��sr!com.femlab.server.ModelFileHeader�D���%LtagstLcom/femlab/util/FlStringList;Ltypesq~LvrsntLcom/femlab/util/FlVersion;xpwsrcom.femlab.util.FlVersion��%�/B = IbuildImajorLdatetLjava/lang/String;Lextq~Lnameq~Lrcsq~L reactionExtq~L reactionNameq~L scriptExtq~L scriptNameq~xpwtCOMSOL Script 1.3tt#COMSOL Reaction Engineering Lab 1.5q~t COMSOL 3.5q~w�t $Name: $t$Date: 2008/09/19 16:09:48 $xur[Ljava.lang.String;��V��{Gxpt modelinfotxfemtguitfem0tg7tg12tg14tg15tg16tfem2213t fem2213.0q~q~tfem2218t fem2218.0q~q~t mfileinfouq~ q~t femstructt guistructq~tdrawq~ q~ q~ q~ tgeomtmeshtsolutiontxmeshq~!q~"q~#q~$q~xsrcom.femlab.api.client.ModelInfo�^���%Ldescrq~LdocURLq~[imaget[Bxpwptpxuq~ tTclear xfem clear vrsn vrsn.name = 'COMSOL 3.5'; vrsn.ext = ''; vrsn.major = 0; vrsn.build = 494; vrsn.rcs = '$Name: $'; vrsn.date = '$Date: 2008/09/19 16:09:48 $'; xfem.version = vrsn; xfem.id = 2210; xfem.geomdata = 'geom'; xfem.eqvars = 'on'; xfem.cplbndeq = 'on'; xfem.cplbndsh = 'off'; xfem.drawvalid = 'on'; xfem.geomvalid = 'on'; xfem.solvalid = 'on'; xfem.linshape = 'on'; xfem.linshapetol = 0.1; xfem.meshtime = 't'; clear appl appl.mode.class = 'PerpendicularCurrents'; appl.mode.type = 'cartesian'; appl.dim = {'Az','redAz'}; appl.sdim = {'x','y','z'}; appl.name = 'emqa'; appl.module = 'ACDC'; appl.shape = {'shlag(2,''Az'')'}; appl.gporder = 4; appl.cporder = 2; appl.sshape = 2; appl.border = 'off'; appl.assignsuffix = '_emqa'; clear prop prop.elemdefault='Lag2'; prop.analysis='transient'; prop.biasapplmode='none'; prop.solvefor='ATot'; prop.backgroundFieldSpec='A_external'; prop.frame='ref'; clear weakconstr weakconstr.value = 'off'; weakconstr.dim = {'lm1','lm2'}; prop.weakconstr = weakconstr; prop.constrtype='ideal'; appl.prop = prop; clear pnt pnt.I0 = {'0'}; pnt.style = {{{'0'},{'0','0','0'}}}; pnt.ind = [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]; appl.pnt = pnt; clear bnd bnd.name = {'',''}; bnd.H0 = {{'0';'0'},{'0';'0'}}; bnd.Js0z = {'0','0'}; bnd.A0z = {'0','0'}; bnd.murbnd = {{'1','0';'0','1'},{'1','0';'0','1'}}; bnd.murext = {'1','1'}; bnd.epsilonrbnd = {'1','1'}; bnd.sigmabnd = {'0','0'}; bnd.eta = {'1','1'}; bnd.Esz = {'0','0'}; bnd.d = {'0','0'}; bnd.index = {'0','0'}; bnd.chsrcdst = {'0','0'}; bnd.pertype = {'sym','sym'}; bnd.nsect = {'2','2'}; bnd.type = {'A0','cont'}; bnd.style = {{{'0'},{'0','0','0'},{'solid'}},{{'0'},{'0','255','0'},{'solid'}}}; bnd.ind = [1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1]; appl.bnd = bnd; clear equ equ.shape = {[1],[1],[1]}; equ.gporder = {{1},{1},{1}}; equ.cporder = {{1},{1},{1}}; equ.init = {{'0';'0'},{'0';'0'},{'0';'0'}}; equ.usage = {1,1,1}; equ.name = {'','',''}; equ.mur = {{'1','0';'0','1'},{'mat5_mur','0';'0','mat5_mur'},{'mat5_mur', ... '0';'0','mat5_mur'}}; equ.elconstrel = {'epsr','epsr','epsr'}; equ.Pz = {'0','0','0'}; equ.Drz = {'0','0','0'}; equ.magconstrel = {'mur','mur','mur'}; equ.M = {{'0';'0'},{'0';'0'},{'0';'0'}}; equ.Br = {{'0';'0'},{'0';'0'},{'0';'0'}}; equ.fH = {{'1/mu0_emqa*Bx_emqa';'1/mu0_emqa*By_emqa'},{'1/mu0_emqa*Bx_emqa'; ... '1/mu0_emqa*By_emqa'},{'1/mu0_emqa*Bx_emqa';'1/mu0_emqa*By_emqa'}}; equ.normfH = {'1/mu0_emqa*normB_emqa','1/mu0_emqa*normB_emqa','1/mu0_emqa*normB_emqa'}; equ.epsilonr = {'1','mat5_epsilonr','mat5_epsilonr'}; equ.sigma = {'mat2_sigma','mat5_sigma','mat5_sigma'}; equ.Jez = {'0','(1-flc2hs(t-0.2,0.1))*R','(flc2hs(t-0.2,0.1)-1)*R'}; equ.v = {{'0';'0'},{'0';'0'},{'0';'0'}}; equ.deltaV = {'0','0','0'}; equ.L = {'1','1','1'}; equ.maxwell = {{},{},{}}; equ.nTsrcpnt = {{{'0';'0'}},{{'0';'0'}},{{'0';'0'}}}; equ.Sd = {{'Sdx_guess_emqa';'Sdy_guess_emqa'},{'Sdx_guess_emqa';'Sdy_guess_emqa'}, ... {'Sdx_guess_emqa';'Sdy_guess_emqa'}}; equ.dr = {'dr_guess_emqa','dr_guess_emqa','dr_guess_emqa'}; equ.S0 = {{'S0x_guess_emqa';'S0y_guess_emqa'},{'S0x_guess_emqa';'S0y_guess_emqa'}, ... {'S0x_guess_emqa';'S0y_guess_emqa'}}; equ.R0 = {'R0_guess_emqa','R0_guess_emqa','R0_guess_emqa'}; equ.user = {{'0';'0'},{'0';'0'},{'0';'0'}}; equ.Stype = {'none','none','none'}; equ.coordOn = {{'0';'0'},{'0';'0'},{'0';'0'}}; equ.rOn = {'0','0','0'}; equ.srcpnt = {{'0';'0'},{'0';'0'},{'0';'0'}}; equ.srcaxis = {{'0';'0'},{'0';'0'},{'0';'0'}}; equ.style = {{{'0'},{'193','193','193'}},{{'0'},{'255','0','255'}},{{'0'}, ... {'0','255','255'}}}; equ.ind = [1,2,3,2,3]; appl.equ = equ; appl.var = {'epsilon0','8.854187817e-12', ... 'mu0','4*pi*1e-7'}; xfem.appl{1} = appl; xfem.geom = flbinary('fem2213','geom','2 coils, no core.mph'); xfem.mesh = flbinary('fem2213.0','mesh','2 coils, no core.mph'); xfem.sdim = {'x','y'}; xfem.frame = {'ref'}; xfem.shape = {'shlag(2,''Az'')'}; xfem.gporder = 4; xfem.cporder = 2; xfem.sshape = 2; xfem.simplify = 'on'; xfem.border = 1; xfem.form = 'coefficient'; clear units; units.basesystem = 'SI'; xfem.units = units; clear equ equ.shape = {[1],[1],[1]}; equ.gporder = {{1},{1},{1}}; equ.cporder = {{1},{1},{1}}; equ.init = {{'0'},{'0'},{'0'}}; equ.dinit = {{'0'},{'0'},{'0'}}; equ.weak = {{'dVol_emqa*(Jz_emqa*test(depAz_emqa)-Hx_emqa*test(curlAx_emqa)-Hy_emqa*test(curlAy_emqa))'}, ... {'dVol_emqa*(Jz_emqa*test(depAz_emqa)-Hx_emqa*test(curlAx_emqa)-Hy_emqa*test(curlAy_emqa))'}, ... {'dVol_emqa*(Jz_emqa*test(depAz_emqa)-Hx_emqa*test(curlAx_emqa)-Hy_emqa*test(curlAy_emqa))'}}; equ.dweak = {{'0'},{'0'},{'0'}}; equ.constr = {{'0'},{'0'},{'0'}}; equ.constrf = {{'0'},{'0'},{'0'}}; equ.c = {{{'0'}},{{'0'}},{{'0'}}}; equ.a = {{'0'},{'0'},{'0'}}; equ.f = {{'0'},{'0'},{'0'}}; equ.ea = {{'0'},{'0'},{'0'}}; equ.da = {{'0'},{'0'},{'0'}}; equ.al = {{{'0';'0'}},{{'0';'0'}},{{'0';'0'}}}; equ.be = {{{'0';'0'}},{{'0';'0'}},{{'0';'0'}}}; equ.ga = {{{'0';'0'}},{{'0';'0'}},{{'0';'0'}}}; equ.sshape = {[1],[1],[1]}; equ.sshapedim = {{1},{1},{1}}; equ.ind = [1,2,3,2,3]; equ.dim = {'Az'}; equ.var = {'dr_guess_emqa',{'0','0','0'}, ... 'R0_guess_emqa',{'0','0','0'}, ... 'Sx_emqa',{'x','x','x'}, ... 'S0x_guess_emqa',{'0','0','0'}, ... 'Sdx_guess_emqa',{'0','0','0'}, ... 'Sy_emqa',{'y','y','y'}, ... 'S0y_guess_emqa',{'0','0','0'}, ... 'Sdy_guess_emqa',{'0','0','0'}, ... 'curlAx_emqa',{'Azy','Azy','Azy'}, ... 'curlAy_emqa',{'-Azx','-Azx','-Azx'}, ... 'dVol_emqa',{'detJ_emqa','detJ_emqa','detJ_emqa'}, ... 'Bx_emqa',{'curlAx_emqa','curlAx_emqa','curlAx_emqa'}, ... 'By_emqa',{'curlAy_emqa','curlAy_emqa','curlAy_emqa'}, ... 'Hx_emqa',{'Bx_emqa/(mur_emqa*mu0_emqa)','Bx_emqa/(mur_emqa*mu0_emqa)', ... 'Bx_emqa/(mur_emqa*mu0_emqa)'}, ... 'Hy_emqa',{'By_emqa/(mur_emqa*mu0_emqa)','By_emqa/(mur_emqa*mu0_emqa)', ... 'By_emqa/(mur_emqa*mu0_emqa)'}, ... 'mu_emqa',{'mu0_emqa*mur_emqa','mu0_emqa*mur_emqa','mu0_emqa*mur_emqa'}, ... 'muxx_emqa',{'mu0_emqa*murxx_emqa','mu0_emqa*murxx_emqa','mu0_emqa*murxx_emqa'}, ... 'muxy_emqa',{'mu0_emqa*murxy_emqa','mu0_emqa*murxy_emqa','mu0_emqa*murxy_emqa'}, ... 'muyx_emqa',{'mu0_emqa*muryx_emqa','mu0_emqa*muryx_emqa','mu0_emqa*muryx_emqa'}, ... 'muyy_emqa',{'mu0_emqa*muryy_emqa','mu0_emqa*muryy_emqa','mu0_emqa*muryy_emqa'}, ... 'Jpz_emqa',{'sigma_emqa*deltaV_emqa/L_emqa','sigma_emqa*deltaV_emqa/L_emqa', ... 'sigma_emqa*deltaV_emqa/L_emqa'}, ... 'Ez_emqa',{'-diff(Az,t)','-diff(Az,t)','-diff(Az,t)'}, ... 'Jz_emqa',{'Jpz_emqa+Jiz_emqa+Jez_emqa','Jpz_emqa+Jiz_emqa+Jez_emqa', ... 'Jpz_emqa+Jiz_emqa+Jez_emqa'}, ... 'Pox_emqa',{'-Ez_emqa*Hy_emqa','-Ez_emqa*Hy_emqa','-Ez_emqa*Hy_emqa'}, ... 'Poy_emqa',{'Ez_emqa*Hx_emqa','Ez_emqa*Hx_emqa','Ez_emqa*Hx_emqa'}, ... 'normE_emqa',{'abs(Ez_emqa)','abs(Ez_emqa)','abs(Ez_emqa)'}, ... 'Jiz_emqa',{'sigma_emqa*Ez_emqa','sigma_emqa*Ez_emqa','sigma_emqa*Ez_emqa'}, ... 'Q_emqa',{'Jz_emqa*(Ez_emqa+deltaV_emqa/L_emqa+Jez_emqa/sigma_emqa)', ... 'Jz_emqa*(Ez_emqa+deltaV_emqa/L_emqa+Jez_emqa/sigma_emqa)','Jz_emqa*(Ez_emqa+deltaV_emqa/L_emqa+Jez_emqa/sigma_emqa)'}, ... 'W_emqa',{'Wm_emqa','Wm_emqa','Wm_emqa'}, ... 'dW_emqa',{'dVol_emqa*W_emqa','dVol_emqa*W_emqa','dVol_emqa*W_emqa'}, ... 'Wm_emqa',{'0.5*(Hx_emqa*Bx_emqa+Hy_emqa*By_emqa)','0.5*(Hx_emqa*Bx_emqa+Hy_emqa*By_emqa)', ... '0.5*(Hx_emqa*Bx_emqa+Hy_emqa*By_emqa)'}, ... 'FLtzx_emqa',{'-Jz_emqa*By_emqa','-Jz_emqa*By_emqa','-Jz_emqa*By_emqa'}, ... 