics Model M-file % Generated by COMSOL 3.3 (COMSOL 3.3.0.405, $Date: 2006/08/31 18:03:47 $) % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxvtx',[1,10e-9,3,10e-9,6,10e-9,7,10e-9]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,'0.04-V2',-0.1,'0.04-V2'}; bnd.type = {'noslip','uv','neutral','uv'}; bnd.mueo = {7e-8,'-eo*er*A*(-zeta+Vpp)/eta',7e-8,'-eo*er*A*(-zeta-Vpp)/eta'}; bnd.E_x = {0,'Ex_dc',0,'Ex_dc'}; bnd.u0 = {0,'-eo*er*A*(zeta+Vpp)*Ex_dc/eta',0,'-eo*er*A*(zeta-Vpp)*Ex_dc/eta'}; bnd.ind = [1,4,1,1,3,1,1,2,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'-(zeta-Vpp)/Zdl',0,'-(zeta+Vpp)/Zdl'}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','w','Frequency [rad]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','eo','Absolute Permittivity [F/m]','zeta','Zeta Potential [V]','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','f','Frequency [Hz]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'u','p','V2','v'}, ... 'outcomp',{'u','p','V','V2','v'}, ... 'ntol',1.0E-3, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.0,0.0], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[-3.975526196011283E-5,4.76240399448422E-4,-1.4631056021918663E-4,1.886443377008679E-4,-1,1]); % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxvtx',[1,10e-9,3,10e-9,6,10e-9,7,10e-9]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,'0.04-V2',-0.1,'0.04-V2'}; bnd.type = {'noslip','uv','neutral','uv'}; bnd.mueo = {7e-8,'-eo*er*A*(-zeta+Vpp)/eta',7e-8,'-eo*er*A*(-zeta-Vpp)/eta'}; bnd.E_x = {0,'Ex_dc',0,'Ex_dc'}; bnd.u0 = {0,'-eo*er*A*(zeta+Vpp)*Ex_dc/eta',0,'-eo*er*A*(zeta-Vpp)*Ex_dc/eta'}; bnd.ind = [1,4,1,1,3,1,1,2,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'-(zeta-Vpp)/Zdl',0,'-(zeta+Vpp)/Zdl'}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','w','Frequency [rad]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','eo','Absolute Permittivity [F/m]','zeta','Zeta Potential [V]','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','f','Frequency [Hz]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'u','p','v','V2'}, ... 'outcomp',{'u','p','V','v','V2'}, ... 'ntol',1.0E-3, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.0,0.0], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,5.037451754261412E-4,-1.4888339870529154E-4,1.9110204055764612E-4,-1,1]); % COMSOL Multiphysics Model M-file % Generated by COMSOL 3.3 (COMSOL 3.3.0.405, $Date: 2006/08/31 18:03:47 $) % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxvtx',[1,10e-9,3,10e-9,6,10e-9,7,10e-9]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'Laplace'; appl.dim = {'V'}; appl.assignsuffix = '_lpeq'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm3'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.type = 'neu'; bnd.g = {0,+1,-1}; bnd.q = {0,-1,-1}; bnd.ind = [1,2,1,1,1,1,1,3,1]; appl.bnd = bnd; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,'0.04-V2',-0.1,'0.04-V2'}; bnd.type = {'noslip','uv','neutral','uv'}; bnd.mueo = {7e-8,'-eo*er*A*(-zeta+Vpp)/eta',7e-8,'-eo*er*A*(-zeta-Vpp)/eta'}; bnd.E_x = {0,'Ex_dc',0,'Ex_dc'}; bnd.u0 = {0,'-eo*er*A*(zeta+Vpp)*Ex_dc/eta',0,'-eo*er*A*(zeta-Vpp)*Ex_dc/eta'}; bnd.ind = [1,4,1,1,3,1,1,2,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; % Application mode 3 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'-(zeta-Vpp)/Zdl',0,'-(zeta+Vpp)/Zdl'}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{3} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','w','Frequency [rad]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','eo','Absolute Permittivity [F/m]','zeta','Zeta Potential [V]','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','f','Frequency [Hz]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'u','p','v','V2'}, ... 'outcomp',{'u','p','V','v','V2'}, ... 'ntol',1.0E-3, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.0,0.0], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,5.037451754261412E-4,-1.4888339870529154E-4,1.9110204055764612E-4,-1,1]); % COMSOL Multiphysics Model M-file % Generated by COMSOL 3.3 (COMSOL 3.3.0.405, $Date: 2006/08/31 18:03:47 $) % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxvtx',[1,10e-9,3,10e-9,6,10e-9,7,10e-9]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,'0.04-V2',-0.1,'0.04-V2'}; bnd.type = {'noslip','uv','neutral','uv'}; bnd.mueo = {7e-8,'-eo*er*A*(-zeta+Vpp)/eta',7e-8,'-eo*er*A*(-zeta-Vpp)/eta'}; bnd.E_x = {0,'Ex_dc',0,'Ex_dc'}; bnd.u0 = {0,'-eo*er*A*(zeta+Vpp)*Ex_dc/eta',0,'-eo*er*A*(zeta-Vpp)*Ex_dc/eta'}; bnd.ind = [1,4,1,1,3,1,1,2,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'-(zeta-Vpp)/Zdl',0,'-(zeta+Vpp)/Zdl'}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; fem.appl(3:end)=[]; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','w','Frequency [rad]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','eo','Absolute Permittivity [F/m]','zeta','Zeta Potential [V]','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','f','Frequency [Hz]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femtime(fem, ... 'u',0, ... 'solcomp',{'u','p','V2','v'}, ... 'outcomp',{'u','p','V2','v'}, ... 'tlist',[0:0.001:0.01], ... 'estrat',1, ... 'tout','tlist', ... 'initialstep',1e-8, ... 'maxstep',1e-6); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.0,0.0], ... 'title','Time=0 Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.1999998938990757E-4,-1.1797482539499118E-4,1.6797482413188496E-4,-1,1]); % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxvtx',[1,10e-9,3,10e-9,6,10e-9,7,10e-9]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,'0.04-V2',-0.1,'0.04-V2'}; bnd.type = {'noslip','uv','neutral','uv'}; bnd.mueo = {7e-8,'-eo*er*A*(-zeta+Vpp)/eta',7e-8,'-eo*er*A*(-zeta-Vpp)/eta'}; bnd.E_x = {0,'Ex_dc',0,'Ex_dc'}; bnd.u0 = {0,'-eo*er*A*(zeta+Vpp)*Ex_dc/eta',0,'-eo*er*A*(zeta-Vpp)*Ex_dc/eta'}; bnd.ind = [1,4,1,1,3,1,1,2,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'-(zeta-Vpp)/Zdl',0,'-(zeta+Vpp)/Zdl'}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','w','Frequency [rad]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','eo','Absolute Permittivity [F/m]','zeta','Zeta Potential [V]','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','f','Frequency [Hz]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femtime(fem, ... 