'FLtzy_emqa',{'Jz_emqa*Bx_emqa','Jz_emqa*Bx_emqa','Jz_emqa*Bx_emqa'}, ... 'normFLtz_emqa',{'sqrt(abs(FLtzx_emqa)^2+abs(FLtzy_emqa)^2)','sqrt(abs(FLtzx_emqa)^2+abs(FLtzy_emqa)^2)', ... 'sqrt(abs(FLtzx_emqa)^2+abs(FLtzy_emqa)^2)'}, ... 'normM_emqa',{'sqrt(abs(Mx_emqa)^2+abs(My_emqa)^2)','sqrt(abs(Mx_emqa)^2+abs(My_emqa)^2)', ... 'sqrt(abs(Mx_emqa)^2+abs(My_emqa)^2)'}, ... 'normBr_emqa',{'sqrt(abs(Brx_emqa)^2+abs(Bry_emqa)^2)','sqrt(abs(Brx_emqa)^2+abs(Bry_emqa)^2)', ... 'sqrt(abs(Brx_emqa)^2+abs(Bry_emqa)^2)'}, ... 'normH_emqa',{'sqrt(abs(Hx_emqa)^2+abs(Hy_emqa)^2)','sqrt(abs(Hx_emqa)^2+abs(Hy_emqa)^2)', ... 'sqrt(abs(Hx_emqa)^2+abs(Hy_emqa)^2)'}, ... 'normB_emqa',{'sqrt(abs(Bx_emqa)^2+abs(By_emqa)^2)','sqrt(abs(Bx_emqa)^2+abs(By_emqa)^2)', ... 'sqrt(abs(Bx_emqa)^2+abs(By_emqa)^2)'}, ... 'normJ_emqa',{'abs(Jz_emqa)','abs(Jz_emqa)','abs(Jz_emqa)'}, ... 'Evz_emqa',{'diff(x,t)*By_emqa-diff(y,t)*Bx_emqa','diff(x,t)*By_emqa-diff(y,t)*Bx_emqa', ... 'diff(x,t)*By_emqa-diff(y,t)*Bx_emqa'}, ... 'normEv_emqa',{'abs(Evz_emqa)','abs(Evz_emqa)','abs(Evz_emqa)'}, ... 'normPo_emqa',{'sqrt(abs(Pox_emqa)^2+abs(Poy_emqa)^2)','sqrt(abs(Pox_emqa)^2+abs(Poy_emqa)^2)', ... 'sqrt(abs(Pox_emqa)^2+abs(Poy_emqa)^2)'},'Pz_emqa',{'0','0','0'}, ... 'Drz_emqa',{'0','0','0'}, ... 'normfH_emqa',{'normB_emqa/mu0_emqa','normB_emqa/mu0_emqa','normB_emqa/mu0_emqa'}, ... 'epsilonr_emqa',{'1','mat5_epsilonr','mat5_epsilonr'}, ... 'sigma_emqa',{'mat2_sigma','mat5_sigma','mat5_sigma'}, ... 'Jez_emqa',{'0','(1-flc2hs(-0.2+t,0.1))*R','(-1+flc2hs(-0.2+t,0.1))*R'}, ... 'deltaV_emqa',{'0','0','0'}, ... 'L_emqa',{'1','1','1'}, ... 'dr_emqa',{'dr_guess_emqa','dr_guess_emqa','dr_guess_emqa'}, ... 'R0_emqa',{'R0_guess_emqa','R0_guess_emqa','R0_guess_emqa'}, ... 'ispml_emqa',{'0','0','0'}, ... 'srcpntx_emqa',{'0','0','0'}, ... 'srcpnty_emqa',{'0','0','0'}, ... 'userx_emqa',{'0','0','0'}, ... 'usery_emqa',{'0','0','0'}, ... 'Sdx_emqa',{'Sdx_guess_emqa','Sdx_guess_emqa','Sdx_guess_emqa'}, ... 'Sdy_emqa',{'Sdy_guess_emqa','Sdy_guess_emqa','Sdy_guess_emqa'}, ... 'S0x_emqa',{'S0x_guess_emqa','S0x_guess_emqa','S0x_guess_emqa'}, ... 'S0y_emqa',{'S0y_guess_emqa','S0y_guess_emqa','S0y_guess_emqa'}, ... 'SRcoord_emqa',{'','',''}, ... 'rCylx_emqa',{'','',''}, ... 'rCyly_emqa',{'','',''}, ... 'detJ_emqa',{'1','1','1'}, ... 'Jxx_emqa',{'1','1','1'}, ... 'invJxx_emqa',{'1','1','1'}, ... 'Jxy_emqa',{'0','0','0'}, ... 'invJxy_emqa',{'0','0','0'}, ... 'Jyx_emqa',{'0','0','0'}, ... 'invJyx_emqa',{'0','0','0'}, ... 'Jyy_emqa',{'1','1','1'}, ... 'invJyy_emqa',{'1','1','1'}, ... 'depAz_emqa',{'Az','Az','Az'}, ... 'mur_emqa',{'murxx_emqa','murxx_emqa','murxx_emqa'}, ... 'Mx_emqa',{'Bx_emqa/mu0_emqa-Hx_emqa','Bx_emqa/mu0_emqa-Hx_emqa', ... 'Bx_emqa/mu0_emqa-Hx_emqa'}, ... 'Brx_emqa',{'0','0','0'}, ... 'My_emqa',{'By_emqa/mu0_emqa-Hy_emqa','By_emqa/mu0_emqa-Hy_emqa', ... 'By_emqa/mu0_emqa-Hy_emqa'}, ... 'Bry_emqa',{'0','0','0'}, ... 'murxx_emqa',{'1','mat5_mur','mat5_mur'}, ... 'murxy_emqa',{'0','0','0'}, ... 'muryx_emqa',{'0','0','0'}, ... 'muryy_emqa',{'1','mat5_mur','mat5_mur'}, ... 'murinvxx_emqa',{'1/mur_emqa','1/mur_emqa','1/mur_emqa'}, ... 'murinvxy_emqa',{'0','0','0'}, ... 'murinvyx_emqa',{'0','0','0'}, ... 'murinvyy_emqa',{'1/mur_emqa','1/mur_emqa','1/mur_emqa'}}; equ.expr = {}; equ.bnd.weak = {{'0'}}; equ.bnd.gporder = {{1}}; equ.bnd.ind = [1,1,1,1,1]; equ.bnd.var = {}; equ.bnd.expr = {}; equ.lock = [0,0,0,0,0]; equ.mlock = {[0,0,0,0,0]}; xfem.equ = equ; clear bnd bnd.weak = {{'0'},{'0'}}; bnd.dweak = {{'0'},{'0'}}; bnd.constr = {{'-Az'},{'0'}}; bnd.constrf = {{'test(-Az)'},{'0'}}; bnd.q = {{'0'},{'0'}}; bnd.h = {{'0'},{'0'}}; bnd.g = {{'0'},{'0'}}; bnd.r = {{'0'},{'0'}}; bnd.shape = {[1],[1]}; bnd.sshape = {[1],[1]}; bnd.sshapedim = {{1},{1}}; bnd.gporder = {{1},{1}}; bnd.cporder = {{1},{1}}; bnd.init = {{''},{''}}; bnd.dinit = {{''},{''}}; bnd.ind = [1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1]; bnd.dim = {'Az'}; bnd.var = {'dVolbnd_emqa',{'1','1'}, ... 'murbnd_emqa',{'murbndxx_emqa','murbndxx_emqa'}, ... 'Jsz_emqa',{'unx*(Hy_emqa_down-Hy_emqa_up)-uny*(Hx_emqa_down-Hx_emqa_up)', ... 'unx*(Hy_emqa_down-Hy_emqa_up)-uny*(Hx_emqa_down-Hx_emqa_up)'}, ... 'unTx_emqa',{'-0.5*(Bx_emqa_up*Hx_emqa_up+By_emqa_up*Hy_emqa_up)*dnx+(dnx*Hx_emqa_up+dny*Hy_emqa_up)*Bx_emqa_up', ... '-0.5*(Bx_emqa_up*Hx_emqa_up+By_emqa_up*Hy_emqa_up)*dnx+(dnx*Hx_emqa_up+dny*Hy_emqa_up)*Bx_emqa_up'}, ... 'dnTx_emqa',{'-0.5*(Bx_emqa_down*Hx_emqa_down+By_emqa_down*Hy_emqa_down)*unx+(unx*Hx_emqa_down+uny*Hy_emqa_down)*Bx_emqa_down', ... '-0.5*(Bx_emqa_down*Hx_emqa_down+By_emqa_down*Hy_emqa_down)*unx+(unx*Hx_emqa_down+uny*Hy_emqa_down)*Bx_emqa_down'}, ... 'unTy_emqa',{'-0.5*(Bx_emqa_up*Hx_emqa_up+By_emqa_up*Hy_emqa_up)*dny+(dnx*Hx_emqa_up+dny*Hy_emqa_up)*By_emqa_up', ... '-0.5*(Bx_emqa_up*Hx_emqa_up+By_emqa_up*Hy_emqa_up)*dny+(dnx*Hx_emqa_up+dny*Hy_emqa_up)*By_emqa_up'}, ... 'dnTy_emqa',{'-0.5*(Bx_emqa_down*Hx_emqa_down+By_emqa_down*Hy_emqa_down)*uny+(unx*Hx_emqa_down+uny*Hy_emqa_down)*By_emqa_down', ... '-0.5*(Bx_emqa_down*Hx_emqa_down+By_emqa_down*Hy_emqa_down)*uny+(unx*Hx_emqa_down+uny*Hy_emqa_down)*By_emqa_down'}, ... 'Qs_emqa',{'Jsz_emqa*Ez_emqa','Jsz_emqa*Ez_emqa'}, ... 'nPo_emqa',{'nx_emqa*Pox_emqa+ny_emqa*Poy_emqa','nx_emqa*Pox_emqa+ny_emqa*Poy_emqa'}, ... 'FsLtzx_emqa',{'-Jsz_emqa*By_emqa','-Jsz_emqa*By_emqa'}, ... 'FsLtzy_emqa',{'Jsz_emqa*Bx_emqa','Jsz_emqa*Bx_emqa'}, ... 'normFsLtz_emqa',{'sqrt(abs(FsLtzx_emqa)^2+abs(FsLtzy_emqa)^2)','sqrt(abs(FsLtzx_emqa)^2+abs(FsLtzy_emqa)^2)'},'Js0z_emqa',{'0','0'}, ... 'A0z_emqa',{'0','0'}, ... 'murext_emqa',{'1','1'}, ... 'epsilonrbnd_emqa',{'1','1'}, ... 'sigmabnd_emqa',{'0','0'}, ... 'eta_emqa',{'1','1'}, ... 'Esz_emqa',{'0','0'}, ... 'd_emqa',{'0','0'}, ... 'index_emqa',{'0','0'}, ... 'nsect_emqa',{'2','2'}, ... 'nx_emqa',{'nx','nx'}, ... 'ny_emqa',{'ny','ny'}, ... 'murbndxx_emqa',{'1','1'}, ... 'murbndxy_emqa',{'0','0'}, ... 'murbndyx_emqa',{'0','0'}, ... 'murbndyy_emqa',{'1','1'}, ... 'H0x_emqa',{'0','0'}, ... 'H0y_emqa',{'0','0'}}; bnd.expr = {}; bnd.lock = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; bnd.mlock = {[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]}; xfem.bnd = bnd; clear pnt pnt.weak = {{'0'}}; pnt.dweak = {{'0'}}; pnt.constr = {{'0'}}; pnt.constrf = {{'0'}}; pnt.shape = {[1]}; pnt.sshape = {[1]}; pnt.sshapedim = {{1}}; pnt.init = {{''}}; pnt.dinit = {{''}}; pnt.ind = [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]; pnt.dim = {'Az'}; pnt.var = {'I0_emqa',{'0'}}; pnt.expr = {}; pnt.lock = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; pnt.mlock = {[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]}; xfem.pnt = pnt; xfem.var = {'epsilon0_emqa','8.854187817000001e-012','mu0_emqa','4e-007*pi'}; xfem.expr = {}; clear elemmph clear elem elem.elem = 'elcplextr'; elem.g = {'1'}; src = cell(1,1); clear equ equ.expr = {{'dVol_emqa'}}; equ.map = {{'1'}}; equ.ind = {{'1','2','3','4','5'}}; src{1} = {{},{},equ}; elem.src = src; geomdim = cell(1,1); clear pnt pnt.map = {{'1'}}; pnt.ind = {{'1','2','3','4','5','6','7','8','9','10','11','12','13', ... '14','15','16','17','18','19','20'}}; geomdim{1} = {pnt,{},{}}; elem.geomdim = geomdim; elem.var = {'dVol_emqa'}; map = cell(1,1); clear submap submap.type = 'local'; submap.expr = {'x','y'}; map{1} = submap; elem.map = map; elemmph{1} = elem; clear elem elem.elem = 'elcplscalar'; elem.g = {'1'}; src = cell(1,1); src{1} = {{},{},{}}; elem.src = src; geomdim = cell(1,1); geomdim{1} = {}; elem.geomdim = geomdim; elem.var = {}; elem.global = {}; elemmph{2} = elem; clear elem elem.elem = 'elcplscalar'; elem.g = {'1'}; src = cell(1,1); src{1} = {{},{},{}}; elem.src = src; geomdim = cell(1,1); geomdim{1} = {}; elem.geomdim = geomdim; elem.var = {}; elem.global = {}; elemmph{3} = elem; clear elem elem.elem = 'elcplscalar'; elem.g = {'1'}; src = cell(1,1); src{1} = {{},{},{}}; elem.src = src; geomdim = cell(1,1); geomdim{1} = {}; elem.geomdim = geomdim; elem.var = {}; elem.global = {}; elemmph{4} = elem; clear elem elem.elem = 'elcplextr'; elem.g = {'1'}; src = cell(1,1); src{1} = {{},{},{}}; elem.src = src; geomdim = cell(1,1); geomdim{1} = {{},{},{}}; elem.geomdim = geomdim; elem.var = {}; map = cell(1,0); elem.map = map; elemmph{5} = elem; xfem.elemmph = elemmph; clear draw draw.p.objs = {}; draw.p.name = {}; draw.c.objs = {}; draw.c.name = {}; draw.s.objs = {flbinary('g7','draw','2 coils, no core.mph'),flbinary('g16','draw','2 coils, no core.mph'),flbinary('g12','draw','2 coils, no core.mph'),flbinary('g14','draw','2 coils, no core.mph'),flbinary('g15','draw','2 coils, no core.mph')}; draw.s.name = {'SQ5','SQ4','SQ1','SQ2','SQ3'}; xfem.draw = draw; xfem.const = {'R','1'}; xfem.globalexpr = {}; clear fcns xfem.functions = {}; xfem.sol = flbinary('xfem','solution','2 coils, no core.mph'); xfem.xmcases = [0]; xfem.mcases = [0]; flbinary clear; xfem.rulingmode = 'emqa'; xfem.solform = 'weak'; clear lib lib.mat{1}.name='Iron'; lib.mat{1}.varname='mat1'; lib.mat{1}.variables.nu='0.29'; lib.mat{1}.variables.E='200e9[Pa]'; lib.mat{1}.variables.mur='4000'; lib.mat{1}.variables.sigma='1.12e7[S/m]'; lib.mat{1}.variables.epsilonr='1'; lib.mat{1}.variables.alpha='12.2e-6[1/K]'; lib.mat{1}.variables.C='440[J/(kg*K)]'; lib.mat{1}.variables.rho='7870[kg/m^3]'; lib.mat{1}.variables.k='76.2[W/(m*K)]'; lib.mat{2}.name='Air'; lib.mat{2}.varname='mat2'; lib.mat{2}.variables.nu0='nu0(T[1/K])[m^2/s]'; lib.mat{2}.variables.eta='eta(T[1/K])[Pa*s]'; lib.mat{2}.variables.gamma='1.4'; lib.mat{2}.variables.sigma='0[S/m]'; lib.mat{2}.variables.C='Cp(T[1/K])[J/(kg*K)]'; lib.mat{2}.variables.rho='rho(p[1/Pa],T[1/K])[kg/m^3]'; lib.mat{2}.variables.k='k(T[1/K])[W/(m*K)]'; lib.mat{2}.variables.cs='cs(T[1/K])[m/s]'; clear fcns fcns{1}.type='inline'; fcns{1}.name='cs(T)'; fcns{1}.expr='sqrt(1.4*287*T)'; fcns{1}.dexpr={'diff(sqrt(1.4*287*T),T)'}; fcns{2}.type='inline'; fcns{2}.name='rho(p,T)'; fcns{2}.expr='p*0.02897/8.314/T'; fcns{2}.dexpr={'diff(p*0.02897/8.314/T,p)','diff(p*0.02897/8.314/T,T)'}; fcns{3}.type='piecewise'; fcns{3}.name='Cp(T)'; fcns{3}.extmethod='const'; fcns{3}.subtype='poly'; fcns{3}.expr={{'0','1.04763657E+03','1','-3.72589265E-01','2', ... '9.45304214E-04','3','-6.02409443E-07','4','1.28589610E-10'}}; fcns{3}.intervals={'200','1600'}; fcns{4}.type='piecewise'; fcns{4}.name='eta(T)'; fcns{4}.extmethod='const'; fcns{4}.subtype='poly'; fcns{4}.expr={{'0','-8.38278000E-07','1','8.35717342E-08','2', ... '-7.69429583E-11','3','4.64372660E-14','4','-1.06585607E-17'}}; fcns{4}.intervals={'200','1600'}; fcns{5}.type='piecewise'; fcns{5}.name='nu0(T)'; fcns{5}.extmethod='const'; fcns{5}.subtype='poly'; fcns{5}.expr={{'0','-5.86912450E-06','1','5.01274491E-08','2', ... '7.50108343E-11','3','1.80336823E-15','4','-2.91688030E-18'}}; fcns{5}.intervals={'200','1600'}; fcns{6}.type='piecewise'; fcns{6}.name='k(T)'; fcns{6}.extmethod='const'; fcns{6}.subtype='poly'; fcns{6}.expr={{'0','-2.27583562E-03','1','1.15480022E-04','2', ... '-7.90252856E-08','3','4.11702505E-11','4','-7.43864331E-15'}}; fcns{6}.intervals={'200','1600'}; lib.mat{2}.functions = fcns; lib.mat{3}.name='Soft Iron (without losses)'; lib.mat{3}.varname='mat3'; lib.mat{3}.variables.normfB='BH(normH[m/A])[T]'; lib.mat{3}.variables.mur='MUR(normB[1/T])'; lib.mat{3}.variables.sigma='0[S/m]'; lib.mat{3}.variables.normfH='HB(normB[1/T])[A/m]'; lib.mat{3}.variables.epsilonr='1'; clear fcns fcns{1}.type='interp'; fcns{1}.name='MUR'; fcns{1}.method='linear'; fcns{1}.extmethod='const'; fcns{1}.x={'1','1.1','1.2','1.3','1.4','1.5','1.6','1.7','1.8','1.9', ... '2.0','2.1','2.2','2.3','2.4'}; fcns{1}.data={'1200','820','560','420','290','220','160','110','70','47', ... '26','15','10','7','6'}; fcns{2}.type='interp'; fcns{2}.name='HB'; fcns{2}.method='linear'; fcns{2}.extmethod='extrap'; fcns{2}.x={'0','1','1.1','1.2','1.3','1.4','1.5','1.6','1.7','1.8', ... '1.9','2.0','2.1','2.2','2.3','2.4'}; fcns{2}.data={'0','663.146','1067.5','1705.23','2463.11','3841.67', ... '5425.74','7957.75','12298.3','20462.8','32169.6','61213.4','111408', ... '175070','261469','318310'}; fcns{3}.type='interp'; fcns{3}.name='BH'; fcns{3}.method='linear'; fcns{3}.extmethod='extrap'; fcns{3}.x={'0','663.146','1067.5','1705.23','2463.11','3841.67', ... '5425.74','7957.75','12298.3','20462.8','32169.6','61213.4','111408', ... '175070','261469','318310'}; fcns{3}.data={'0','1','1.1','1.2','1.3','1.4','1.5','1.6','1.7','1.8', ... '1.9','2.0','2.1','2.2','2.3','2.4'}; lib.mat{3}.functions = fcns; lib.mat{4}.name='Copper'; lib.mat{4}.varname='mat4'; lib.mat{4}.variables.alphares='3.9e-3[1/K]'; lib.mat{4}.variables.mur='1'; lib.mat{4}.variables.sigma='5.998e7[S/m]'; lib.mat{4}.variables.epsilonr='1'; lib.mat{4}.variables.C='385[J/(kg*K)]'; lib.mat{4}.variables.epsilon='0.5'; lib.mat{4}.variables.res0='1.72e-8[ohm*m]'; lib.mat{4}.variables.rho='8700[kg/m^3]'; lib.mat{4}.variables.k='400[W/(m*K)]'; lib.mat{4}.variables.T0='273.15[K]'; lib.mat{5}.name='Silicon Carbide'; lib.mat{5}.varname='mat5'; lib.mat{5}.variables.mur='1'; lib.mat{5}.variables.sigma='1e3[S/m]'; lib.mat{5}.variables.epsilonr='10'; lib.mat{5}.variables.C='1200[J/(kg*K)]'; lib.mat{5}.variables.epsilon='0.5'; lib.mat{5}.variables.rho='3200[kg/m^3]'; lib.mat{5}.variables.k='450[W/(m*K)]*(300[K]/T)^0.75'; lib.matgroups{1}.name='Resistivity'; lib.matgroups{1}.variables={'alphares','T0','res0'}; lib.matgroups{1}.descr={'Temperature coefficient','Reference temperature','Resistivity at reference temperature'}; lib.matgroups{2}.name='Electromagnetic (AC/DC)'; lib.matgroups{2}.variables={'alphares','T0','res0','Br','normfH','fH','normfB','fB'}; lib.matgroups{2}.descr={'Temperature coefficient','Reference temperature','Resistivity at reference temperature','Remanent flux density','Nonlinear magnetic field, norm','Nonlinear magnetic field','Nonlinear magnetic flux density, norm','Nonlinear magnetic flux density'}; xfem.lib = lib; clear ode clear units; units.basesystem = 'SI'; ode.units = units; xfem.ode=ode; uq~ t��gui.solvemodel.toutcomp='on'; gui.solvemodel.currsolver='time'; gui.solvemodel.solveroption=''; gui.solvemodel.postsolver='time'; gui.solvemodel.nonlin='auto'; gui.solvemodel.ntol='1.0E-6'; gui.solvemodel.maxiter='25'; gui.solvemodel.segterm='tol'; gui.solvemodel.maxsegiter='100'; gui.solvemodel.segiter='1'; gui.solvemodel.manualdamp='off'; gui.solvemodel.damping='on'; gui.solvemodel.hnlin='off'; gui.solvemodel.initstep='1.0'; gui.solvemodel.minstep='1.0E-4'; gui.solvemodel.rstep='10.0'; gui.solvemodel.useaugsolver='off'; gui.solvemodel.autoaugcomp='on'; gui.solvemodel.augcomp=''; gui.solvemodel.augtol='0.0010'; gui.solvemodel.augmaxiter='25'; gui.solvemodel.augsolver='lumped'; gui.solvemodel.nlsolver='automatic'; gui.solvemodel.timenonlin='auto'; gui.solvemodel.useratelimit='on'; gui.solvemodel.timentolfact='1'; gui.solvemodel.timemaxiter='4'; gui.solvemodel.timesegterm='tol'; gui.solvemodel.timemaxsegiter='10'; gui.solvemodel.timesegiter='1'; gui.solvemodel.timemanualdamp='off'; gui.solvemodel.timedtech='const'; gui.solvemodel.timedamp='1.0'; gui.solvemodel.timejtech='minimal'; gui.solvemodel.timeinitstep='1.0'; gui.solvemodel.timeminstep='1.0E-2'; gui.solvemodel.timerstep='10.0'; gui.solvemodel.atol='0.0010'; gui.solvemodel.rtol='0.01'; gui.solvemodel.tlist='0:0.1:1'; gui.solvemodel.tout='tlist'; gui.solvemodel.tsteps='free'; gui.solvemodel.odesolver='bdf_ida'; gui.solvemodel.timestep='0.01'; gui.solvemodel.incrdelay='off'; gui.solvemodel.incrdelaysteps='15'; gui.solvemodel.manualreassem='off'; gui.solvemodel.emassconst='on'; gui.solvemodel.massconst='on'; gui.solvemodel.loadconst='on'; gui.solvemodel.constrconst='on'; gui.solvemodel.jacobianconst='on'; gui.solvemodel.constrjacobianconst='on'; gui.solvemodel.manualstep='off'; gui.solvemodel.maxstepauto='on'; gui.solvemodel.initialstepauto='on'; gui.solvemodel.initialstep='0.0010'; gui.solvemodel.maxorder='5'; gui.solvemodel.minorder='1'; gui.solvemodel.maxstep='0.1'; gui.solvemodel.rhoinf='0.75'; gui.solvemodel.predictor='linear'; gui.solvemodel.timeusestopcond='off'; gui.solvemodel.paramusestopcond='off'; gui.solvemodel.masssingular='maybe'; gui.solvemodel.consistent='bweuler'; gui.solvemodel.estrat='0'; gui.solvemodel.complex='off'; gui.solvemodel.neigs='6'; gui.solvemodel.shift='0'; gui.solvemodel.maxeigit='300'; gui.solvemodel.etol='0.0'; gui.solvemodel.krylovdim='0'; gui.solvemodel.eigname='lambda'; gui.solvemodel.eigref='0'; gui.solvemodel.pname=''; gui.solvemodel.plist=''; gui.solvemodel.pdistrib='off'; gui.solvemodel.porder='1'; gui.solvemodel.manualparam='off'; gui.solvemodel.pinitstep='0.0'; gui.solvemodel.pminstep='0.0'; gui.solvemodel.pmaxstep='0.0'; gui.solvemodel.autooldcomp='on'; gui.solvemodel.oldcomp=''; gui.solvemodel.outform='auto'; gui.solvemodel.symmetric='auto'; gui.solvemodel.symmhermit='auto'; gui.solvemodel.method='eliminate'; gui.solvemodel.nullfun='auto'; gui.solvemodel.blocksize='1000'; gui.solvemodel.blocksizeauto='on'; gui.solvemodel.uscale='auto'; gui.solvemodel.manscale=''; gui.solvemodel.rowscale='on'; gui.solvemodel.conjugate='off'; gui.solvemodel.complexfun='off'; gui.solvemodel.matherr='on'; gui.solvemodel.solfile='off'; gui.solvemodel.adaptgeom='currgeom'; gui.solvemodel.eefun='l2'; gui.solvemodel.eefunc=''; gui.solvemodel.maxt='10000000'; gui.solvemodel.rmethod='longest'; gui.solvemodel.resmethod='weak'; gui.solvemodel.resorderauto='on'; gui.solvemodel.resorder='0'; gui.solvemodel.l2scale='1'; gui.solvemodel.l2staborder='2'; gui.solvemodel.eigselect='1'; gui.solvemodel.tpfun='fltpft'; gui.solvemodel.ngen='2'; gui.solvemodel.tpmult='1.7'; gui.solvemodel.tpworst='0.5'; gui.solvemodel.tpfract='0.5'; gui.solvemodel.autosolver='on'; gui.solvemodel.varcomp=''; gui.solvemodel.oldvarcomp=''; gui.solvemodel.manualhessupd='off'; gui.solvemodel.manuallimitexpr='off'; gui.solvemodel.designsolver='sensitivity'; gui.solvemodel.sensmethod='adjoint'; gui.solvemodel.sensfunc=''; gui.solvemodel.sensfuncauto='on'; gui.solvemodel.qpsolver='cholesky'; gui.solvemodel.gradient='analytic'; gui.solvemodel.limitexpr=''; gui.solvemodel.nsolvemax='500'; gui.solvemodel.hessupd='10'; gui.solvemodel.opttol='1.0e-6'; gui.solvemodel.feastol='1.0e-6'; gui.solvemodel.majfeastol='1.0e-6'; gui.solvemodel.funcprec='1.0e-6'; gui.solvemodel.callblevel=''; gui.solvemodel.callblevelshow=''; gui.solvemodel.callbfreq=''; gui.solvemodel.callbackrough='0'; gui.solvemodel.callbclose='off'; gui.solvemodel.solcomp='Az'; gui.solvemodel.outcomp='Az'; gui.solvemodel.reacf='on'; gui.solvemodel.inittype='init_expr_currsol_radio'; gui.solvemodel.initsolnum='Automatic'; gui.solvemodel.inittime='0'; gui.solvemodel.utype='u_init_radio'; gui.solvemodel.usolnum='Automatic'; gui.solvemodel.utime='0'; gui.solvemodel.scriptcommands=''; gui.solvemodel.usescript='off'; gui.solvemodel.autoscript='off'; gui.solvemodel.sameaxis='off'; gui.solvemodel.linsolvernode.currlinsolver='umfpack'; gui.solvemodel.linsolvernode.type='linsolver'; gui.solvemodel.linsolvernode.droptol='0.0'; gui.solvemodel.linsolvernode.thresh='0.1'; gui.solvemodel.linsolvernode.umfalloc='0.7'; gui.solvemodel.linsolvernode.preorder='nd'; gui.solvemodel.linsolvernode.preroworder='on'; gui.solvemodel.linsolvernode.pivotstrategy='off'; gui.solvemodel.linsolvernode.pardreorder='nd'; gui.solvemodel.linsolvernode.pardrreorder='on'; gui.solvemodel.linsolvernode.pivotperturb='1.0E-8'; gui.solvemodel.linsolvernode.errorchk='on'; gui.solvemodel.linsolvernode.errorchkd='off'; gui.solvemodel.linsolvernode.termination='tol'; gui.solvemodel.linsolvernode.iter='2'; gui.solvemodel.linsolvernode.itol='1.0E-6'; gui.solvemodel.linsolvernode.rhob='400.0'; gui.solvemodel.linsolvernode.maxlinit='10000'; gui.solvemodel.linsolvernode.prefuntype='left'; gui.solvemodel.linsolvernode.prefuntype2='right'; gui.solvemodel.linsolvernode.iluiter='1'; gui.solvemodel.linsolvernode.itrestart='50'; gui.solvemodel.linsolvernode.seconditer='1'; gui.solvemodel.linsolvernode.relax='1.0'; gui.solvemodel.linsolvernode.amgauto='3'; gui.solvemodel.linsolvernode.mglevels='6'; gui.solvemodel.linsolvernode.mgcycle='v'; gui.solvemodel.linsolvernode.maxcoarsedof='5000'; gui.solvemodel.linsolvernode.oocmemory='512.0'; gui.solvemodel.linsolvernode.oocfilename=''; gui.solvemodel.linsolvernode.modified='off'; gui.solvemodel.linsolvernode.fillratio='2.0'; gui.solvemodel.linsolvernode.respectpattern='on'; gui.solvemodel.linsolvernode.droptype='droptol'; gui.solvemodel.linsolvernode.vankavars=''; gui.solvemodel.linsolvernode.vankasolv='gmres'; gui.solvemodel.linsolvernode.vankatol='0.02'; gui.solvemodel.linsolvernode.vankarestart='100'; gui.solvemodel.linsolvernode.vankarelax='0.8'; gui.solvemodel.linsolvernode.vankablocked='on'; gui.solvemodel.linsolvernode.sorblocked='on'; gui.solvemodel.linsolvernode.sorvecdof=''; gui.solvemodel.linsolvernode.mgauto='shape'; gui.solvemodel.linsolvernode.rmethod='regular'; gui.solvemodel.linsolvernode.coarseassem='on'; gui.solvemodel.linsolvernode.meshscale='2'; gui.solvemodel.linsolvernode.mgautolevels='2'; gui.solvemodel.linsolvernode.mgkeep='off'; gui.solvemodel.linsolvernode.mggeom='Geom1'; gui.solvemodel.linsolvernode.mcase0='on'; gui.solvemodel.linsolvernode.mgassem0='on'; gui.solvemodel.solversegmodel.seggrps{1}.segcomp='Az'; gui.solvemodel.solversegmodel.seggrps{1}.ntol='1e-3'; gui.solvemodel.solversegmodel.seggrps{1}.timentol='1'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.currlinsolver='umfpack'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.type='linsolver'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.droptol='0.0'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.thresh='0.1'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.umfalloc='0.7'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.preorder='nd'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.preroworder='on'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.pivotstrategy='off'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.pardreorder='nd'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.pardrreorder='on'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.pivotperturb='1.0E-8'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.errorchk='on'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.errorchkd='off'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.termination='tol'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.iter='2'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.itol='1.0E-6'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.rhob='400.0'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.maxlinit='10000'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.prefuntype='left'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.prefuntype2='right'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.iluiter='1'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.itrestart='50'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.seconditer='1'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.relax='1.0'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.amgauto='3'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.mglevels='6'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.mgcycle='v'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.maxcoarsedof='5000'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.oocmemory='512.0'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.oocfilename=''; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.modified='off'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.fillratio='2.0'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.respectpattern='on'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.droptype='droptol'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.vankavars=''; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.vankasolv='gmres'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.vankatol='0.02'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.vankarestart='100'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.vankarelax='0.8'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.vankablocked='on'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.sorblocked='on'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.sorvecdof=''; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.mgauto='shape'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.rmethod='regular'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.coarseassem='on'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.meshscale='2'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.mgautolevels='2'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.mgkeep='off'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.mggeom='Geom1'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.mcase0='on'; gui.solvemodel.solversegmodel.seggrps{1}.linsolvernode.mgassem0='on'; gui.solvemodel.solversegmodel.segsteps{1}.segorder='1'; gui.solvemodel.solversegmodel.segsteps{1}.subterm='iter'; gui.solvemodel.solversegmodel.segsteps{1}.subdamp='0.5'; gui.solvemodel.solversegmodel.segsteps{1}.timesubdamp='1'; gui.solvemodel.solversegmodel.segsteps{1}.subiter='1'; gui.solvemodel.solversegmodel.segsteps{1}.maxsubiter='20'; gui.solvemodel.solversegmodel.segsteps{1}.timemaxsubiter='10'; gui.solvemodel.solversegmodel.segsteps{1}.subntol='1.0E-2'; gui.solvemodel.solversegmodel.segsteps{1}.subntolfact='1'; gui.solvemodel.solversegmodel.segsteps{1}.subdtech='const'; gui.solvemodel.solversegmodel.segsteps{1}.submandamp='off'; gui.solvemodel.solversegmodel.segsteps{1}.subinitstep='1.0'; gui.solvemodel.solversegmodel.segsteps{1}.subminstep='1.0E-4'; gui.solvemodel.solversegmodel.segsteps{1}.timesubminstep='1.0E-2'; gui.solvemodel.solversegmodel.segsteps{1}.subrstep='10.0'; gui.solvemodel.solversegmodel.segsteps{1}.timesubjtech='minimal'; gui.solvemodel.solversegmodel.segsteps{1}.subjtech='onevery'; gui.solvemodel.solversegmodel.manualsteps='off'; gui.solvemodel.solversegmodel.llimitdof=''; gui.solvemodel.solversegmodel.llimitval=''; gui.solvemodel.paramsweep.pname=''; gui.solvemodel.paramsweep.plist=''; gui.solvemodel.paramsweep.pdistrib='off'; gui.solvemodel.paramsweep.savefiles='off'; gui.solvemodel.paramsweep.varnames=''; gui.solvemodel.paramsweep.logfile=''; gui.solvemodel.defaults.emqa_toutcomp='on'; gui.solvemodel.defaults.toutcomp='on'; gui.registry.general_currentmodel='Geom1'; gui.registry.general_currmeshcase='0'; gui.registry.general_savedonserver='off'; gui.registry.general_savedchanges='off'; gui.registry.general_rulingmode=''; gui.registry.general_incompletemfilehistory='off'; gui.registry.saved_license='1029930'; gui.registry.saved_version='COMSOL 3.5.0.494'; gui.registry.info_modelname=''; gui.registry.info_author=''; gui.registry.info_company=''; gui.registry.info_department=''; gui.registry.info_reference=''; gui.registry.info_url=''; gui.registry.info_saveddate='1262969421148'; gui.registry.info_creationdate='1262287898528'; gui.registry.info_modelresult=''; gui.registry.spice_netlist=''; gui.registry.spice_forceac='off'; gui.reportregistry.report_contents=''; gui.reportregistry.report_outputformat='html'; gui.reportregistry.report_filename=''; gui.reportregistry.report_autoopen='off'; gui.reportregistry.report_paperformat='a4'; gui.reportregistry.report_includedefaults='off'; gui.reportregistry.report_template='full'; gui.reportregistry.report_showemptysections='off'; gui.flmodel{1}.modelname='Geom1'; gui.flmodel{1}.currmode='post'; gui.flmodel{1}.currappl='0'; gui.flmodel{1}.axis.xmin='-2.1917248854858253'; gui.flmodel{1}.axis.xmax='2.1917248854858244'; gui.flmodel{1}.axis.ymin='-1.295624821604536'; gui.flmodel{1}.axis.ymax='1.2956248216045347'; gui.flmodel{1}.axis.zmin='-1.0'; gui.flmodel{1}.axis.zmax='1.0'; gui.flmodel{1}.axis.xspacing='0.05'; gui.flmodel{1}.axis.yspacing='0.2'; gui.flmodel{1}.axis.zspacing='0.2'; gui.flmodel{1}.axis.extrax=''; gui.flmodel{1}.axis.extray=''; gui.flmodel{1}.axis.extraz=''; gui.flmodel{1}.camera.xmin='-21.91724885485825'; gui.flmodel{1}.camera.xmax='21.91724885485825'; gui.flmodel{1}.camera.ymin='-12.956248216045358'; gui.flmodel{1}.camera.ymax='12.956248216045358'; gui.flmodel{1}.camera.camposx='-5.329070518200751E-15'; gui.flmodel{1}.camera.camposy='-6.217248937900877E-15'; gui.flmodel{1}.camera.camposz='219.17248854858252'; gui.flmodel{1}.camera.camtargetx='-5.329070518200751E-15'; gui.flmodel{1}.camera.camtargety='-6.217248937900877E-15'; gui.flmodel{1}.camera.camtargetz='0.0'; gui.flmodel{1}.camera.camupx='0.0'; gui.flmodel{1}.camera.camupy='1.0'; gui.flmodel{1}.camera.camupz='0.0'; gui.flmodel{1}.lightmodel.headlight.type='point'; gui.flmodel{1}.lightmodel.headlight.name='headlight'; gui.flmodel{1}.lightmodel.headlight.enable='on'; gui.flmodel{1}.lightmodel.headlight.colorr='255'; gui.flmodel{1}.lightmodel.headlight.colorg='255'; gui.flmodel{1}.lightmodel.headlight.colorb='255'; gui.flmodel{1}.lightmodel.headlight.xpos='-5.3290705E-15'; gui.flmodel{1}.lightmodel.headlight.ypos='-6.217249E-15'; gui.flmodel{1}.lightmodel.headlight.zpos='219.17249'; gui.flmodel{1}.lightmodel.scenelight{1}.type='directional'; gui.flmodel{1}.lightmodel.scenelight{1}.name='light 1'; gui.flmodel{1}.lightmodel.scenelight{1}.enable='on'; gui.flmodel{1}.lightmodel.scenelight{1}.colorr='255'; gui.flmodel{1}.lightmodel.scenelight{1}.colorg='255'; gui.flmodel{1}.lightmodel.scenelight{1}.colorb='255'; gui.flmodel{1}.lightmodel.scenelight{1}.xdir='1.0'; gui.flmodel{1}.lightmodel.scenelight{1}.ydir='-1.0'; gui.flmodel{1}.lightmodel.scenelight{1}.zdir='1.0'; gui.flmodel{1}.lightmodel.scenelight{2}.type='directional'; gui.flmodel{1}.lightmodel.scenelight{2}.name='light 2'; gui.flmodel{1}.lightmodel.scenelight{2}.enable='on'; gui.flmodel{1}.lightmodel.scenelight{2}.colorr='255'; gui.flmodel{1}.lightmodel.scenelight{2}.colorg='255'; gui.flmodel{1}.lightmodel.scenelight{2}.colorb='255'; gui.flmodel{1}.lightmodel.scenelight{2}.xdir='-1.0'; gui.flmodel{1}.lightmodel.scenelight{2}.ydir='1.0'; gui.flmodel{1}.lightmodel.scenelight{2}.zdir='-1.0'; gui.flmodel{1}.lightmodel.scenelight{3}.type='directional'; gui.flmodel{1}.lightmodel.scenelight{3}.name='light 3'; gui.flmodel{1}.lightmodel.scenelight{3}.enable='on'; gui.flmodel{1}.lightmodel.scenelight{3}.colorr='255'; gui.flmodel{1}.lightmodel.scenelight{3}.colorg='255'; gui.flmodel{1}.lightmodel.scenelight{3}.colorb='255'; gui.flmodel{1}.lightmodel.scenelight{3}.xdir='-1.0'; gui.flmodel{1}.lightmodel.scenelight{3}.ydir='-1.0'; gui.flmodel{1}.lightmodel.scenelight{3}.zdir='1.0'; gui.flmodel{1}.lightmodel.scenelight{4}.type='directional'; gui.flmodel{1}.lightmodel.scenelight{4}.name='light 4'; gui.flmodel{1}.lightmodel.scenelight{4}.enable='on'; gui.flmodel{1}.lightmodel.scenelight{4}.colorr='255'; gui.flmodel{1}.lightmodel.scenelight{4}.colorg='255'; gui.flmodel{1}.lightmodel.scenelight{4}.colorb='255'; gui.flmodel{1}.lightmodel.scenelight{4}.xdir='1.0'; gui.flmodel{1}.lightmodel.scenelight{4}.ydir='-1.0'; gui.flmodel{1}.lightmodel.scenelight{4}.zdir='-1.0'; gui.flmodel{1}.registry.axis_visible='on'; gui.flmodel{1}.registry.axis_auto='on'; gui.flmodel{1}.registry.axis_autoy='on'; gui.flmodel{1}.registry.axis_autoz='on'; gui.flmodel{1}.registry.axis_box='off'; gui.flmodel{1}.registry.axis_equal='on'; gui.flmodel{1}.registry.axis_csys='on'; gui.flmodel{1}.registry.grid_visible='on'; gui.flmodel{1}.registry.grid_auto='off'; gui.flmodel{1}.registry.grid_autoz='on'; gui.flmodel{1}.registry.grid_labels='on'; gui.flmodel{1}.registry.labels_object='on'; gui.flmodel{1}.registry.labels_vertex='off'; gui.flmodel{1}.registry.labels_edge='off'; gui.flmodel{1}.registry.labels_face='off'; gui.flmodel{1}.registry.labels_subdomain='off'; gui.flmodel{1}.registry.symbols_vertexscale='1.0'; gui.flmodel{1}.registry.symbols_edgescale='1.0'; gui.flmodel{1}.registry.symbols_facescale='1.0'; gui.flmodel{1}.registry.select_draw2d='size'; gui.flmodel{1}.registry.select_adj='cycle'; gui.flmodel{1}.registry.light_headlight='off'; gui.flmodel{1}.registry.light_scenelight='off'; gui.flmodel{1}.registry.light_shininess='0.5'; gui.flmodel{1}.registry.camera_mouse='orbit'; gui.flmodel{1}.registry.camera_camconstr='none'; gui.flmodel{1}.registry.camera_mouseconstr='none'; gui.flmodel{1}.registry.camera_perspective='off'; gui.flmodel{1}.registry.camera_moveasbox