'u',0, ... 'solcomp',{'u','p','v','V2'}, ... 'outcomp',{'u','p','v','V2'}, ... 'tlist',[0:0.001:0.01], ... 'estrat',1, ... 'tout','tlist', ... 'initialstep',1e-8, ... 'maxstep',1e-6); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.0,0.0], ... 'title','Time=0 Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.1999998938990757E-4,-1.179748253949912E-4,1.6797482413188496E-4,-1,1]); % COMSOL Multiphysics Model M-file % Generated by COMSOL 3.3 (COMSOL 3.3.0.405, $Date: 2006/08/31 18:03:47 $) % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5, ... 'hmaxvtx',[1,10e-9,3,10e-9,6,10e-9,7,10e-9]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'GeneralLaminarFlow'; appl.module = 'MEMS'; appl.gporder = {4,2}; appl.cporder = {2,1}; appl.assignsuffix = '_mmglf'; clear prop prop.nisot='Off'; appl.prop = prop; clear bnd bnd.zeta = {-0.1,'0.04-V2',-0.1,'0.04-V2'}; bnd.type = {'noslip','uv','neutral','uv'}; bnd.mueo = {7e-8,'-eo*er*A*(-zeta+Vpp)/eta',7e-8,'-eo*er*A*(-zeta-Vpp)/eta'}; bnd.E_x = {0,'Ex_dc',0,'Ex_dc'}; bnd.u0 = {0,'-eo*er*A*(zeta+Vpp)*Ex_dc/eta',0,'-eo*er*A*(zeta-Vpp)*Ex_dc/eta'}; bnd.ind = [1,4,1,1,3,1,1,2,1]; appl.bnd = bnd; clear equ equ.cporder = {{1;1;2}}; equ.gporder = {{1;1;2}}; equ.ind = [1,1]; appl.equ = equ; fem.appl{1} = appl; % Application mode 2 clear appl appl.mode.class = 'ConductiveMediaDC'; appl.dim = {'V2'}; appl.assignsuffix = '_dc'; clear prop clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm4'}; prop.weakconstr = weakconstr; appl.prop = prop; clear bnd bnd.Vref = {0,-1,0,+1}; bnd.sigmabnd = {0,1e-3,0,1e-3}; bnd.V0 = {0,+1,0,-1}; bnd.Jn = {0,'-(zeta-Vpp)/Zdl',0,'-(zeta+Vpp)/Zdl'}; bnd.type = {'nJ0','nJ','cont','nJ'}; bnd.dbnd = {1,1e-9,1,1e-9}; bnd.ind = [1,2,1,1,3,1,1,4,1]; appl.bnd = bnd; clear equ equ.sigma = 1e-3; equ.ind = [1,1]; appl.equ = equ; fem.appl{2} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Descriptions clear descr descr.const= {'er','Relative Permittivity [N.A]','w','Frequency [rad]','Zdl','Impedance DL [ohm]','cond','Conductivity [S/m]','rho','Density [kg/m3]','eta','Viscosity [Pa s]','lamda','Debye Length [m]','eo','Absolute Permittivity [F/m]','zeta','Zeta Potential [V]','A','Correction Factor [N.A]','Vdc','DC Voltage [V]','f','Frequency [Hz]','Cdl','Capactance DL [ohm]','Vpp','AC Voltage [V]'}; fem.descr = descr; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femstatic(fem, ... 'u',0, ... 'solcomp',{'u','p','v','V2'}, ... 'outcomp',{'u','p','v','V2'}, ... 'ntol',1.0E-3, ... 'maxiter',100); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'V2','cont','internal','unit','V'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'u','v'}, ... 'arrowxspacing',25, ... 'arrowyspacing',10, ... 'arrowscale',1, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[0.0,0.0,0.0], ... 