='off'; gui.flmodel{1}.registry.draw_assembly='off'; gui.flmodel{1}.registry.draw_dialog='off'; gui.flmodel{1}.registry.draw_keepborders='on'; gui.flmodel{1}.registry.draw_keepedges='off'; gui.flmodel{1}.registry.draw_multi='off'; gui.flmodel{1}.registry.draw_snap2grid='on'; gui.flmodel{1}.registry.draw_snap2vtx='on'; gui.flmodel{1}.registry.draw_solid='on'; gui.flmodel{1}.registry.draw_workplane_coordsys='on'; gui.flmodel{1}.registry.draw_workplane_showgeom='on'; gui.flmodel{1}.registry.draw_repair='on'; gui.flmodel{1}.registry.draw_repairtol='1.0E-6'; gui.flmodel{1}.registry.draw_projection='intersection'; gui.flmodel{1}.registry.transparency_value='1.0'; gui.flmodel{1}.registry.mesh_geomdetail='normal'; gui.flmodel{1}.registry.mesh_showquality='off'; gui.flmodel{1}.registry.post_cameraview='2'; gui.flmodel{1}.registry.graphics_scale='10.0'; gui.flmodel{1}.registry.render_mesh='off'; gui.flmodel{1}.registry.render_bndarrow='on'; gui.flmodel{1}.registry.render_vertex='off'; gui.flmodel{1}.registry.render_edge='on'; gui.flmodel{1}.registry.render_face='off'; gui.flmodel{1}.registry.highlight_vertex='off'; gui.flmodel{1}.registry.highlight_edge='on'; gui.flmodel{1}.registry.highlight_face='on'; gui.flmodel{1}.meshparam.hauto='5'; gui.flmodel{1}.meshparam.usehauto='on'; gui.flmodel{1}.meshparam.hmax=''; gui.flmodel{1}.meshparam.hmaxfact='1'; gui.flmodel{1}.meshparam.hcurve='0.3'; gui.flmodel{1}.meshparam.hgrad='1.3'; gui.flmodel{1}.meshparam.hcutoff='0.001'; gui.flmodel{1}.meshparam.hnarrow='1'; gui.flmodel{1}.meshparam.hpnt='10'; gui.flmodel{1}.meshparam.xscale='1.0'; gui.flmodel{1}.meshparam.yscale='1.0'; gui.flmodel{1}.meshparam.jiggle='on'; gui.flmodel{1}.meshparam.mcase='0'; gui.flmodel{1}.meshparam.rmethod='regular'; gui.flmodel{1}.meshparam.hmaxvtx={'','','','','','','','','','','','','','','','','','','',''}; gui.flmodel{1}.meshparam.hgradvtx={'','','','','','','','','','','','','','','','','','','',''}; gui.flmodel{1}.meshparam.hmaxedg={'','','','','','','','','','','','','','','','','','','',''}; gui.flmodel{1}.meshparam.hcutoffedg={'','','','','','','','','','','','','','','','','','','',''}; gui.flmodel{1}.meshparam.hcurveedg={'','','','','','','','','','','','','','','','','','','',''}; gui.flmodel{1}.meshparam.hgradedg={'','','','','','','','','','','','','','','','','','','',''}; gui.flmodel{1}.meshparam.hgradsub={'','','','',''}; gui.flmodel{1}.meshparam.methodsub={'triaf','triaf','triaf','triaf','triaf'}; gui.flmodel{1}.meshparam.hmaxsub={'','','','',''}; gui.flmodel{1}.postmodel.postplot.triplot='on'; gui.flmodel{1}.postmodel.postplot.tridata={'normH_emqa'}; gui.flmodel{1}.postmodel.postplot.trirangeauto='on'; gui.flmodel{1}.postmodel.postplot.trirangemin='5.0771983467314624E-11'; gui.flmodel{1}.postmodel.postplot.trirangemax='8.097742042451013E-5'; gui.flmodel{1}.postmodel.postplot.tricont='on'; gui.flmodel{1}.postmodel.postplot.trirecover='off'; gui.flmodel{1}.postmodel.postplot.triunit='A/m'; gui.flmodel{1}.postmodel.postplot.triheightdata={'normB_emqa'}; gui.flmodel{1}.postmodel.postplot.triheightdatacheck='off'; gui.flmodel{1}.postmodel.postplot.triheightunit='T'; gui.flmodel{1}.postmodel.postplot.trimap='jet'; gui.flmodel{1}.postmodel.postplot.trimapreverse='off'; gui.flmodel{1}.postmodel.postplot.tribar='on'; gui.flmodel{1}.postmodel.postplot.triusemap='on'; gui.flmodel{1}.postmodel.postplot.tricolor='255,0,0'; gui.flmodel{1}.postmodel.postplot.tricoloring='interp'; gui.flmodel{1}.postmodel.postplot.trifill='fill'; gui.flmodel{1}.postmodel.postplot.contplot='off'; gui.flmodel{1}.postmodel.postplot.contdata={'normB_emqa'}; gui.flmodel{1}.postmodel.postplot.contcont='on'; gui.flmodel{1}.postmodel.postplot.contrecover='off'; gui.flmodel{1}.postmodel.postplot.contunit='T'; gui.flmodel{1}.postmodel.postplot.contheightdata={'normB_emqa'}; gui.flmodel{1}.postmodel.postplot.contheightdatacheck='off'; gui.flmodel{1}.postmodel.postplot.contheightunit='T'; gui.flmodel{1}.postmodel.postplot.contcolordata={'normB_emqa'}; gui.flmodel{1}.postmodel.postplot.contcolorrangeauto='on'; gui.flmodel{1}.postmodel.postplot.contcolorrangemin=''; gui.flmodel{1}.postmodel.postplot.contcolorrangemax=''; gui.flmodel{1}.postmodel.postplot.contcolordatacheck='off'; gui.flmodel{1}.postmodel.postplot.contcolorunit='T'; gui.flmodel{1}.postmodel.postplot.contmap='jet'; gui.flmodel{1}.postmodel.postplot.contmapreverse='off'; gui.flmodel{1}.postmodel.postplot.contbar='on'; gui.flmodel{1}.postmodel.postplot.contusemap='on'; gui.flmodel{1}.postmodel.postplot.contcolor='255,0,0'; gui.flmodel{1}.postmodel.postplot.contlevels='20'; gui.flmodel{1}.postmodel.postplot.contvectorlevels=''; gui.flmodel{1}.postmodel.postplot.contisvector='off'; gui.flmodel{1}.postmodel.postplot.contlabel='off'; gui.flmodel{1}.postmodel.postplot.contfill='off'; gui.flmodel{1}.postmodel.postplot.linplot='off'; gui.flmodel{1}.postmodel.postplot.lindata={'Az'}; gui.flmodel{1}.postmodel.postplot.linrangeauto='on'; gui.flmodel{1}.postmodel.postplot.linrangemin=''; gui.flmodel{1}.postmodel.postplot.linrangemax=''; gui.flmodel{1}.postmodel.postplot.lincont='on'; gui.flmodel{1}.postmodel.postplot.linrecover='off'; gui.flmodel{1}.postmodel.postplot.linunit='Wb/m'; gui.flmodel{1}.postmodel.postplot.linheightdata={'Az'}; gui.flmodel{1}.postmodel.postplot.linheightdatacheck='off'; gui.flmodel{1}.postmodel.postplot.linheightunit='Wb/m'; gui.flmodel{1}.postmodel.postplot.linmap='jet'; gui.flmodel{1}.postmodel.postplot.linmapreverse='off'; gui.flmodel{1}.postmodel.postplot.linbar='on'; gui.flmodel{1}.postmodel.postplot.linusemap='on'; gui.flmodel{1}.postmodel.postplot.lincolor='255,0,0'; gui.flmodel{1}.postmodel.postplot.lincoloring='interp'; gui.flmodel{1}.postmodel.postplot.arrowplot='on'; gui.flmodel{1}.postmodel.postplot.arrowploton='sub'; gui.flmodel{1}.postmodel.postplot.arrowdata={'Hx_emqa','Hy_emqa'}; gui.flmodel{1}.postmodel.postplot.arrowrecover='off'; gui.flmodel{1}.postmodel.postplot.arrowunit='A/m'; gui.flmodel{1}.postmodel.postplot.arrowbnddata={'',''}; gui.flmodel{1}.postmodel.postplot.arrowbndrecover='off'; gui.flmodel{1}.postmodel.postplot.arrowheightdata={'normB_emqa'}; gui.flmodel{1}.postmodel.postplot.arrowheightdatacheck='off'; gui.flmodel{1}.postmodel.postplot.arrowheightunit='T'; gui.flmodel{1}.postmodel.postplot.arrowxspacing='25'; gui.flmodel{1}.postmodel.postplot.arrowxvectorspacing=''; gui.flmodel{1}.postmodel.postplot.arrowxisvector='off'; gui.flmodel{1}.postmodel.postplot.arrowyspacing='25'; gui.flmodel{1}.postmodel.postplot.arrowyvectorspacing=''; gui.flmodel{1}.postmodel.postplot.arrowyisvector='off'; gui.flmodel{1}.postmodel.postplot.arrowtype='arrow'; gui.flmodel{1}.postmodel.postplot.arrowlength='normalized'; gui.flmodel{1}.postmodel.postplot.arrowcolor='255,0,0'; gui.flmodel{1}.postmodel.postplot.arrowautoscale='on'; gui.flmodel{1}.postmodel.postplot.arrowscale='5'; gui.flmodel{1}.postmodel.postplot.princplot='off'; gui.flmodel{1}.postmodel.postplot.princdata={'','','','','','','','','','','',''}; gui.flmodel{1}.postmodel.postplot.princrecover='off'; gui.flmodel{1}.postmodel.postplot.princheightdata={'normB_emqa'}; gui.flmodel{1}.postmodel.postplot.princheightdatacheck='off'; gui.flmodel{1}.postmodel.postplot.princheightunit='T'; gui.flmodel{1}.postmodel.postplot.princxspacing='8'; gui.flmodel{1}.postmodel.postplot.princxvectorspacing=''; gui.flmodel{1}.postmodel.postplot.princxisvector='off'; gui.flmodel{1}.postmodel.postplot.princyspacing='8'; gui.flmodel{1}.postmodel.postplot.princyvectorspacing=''; gui.flmodel{1}.postmodel.postplot.princyisvector='off'; gui.flmodel{1}.postmodel.postplot.princtype='arrow'; gui.flmodel{1}.postmodel.postplot.princlength='proportional'; gui.flmodel{1}.postmodel.postplot.princcolor='0,153,0'; gui.flmodel{1}.postmodel.postplot.princautoscale='on'; gui.flmodel{1}.postmodel.postplot.princscale='1'; gui.flmodel{1}.postmodel.postplot.flowplot='off'; gui.flmodel{1}.postmodel.postplot.flowdata={'Hx_emqa','Hy_emqa'}; gui.flmodel{1}.postmodel.postplot.flowunit='A/m'; gui.flmodel{1}.postmodel.postplot.flowuseexpression='off'; gui.flmodel{1}.postmodel.postplot.flowcolor='255,0,0'; gui.flmodel{1}.postmodel.postplot.flowcolordata={'normB_emqa'}; gui.flmodel{1}.postmodel.postplot.flowcolorunit='T'; gui.flmodel{1}.postmodel.postplot.flowmap='jet'; gui.flmodel{1}.postmodel.postplot.flowmapreverse='off'; gui.flmodel{1}.postmodel.postplot.flowbar='on'; gui.flmodel{1}.postmodel.postplot.flowheightdata={'normB_emqa'}; gui.flmodel{1}.postmodel.postplot.flowheightdatacheck='off'; gui.flmodel{1}.postmodel.postplot.flowheightunit='T'; gui.flmodel{1}.postmodel.postplot.flowlines='100'; gui.flmodel{1}.postmodel.postplot.flowstart='sub'; gui.flmodel{1}.postmodel.postplot.flowstartx=''; gui.flmodel{1}.postmodel.postplot.flowstarty=''; gui.flmodel{1}.postmodel.postplot.flowisstartvector='off'; gui.flmodel{1}.postmodel.postplot.flowtol='0.001'; gui.flmodel{1}.postmodel.postplot.flowstattol='0.01'; gui.flmodel{1}.postmodel.postplot.flowlooptol='0.01'; gui.flmodel{1}.postmodel.postplot.flowmaxtime='Inf'; gui.flmodel{1}.postmodel.postplot.flowmaxsteps='5000'; gui.flmodel{1}.postmodel.postplot.flowback='on'; gui.flmodel{1}.postmodel.postplot.flownormal='off'; gui.flmodel{1}.postmodel.postplot.flowdistuniform='0.05'; gui.flmodel{1}.postmodel.postplot.flowlinesvel='20'; gui.flmodel{1}.postmodel.postplot.flowseedmanual='off'; gui.flmodel{1}.postmodel.postplot.flowseed1=''; gui.flmodel{1}.postmodel.postplot.flowseed2=''; gui.flmodel{1}.postmodel.postplot.flowinitref='1'; gui.flmodel{1}.postmodel.postplot.flowignoredist='0.5'; gui.flmodel{1}.postmodel.postplot.flowsat='1.3'; gui.flmodel{1}.postmodel.postplot.flowdistend='0.5'; gui.flmodel{1}.postmodel.postplot.flowdens='none'; gui.flmodel{1}.postmodel.postplot.partplot='off'; gui.flmodel{1}.postmodel.postplot.partmasstype='mass'; gui.flmodel{1}.postmodel.postplot.partplotas='lines'; gui.flmodel{1}.postmodel.postplot.predefforces='emforce_emqa'; gui.flmodel{1}.postmodel.postplot.partforceparam0='charge,partq,-1.602e-19'; gui.flmodel{1}.postmodel.postplot.partmass='9.1095e-31'; gui.flmodel{1}.postmodel.postplot.partforce={'-partq*partw*By_emqa','partq*partw*Bx_emqa','partq*(Ez_emqa+partu*By_emqa-partv*Bx_emqa)'}; gui.flmodel{1}.postmodel.postplot.part_massless_flowdata={'Hx_emqa','Hy_emqa'}; gui.flmodel{1}.postmodel.postplot.part_massless_flowunit='A/m'; gui.flmodel{1}.postmodel.postplot.parttstartauto='on'; gui.flmodel{1}.postmodel.postplot.parttstart=''; gui.flmodel{1}.postmodel.postplot.partvelstart={'0','0','0'}; gui.flmodel{1}.postmodel.postplot.partstartptssel='partstart_explicit'; gui.flmodel{1}.postmodel.postplot.partstartdl=''; gui.flmodel{1}.postmodel.postplot.partstartedim1levels='10'; gui.flmodel{1}.postmodel.postplot.partstartedim1vectorlevels=''; gui.flmodel{1}.postmodel.postplot.partstartedim1isvector='off'; gui.flmodel{1}.postmodel.postplot.explicitcoord={'0','0'}; gui.flmodel{1}.postmodel.postplot.partuseexpression='off'; gui.flmodel{1}.postmodel.postplot.partcolor='255,0,0'; gui.flmodel{1}.postmodel.postplot.partcolordata={'normB_emqa'}; gui.flmodel{1}.postmodel.postplot.partcolorunit='T'; gui.flmodel{1}.postmodel.postplot.partmap='jet'; gui.flmodel{1}.postmodel.postplot.partmapreverse='off'; gui.flmodel{1}.postmodel.postplot.partbar='on'; gui.flmodel{1}.postmodel.postplot.partpointcolor='255,0,0'; gui.flmodel{1}.postmodel.postplot.partpointautoscale='on'; gui.flmodel{1}.postmodel.postplot.partpointscale='1'; gui.flmodel{1}.postmodel.postplot.partdroptype='once'; gui.flmodel{1}.postmodel.postplot.partdroptimes=''; gui.flmodel{1}.postmodel.postplot.partdropfreq=''; gui.flmodel{1}.postmodel.postplot.partbnd='stick'; gui.flmodel{1}.postmodel.postplot.partmasslessrtol='0.001'; gui.flmodel{1}.postmodel.postplot.partmasslessatolmanual='off'; gui.flmodel{1}.postmodel.postplot.partmasslessatol={''}; gui.flmodel{1}.postmodel.postplot.partmasslessatolexpanded={''}; gui.flmodel{1}.postmodel.postplot.partmasslessstepsizemanual='off'; gui.flmodel{1}.postmodel.postplot.partmasslesstendauto='on'; gui.flmodel{1}.postmodel.postplot.partmasslessmaxstepsauto='on'; gui.flmodel{1}.postmodel.postplot.partmasslessedgetol='0.001'; gui.flmodel{1}.postmodel.postplot.partmasslesstvar='partt'; gui.flmodel{1}.postmodel.postplot.partmasslessstatic='off'; gui.flmodel{1}.postmodel.postplot.partmasslessres='5'; gui.flmodel{1}.postmodel.postplot.partrtol='0.001'; gui.flmodel{1}.postmodel.postplot.partatolmanual='off'; gui.flmodel{1}.postmodel.postplot.partatol={'',''}; gui.flmodel{1}.postmodel.postplot.partatolexpanded={'',''}; gui.flmodel{1}.postmodel.postplot.partstepsizemanual='off'; gui.flmodel{1}.postmodel.postplot.parttendauto='on'; gui.flmodel{1}.postmodel.postplot.partmaxstepsauto='on'; gui.flmodel{1}.postmodel.postplot.partedgetol='0.001'; gui.flmodel{1}.postmodel.postplot.partvelvar={'partu','partv','partw'}; gui.flmodel{1}.postmodel.postplot.parttvar='partt'; gui.flmodel{1}.postmodel.postplot.partstatic='off'; gui.flmodel{1}.postmodel.postplot.partres='5'; gui.flmodel{1}.postmodel.postplot.maxminplot='off'; gui.flmodel{1}.postmodel.postplot.maxminsubdata={'normB_emqa'}; gui.flmodel{1}.postmodel.postplot.maxminsubrecover='off'; gui.flmodel{1}.postmodel.postplot.maxminsubdatacheck='on'; gui.flmodel{1}.postmodel.postplot.maxminsubunit='T'; gui.flmodel{1}.postmodel.postplot.maxminbnddata={'Az'}; gui.flmodel{1}.postmodel.postplot.maxminbndrecover='off'; gui.flmodel{1}.postmodel.postplot.maxminbnddatacheck='off'; gui.flmodel{1}.postmodel.postplot.maxminbndunit='Wb/m'; gui.flmodel{1}.postmodel.postplot.geom='on'; gui.flmodel{1}.postmodel.postplot.roughplot='off'; gui.flmodel{1}.postmodel.postplot.autorefine='on'; gui.flmodel{1}.postmodel.postplot.refine='3'; gui.flmodel{1}.postmodel.postplot.geomnum={'Geom1'}; gui.flmodel{1}.postmodel.postplot.phase='0'; gui.flmodel{1}.postmodel.postplot.solnum='10'; gui.flmodel{1}.postmodel.postplot.selectvia='stored'; gui.flmodel{1}.postmodel.postplot.autotitle='on'; gui.flmodel{1}.postmodel.postplot.customtitle=''; gui.flmodel{1}.postmodel.postplot.smoothinternal='on'; gui.flmodel{1}.postmodel.postplot.useellogic='off'; gui.flmodel{1}.postmodel.postplot.ellogic=''; gui.flmodel{1}.postmodel.postplot.ellogictype='all'; gui.flmodel{1}.postmodel.postplot.complexfun='on'; gui.flmodel{1}.postmodel.postplot.matherr='off'; gui.flmodel{1}.postmodel.postplot.deformplot='off'; gui.flmodel{1}.postmodel.postplot.deformsub='on'; gui.flmodel{1}.postmodel.postplot.deformbnd='on'; gui.flmodel{1}.postmodel.postplot.deformsubdata={'Hx_emqa','Hy_emqa'}; gui.flmodel{1}.postmodel.postplot.deformsubunit='A/m'; gui.flmodel{1}.postmodel.postplot.deformbnddata={'',''}; gui.flmodel{1}.postmodel.postplot.deformautoscale='on'; gui.flmodel{1}.postmodel.postplot.deformscale='1'; gui.flmodel{1}.postmodel.postplot.animate_solnum='0,1,2,3,4,5,6,7,8,9,10'; gui.flmodel{1}.postmodel.postplot.animate_selectvia='stored'; gui.flmodel{1}.postmodel.postplot.outputtype='moviefile'; gui.flmodel{1}.postmodel.postplot.filetype='AVI'; gui.flmodel{1}.postmodel.postplot.width='640'; gui.flmodel{1}.postmodel.postplot.height='480'; gui.flmodel{1}.postmodel.postplot.fps='10'; gui.flmodel{1}.postmodel.postplot.statfunctype='full'; gui.flmodel{1}.postmodel.postplot.statnframes='11'; gui.flmodel{1}.postmodel.postplot.reverse='off'; gui.flmodel{1}.postmodel.postplot.movieinmatlab='off'; gui.flmodel{1}.postmodel.postplot.copyaxis='off'; gui.flmodel{1}.postmodel.intdata{1}.intdata={'Az'}; gui.flmodel{1}.postmodel.intdata{1}.intrecover='off'; gui.flmodel{1}.postmodel.intdata{1}.intunit='Wb/m'; gui.flmodel{1}.postmodel.intdata{1}.phase='0'; gui.flmodel{1}.postmodel.intdata{1}.solnum='10'; gui.flmodel{1}.postmodel.intdata{1}.selectvia='stored'; gui.flmodel{1}.postmodel.intdata{2}.multiplyexpr='off'; gui.flmodel{1}.postmodel.intdata{2}.method='auto'; gui.flmodel{1}.postmodel.intdata{2}.order='4'; gui.flmodel{1}.postmodel.intdata{2}.autoorder='on'; gui.flmodel{1}.postmodel.intdata{2}.intdata={'Az'}; gui.flmodel{1}.postmodel.intdata{2}.intrecover='off'; gui.flmodel{1}.postmodel.intdata{2}.intunit='Wb'; gui.flmodel{1}.postmodel.intdata{2}