'title','Surface: Electric potential [V] Arrow: Velocity field [m/s]', ... 'axis',[-1.9999999494757503E-5,4.1999998938990757E-4,-1.1470251426484207E-4,1.7124713526203407E-4,-1,1]); uq~ t:% COMSOL Multiphysics Model M-file % Generated by COMSOL 3.3 (COMSOL 3.3.0.405, $Date: 2006/08/31 18:03:47 $) flclear fem % COMSOL version clear vrsn vrsn.name = 'COMSOL 3.3'; vrsn.ext = ''; vrsn.major = 0; vrsn.build = 405; vrsn.rcs = '$Name: $'; vrsn.date = '$Date: 2006/08/31 18:03:47 $'; fem.version = vrsn; % Geometry g2=rect2(3.5E-5,6.0E-5,'base','corner','pos',[-6.5E-5,-3.0E-5]); g3=rect2('40e-6','44e-6','base','corner','pos',{'-50e-6','-22'},'rot','0'); g4=rect2('40e-6','44e-6','base','corner','pos',{'-50e-6','-22e-6'},'rot','0'); [g5]=geomcopy({g4}); [g6]=geomcopy({g5}); g6=move(g6,[6.0E-5,0]); g7=rect2(2.0E-5,4.4E-5,'base','corner','pos',[-1.0E-5,-2.2E-5]); g8=geomcomp({g4,g6,g7},'ns',{'R1','R2','R3'},'sf','R1+R2+R3','edge','all'); g9=geomcomp({g8},'ns',{'CO1'},'sf','CO1','edge','all'); % Analyzed geometry clear s s.objs={g9}; s.name={'CO2'}; s.tags={'g9'}; fem.draw=struct('s',s); fem.geom=geomcsg(fem); % COMSOL Multiphysics Model M-file % Generated by COMSOL 3.3 (COMSOL 3.3.0.405, $Date: 2006/08/31 18:03:47 $) % Geometry g1=rect2('2e-5','4.4e-5','base','center','pos',{'-6e-5','0'},'rot','0'); [g2]=geomcopy({g1}); [g3]=geomcopy({g2}); g3=move(g3,[1.2E-4,0]); g4=geomcomp({g9,g1,g3},'ns',{'CO2','R1','R2'},'sf','CO2+R1+R2','edge','all'); g5=geomcomp({g4},'ns',{'CO1'},'sf','CO1','edge','all'); % Analyzed geometry clear s s.objs={g5}; s.name={'CO2'}; s.tags={'g5'}; fem.draw=struct('s',s); fem.geom=geomcsg(fem); % COMSOL Multiphysics Model M-file % Generated by COMSOL 3.3 (COMSOL 3.3.0.405, $Date: 2006/08/31 18:03:47 $) % Geometry carr={curve2([0,0],[-2.5E-5,3.5000000000000004E-5],[1,1])}; g1=geomcoerce('curve',carr); carr={curve2([0,4.0E-5],[0,0],[1,1]), ... curve2([4.0E-5,7.500000000000001E-5],[0,0],[1,1]), ... curve2([7.500000000000001E-5,7.500000000000001E-5],[0,4.5E-5],[1,1]), ... curve2([7.500000000000001E-5,0],[4.5E-5,4.5E-5],[1,1]), ... curve2([0,0],[4.5E-5,0],[1,1])}; g2=geomcoerce('solid',carr); gg=geomedit(g2); gg{1}=beziercurve2([0,0],[0,2.0E-4],[1,1]); gg{2}=beziercurve2([0,0.8],[0,0],[1,1]); gg{3}=beziercurve2([0,1.6E-4],[2.0E-4,2.0E-4],[1,1]); gg{3}=beziercurve2([0,9.0E-5],[2.0E-4,2.0E-4],[1,1]); gg{4}=beziercurve2([8.0E-5,9.0E-5],[0,0],[1,1]); gg{5}=beziercurve2([9.0E-5,9.0E-5],[0,2.0E-4],[1,1]); g4=geomedit(g2,gg); carr={curve2([9.000000000000002E-5,1.15E-4],[0,0],[1,1]), ... curve2([1.15E-4,1.6E-4],[0,0],[1,1]), ... curve2([1.6E-4,1.6E-4],[0,2.0E-4],[1,1]), ... curve2([1.6E-4,9.0E-5],[2.0E-4,2.0E-4],[1,1]), ... curve2([9.0E-5,9.000000000000002E-5],[2.0E-4,0],[1,1])}; g7=geomcoerce('solid',carr); gg=geomedit(g7); gg{2}=beziercurve2([9.0E-5,1.0E-4],[0,0],[1,1]); gg{3}=beziercurve2([1.0E-4,1.6E-4],[2.0E-4,2.0E-4],[1,1]); gg{3}=beziercurve2([9.0E-5,1.6E-4],[2.0E-4,2.0E-4],[1,1]); gg{4}=beziercurve2([9.0E-5,1.6E-4],[0,0],[1,1]); g8=geomedit(g7,gg); gg=geomedit(g8); gg{3}=beziercurve2([9.0E-5,1.8E-4],[2.0E-4,2.0E-4],[1,1]); gg{4}=beziercurve2([1.0E-4,1.8E-4],[0,0],[1,1]); gg{5}=beziercurve2([1.8E-4,1.8E-4],[0,2.0E-4],[1,1]); g9=geomedit(g8,gg); % Analyzed geometry clear s s.objs={g4,g9}; s.name={'CO1','CO2'}; s.tags={'g4','g9'}; fem.draw=struct('s',s); fem.geom=geomcsg(fem); % COMSOL Multiphysics Model M-file % Generated by COMSOL 3.3 (COMSOL 3.3.0.405, $Date: 2006/08/31 18:03:47 $) % Geometry gg=geomedit(g4); gg{1}=beziercurve2([0,0],[0,5.0E-5],[1,1]); gg{2}=beziercurve2([0,4.0E-5],[0,0],[1,1]); gg{2}=beziercurve2([0,1.6E-4],[0,0],[1,1]); gg{3}=beziercurve2([0,2.0E-4],[5.0E-5,5.0E-5],[1,1]); gg{4}=beziercurve2([1.6E-4,2.0E-4],[0,0],[1,1]); gg{5}=beziercurve2([2.0E-4,2.0E-4],[0,5.0E-5],[1,1]); g1=geomedit(g4,gg); gg=geomedit(g9); gg{1}=beziercurve2([2.0E-4,2.4E-4],[0,5.0E-5],[1,1]); gg{1}=beziercurve2([2.0E-4,2.0E-4],[0,5.0E-5],[1,1]); gg{2}=beziercurve2([2.0E-4,2.4E-4],[0,0],[1,1]); gg{3}=beziercurve2([2.0E-4,2.4E-4],[5.0E-5,5.0E-5],[1,1]); gg{4}=beziercurve2([2.4E-4,4.0E-4],[0,0],[1,1]); gg{5}=beziercurve2([4.0E-4,4.0E-4],[0,5.0E-5],[1,1]); gg{5}=beziercurve2([4.0E-4,4.0E-4],[0,5.0E-5],[1,1]); gg{3}=beziercurve2([2.0E-4,4.0E-4],[5.0E-5,5.0E-5],[1,1]); g3=geomedit(g9,gg); % Analyzed geometry clear s s.objs={g1,g3}; s.name={'CO1','CO2'}; s.tags={'g1','g3'}; fem.draw=struct('s',s); fem.geom=geomcsg(fem); % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2'}; % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2'}; % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'Zdl','0'}; % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'Zdl','0'}; % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'Zdl','0'}; % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'Zdl','0'}; % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'Zdl','0'}; % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'Zdl','0'}; % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'Zdl','0'}; % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'Zdl','0'}; % COMSOL Multiphysics Model M-file % Generated by COMSOL 3.3 (COMSOL 3.3.0.405, $Date: 2006/08/31 18:03:47 $) % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'f','1000', ... 'w','2*pi*f', ... 'Zdl','1/w*Cdl'}; % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'f','1000', ... 'w','2*pi*f', ... 'Zdl','1/w*Cdl'}; % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'f','1000', ... 'w','2*pi*f', ... 'Zdl','-i/w*Cdl'}; % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'f','1000', ... 'w','2*pi*f', ... 'Zdl','-i/w*Cdl'}; % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'f','1000', ... 'w','2*pi*f', ... 'Zdl','-i/w*Cdl'}; % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'f','1000', ... 'w','2*pi*f', ... 'Zdl','-i/w*Cdl'}; % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'f','1000', ... 'w','2*pi*f', ... 'Zdl','-i/w*Cdl', ... 'vis','1e-3'}; % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'f','1000', ... 'w','2*pi*f', ... 'Zdl','-i/w*Cdl', ... 'vis','1e-3'}; % COMSOL Multiphysics Model M-file % Generated by COMSOL 3.3 (COMSOL 3.3.0.405, $Date: 2006/08/31 18:03:47 $) % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'f','1000', ... 'w','2*pi*f', ... 'Zdl','-i/w*Cdl', ... 'vis','1e-3', ... 'zeta','0.04'}; % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'f','1000', ... 'w','2*pi*f', ... 'Zdl','-i/w*Cdl', ... 'vis','1e-3', ... 'zeta','-0.04'}; % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'f','1000', ... 'w','2*pi*f', ... 'Zdl','-i/w*Cdl', ... 'vis','1e-3', ... 'zeta','-0.04'}; % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'f','1000', ... 'w','2*pi*f', ... 'Zdl','1/w*Cdl', ... 'vis','1e-3', ... 'zeta','-0.04'}; % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'f','1000', ... 'w','2*pi*f', ... 'Zdl','1/w*Cdl', ... 'vis','1e-3', ... 'zeta','-0.04'}; % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'f','1000', ... 'w','2*pi*f', ... 'Zdl','1/w*Cdl', ... 'vis','1e-3', ... 'zeta','-0.04'}; % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'f','1000', ... 'w','2*pi*f', ... 'Zdl','1/w*Cdl', ... 'vis','1e-3', ... 'zeta','-0.04'}; % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'f','1000', ... 'w','2*pi*f', ... 'Zdl','-i/w*Cdl', ... 'vis','1e-3', ... 'zeta','-0.04'}; % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'f','1000', ... 'w','2*pi*f', ... 'Zdl','-i/w*Cdl', ... 'vis','1e-3', ... 'zeta','-0.04'}; % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'f','1000', ... 'w','2*pi*f', ... 'Zdl','-i/w*Cdl', ... 'vis','1e-3', ... 'zeta','-0.04'}; % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'f','1000', ... 'w','2*pi*f', ... 'Zdl','-i/w*Cdl', ... 'vis','1e-3', ... 'zeta','-0.04'}; % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'f','1000', ... 'w','2*pi*f', ... 'Zdl','-i/w*Cdl', ... 'zeta','-0.04'}; % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'f','1000', ... 'w','2*pi*f', ... 'Zdl','-i/w*Cdl', ... 'zeta','-0.04'}; % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'f','1000', ... 'w','2*pi*f', ... 'Zdl','-i/w*Cdl', ... 'zeta','-0.04'}; % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'f','1000', ... 'w','2*pi*f', ... 'Zdl','1/i*w*Cdl', ... 'zeta','-0.04'}; % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'f','1000', ... 'w','2*pi*f', ... 'Zdl','1/i*w*Cdl', ... 'zeta','-0.04'}; % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'f','1000', ... 'w','2*pi*f', ... 'Zdl','1/i*w*Cdl', ... 'zeta','-0.04'}; % COMSOL Multiphysics Model M-file % Generated by COMSOL 3.3 (COMSOL 3.3.0.405, $Date: 2006/08/31 18:03:47 $) % Constants fem.const = {'rho','1e3', ... 'eta','1e-3', ... 'lamda','3e-8', ... 'cond','1e-3', ... 'A','0.25', ... 'Vpp','10', ... 'Vdc','2', ... 'eo','8.85e-12', ... 'er','80', ... 'Cdl','eo*er/lamda', ... 'f','1000', ... 'w','2*pi*f', ... 'Zdl','1/i*w*Cdl', ... 'zeta','50e-3'}; tclear mfile clear vrsn vrsn.name = 'COMSOL 3.3'; vrsn.ext = ''; vrsn.major = 0; vrsn.build = 405; vrsn.rcs = '$Name: $'; vrsn.date = '$Date: 2006/08/31 18:03:47 $'; mfile.version=vrsn; mfile.fem=''; mfile.stored={'fem0','fem1'}; mfile.tags={}; mfile.types={}; x

Baidu
map