.phase='0'; gui.flmodel{1}.postmodel.intdata{2}.solnum='10'; gui.flmodel{1}.postmodel.intdata{2}.selectvia='stored'; gui.flmodel{1}.postmodel.intdata{3}.multiplyexpr='off'; gui.flmodel{1}.postmodel.intdata{3}.method='auto'; gui.flmodel{1}.postmodel.intdata{3}.order='4'; gui.flmodel{1}.postmodel.intdata{3}.autoorder='on'; gui.flmodel{1}.postmodel.intdata{3}.intdata={'normB_emqa'}; gui.flmodel{1}.postmodel.intdata{3}.intrecover='off'; gui.flmodel{1}.postmodel.intdata{3}.intunit='Wb'; gui.flmodel{1}.postmodel.intdata{3}.phase='0'; gui.flmodel{1}.postmodel.intdata{3}.solnum='10'; gui.flmodel{1}.postmodel.intdata{3}.selectvia='stored'; gui.flmodel{1}.postmodel.domainplot.colordata={'normB_emqa'}; gui.flmodel{1}.postmodel.domainplot.colorrangeauto='on'; gui.flmodel{1}.postmodel.domainplot.colorrangemin=''; gui.flmodel{1}.postmodel.domainplot.colorrangemax=''; gui.flmodel{1}.postmodel.domainplot.colorcont='on'; gui.flmodel{1}.postmodel.domainplot.colorrecover='off'; gui.flmodel{1}.postmodel.domainplot.colorunit='T'; gui.flmodel{1}.postmodel.domainplot.surfacesurfacemap='jet'; gui.flmodel{1}.postmodel.domainplot.surfacesurfacemapreverse='off'; gui.flmodel{1}.postmodel.domainplot.surfacesurfacebar='on'; gui.flmodel{1}.postmodel.domainplot.surfacesurfaceusemap='on'; gui.flmodel{1}.postmodel.domainplot.surfacesurfacecolor='255,0,0'; gui.flmodel{1}.postmodel.domainplot.surfacesurfacecoloring='interp'; gui.flmodel{1}.postmodel.domainplot.surfacesurfacefill='fill'; gui.flmodel{1}.postmodel.domainplot.extrusion='off'; gui.flmodel{1}.postmodel.domainplot.lineyaxisdata={'Az'}; gui.flmodel{1}.postmodel.domainplot.lineyaxiscont='on'; gui.flmodel{1}.postmodel.domainplot.lineyaxisrecover='off'; gui.flmodel{1}.postmodel.domainplot.lineyaxisunit='Wb/m'; gui.flmodel{1}.postmodel.domainplot.linexaxisxaxistype='arc'; gui.flmodel{1}.postmodel.domainplot.linexaxisuseexpr='off'; gui.flmodel{1}.postmodel.domainplot.linexaxisdata={'Az'}; gui.flmodel{1}.postmodel.domainplot.linexaxisunit='Wb/m'; gui.flmodel{1}.postmodel.domainplot.linelinestyle='solid'; gui.flmodel{1}.postmodel.domainplot.linelinecolor='cyclecolor'; gui.flmodel{1}.postmodel.domainplot.linelinemarker='none'; gui.flmodel{1}.postmodel.domainplot.linelegend='off'; gui.flmodel{1}.postmodel.domainplot.linelinelabels='off'; gui.flmodel{1}.postmodel.domainplot.linecolor='255,0,0'; gui.flmodel{1}.postmodel.domainplot.linesurfacemap='jet'; gui.flmodel{1}.postmodel.domainplot.linesurfacemapreverse='off'; gui.flmodel{1}.postmodel.domainplot.linesurfacebar='on'; gui.flmodel{1}.postmodel.domainplot.linesurfaceusemap='on'; gui.flmodel{1}.postmodel.domainplot.linesurfacecolor='255,0,0'; gui.flmodel{1}.postmodel.domainplot.linesurfacecoloring='interp'; gui.flmodel{1}.postmodel.domainplot.linesurfacefill='fill'; gui.flmodel{1}.postmodel.domainplot.pointyaxisdata={'Az'}; gui.flmodel{1}.postmodel.domainplot.pointyaxisrecover='off'; gui.flmodel{1}.postmodel.domainplot.pointyaxisunit='Wb/m'; gui.flmodel{1}.postmodel.domainplot.pointxxaxistype=''; gui.flmodel{1}.postmodel.domainplot.pointxuseexpr='off'; gui.flmodel{1}.postmodel.domainplot.pointxdata={'Az'}; gui.flmodel{1}.postmodel.domainplot.pointxunit='Wb/m'; gui.flmodel{1}.postmodel.domainplot.pointlinestyle='solid'; gui.flmodel{1}.postmodel.domainplot.pointlinecolor='cyclecolor'; gui.flmodel{1}.postmodel.domainplot.pointlinemarker='none'; gui.flmodel{1}.postmodel.domainplot.pointlegend='off'; gui.flmodel{1}.postmodel.domainplot.pointlinelabels='off'; gui.flmodel{1}.postmodel.domainplot.pointcolor='255,0,0'; gui.flmodel{1}.postmodel.domainplot.crossdispcolor='255,0,0'; gui.flmodel{1}.postmodel.domainplot.phase='0'; gui.flmodel{1}.postmodel.domainplot.solnum='0,1,2,3,4,5,6,7,8,9,10'; gui.flmodel{1}.postmodel.domainplot.selectvia='stored'; gui.flmodel{1}.postmodel.domainplot.autotitle='on'; gui.flmodel{1}.postmodel.domainplot.customtitle=''; gui.flmodel{1}.postmodel.domainplot.autolabelx='on'; gui.flmodel{1}.postmodel.domainplot.customlabelx=''; gui.flmodel{1}.postmodel.domainplot.autolabely='on'; gui.flmodel{1}.postmodel.domainplot.customlabely=''; gui.flmodel{1}.postmodel.domainplot.axistype={'lin','lin'}; gui.flmodel{1}.postmodel.domainplot.smoothinternal='on'; gui.flmodel{1}.postmodel.domainplot.autorefine='on'; gui.flmodel{1}.postmodel.domainplot.refine='1'; gui.flmodel{1}.postmodel.domainplot.plottypeind='0'; gui.flmodel{1}.postmodel.crossplot.extrusion='off'; gui.flmodel{1}.postmodel.crossplot.lineyaxisdata={'Jez_emqa'}; gui.flmodel{1}.postmodel.crossplot.lineyaxisrecover='off'; gui.flmodel{1}.postmodel.crossplot.lineyaxisunit='A/m^2'; gui.flmodel{1}.postmodel.crossplot.linexaxisxaxistype='y'; gui.flmodel{1}.postmodel.crossplot.linexaxisuseexpr='off'; gui.flmodel{1}.postmodel.crossplot.linexaxisdata={'normB_emqa'}; gui.flmodel{1}.postmodel.crossplot.linexaxisunit='T'; gui.flmodel{1}.postmodel.crossplot.linelinestyle='solid'; gui.flmodel{1}.postmodel.crossplot.linelinecolor='cyclecolor'; gui.flmodel{1}.postmodel.crossplot.linelinemarker='none'; gui.flmodel{1}.postmodel.crossplot.linelegend='off'; gui.flmodel{1}.postmodel.crossplot.linelinelabels='off'; gui.flmodel{1}.postmodel.crossplot.linecolor='255,0,0'; gui.flmodel{1}.postmodel.crossplot.linesurfacemap='jet'; gui.flmodel{1}.postmodel.crossplot.linesurfacemapreverse='off'; gui.flmodel{1}.postmodel.crossplot.linesurfacebar='on'; gui.flmodel{1}.postmodel.crossplot.linesurfaceusemap='on'; gui.flmodel{1}.postmodel.crossplot.linesurfacecolor='255,0,0'; gui.flmodel{1}.postmodel.crossplot.linesurfacecoloring='interp'; gui.flmodel{1}.postmodel.crossplot.linesurfacefill='fill'; gui.flmodel{1}.postmodel.crossplot.lineresolution='200'; gui.flmodel{1}.postmodel.crossplot.linecoord={'-0.5','-0.5','-1','1'}; gui.flmodel{1}.postmodel.crossplot.linelevels='5'; gui.flmodel{1}.postmodel.crossplot.linevectorlevels=''; gui.flmodel{1}.postmodel.crossplot.lineisvector='off'; gui.flmodel{1}.postmodel.crossplot.lineactive='off'; gui.flmodel{1}.postmodel.crossplot.pointyaxisdata={'Jz_emqa'}; gui.flmodel{1}.postmodel.crossplot.pointyaxisrecover='off'; gui.flmodel{1}.postmodel.crossplot.pointyaxisunit='A/m^2'; gui.flmodel{1}.postmodel.crossplot.pointxxaxistype=''; gui.flmodel{1}.postmodel.crossplot.pointxuseexpr='off'; gui.flmodel{1}.postmodel.crossplot.pointxdata={'normB_emqa'}; gui.flmodel{1}.postmodel.crossplot.pointxunit='Wb'; gui.flmodel{1}.postmodel.crossplot.pointlinestyle='solid'; gui.flmodel{1}.postmodel.crossplot.pointlinecolor='cyclecolor'; gui.flmodel{1}.postmodel.crossplot.pointlinemarker='none'; gui.flmodel{1}.postmodel.crossplot.pointlegend='off'; gui.flmodel{1}.postmodel.crossplot.pointlinelabels='off'; gui.flmodel{1}.postmodel.crossplot.pointcolor='255,0,0'; gui.flmodel{1}.postmodel.crossplot.pointcoord={'-0.5','-0.5'}; gui.flmodel{1}.postmodel.crossplot.crossdispcolor='255,0,0'; gui.flmodel{1}.postmodel.crossplot.phase='0'; gui.flmodel{1}.postmodel.crossplot.solnum='0,1,2,3,4,5,6,7,8,9,10'; gui.flmodel{1}.postmodel.crossplot.selectvia='stored'; gui.flmodel{1}.postmodel.crossplot.autotitle='on'; gui.flmodel{1}.postmodel.crossplot.customtitle=''; gui.flmodel{1}.postmodel.crossplot.autolabelx='on'; gui.flmodel{1}.postmodel.crossplot.customlabelx=''; gui.flmodel{1}.postmodel.crossplot.autolabely='on'; gui.flmodel{1}.postmodel.crossplot.customlabely=''; gui.flmodel{1}.postmodel.crossplot.axistype={'lin','lin'}; gui.flmodel{1}.postmodel.crossplot.smoothinternal='on'; gui.flmodel{1}.postmodel.crossplot.plottypeind='1'; gui.flmodel{1}.postmodel.dataexport.pntdata={'Az'}; gui.flmodel{1}.postmodel.dataexport.pntrecover='off'; gui.flmodel{1}.postmodel.dataexport.pntunit='Wb/m'; gui.flmodel{1}.postmodel.dataexport.pntlocation='element'; gui.flmodel{1}.postmodel.dataexport.pntlagorder='2'; gui.flmodel{1}.postmodel.dataexport.bnddata={'Az'}; gui.flmodel{1}.postmodel.dataexport.bndcont='off'; gui.flmodel{1}.postmodel.dataexport.bndrecover='off'; gui.flmodel{1}.postmodel.dataexport.bndunit='Wb/m'; gui.flmodel{1}.postmodel.dataexport.bndlocation='element'; gui.flmodel{1}.postmodel.dataexport.bndlagorder='2'; gui.flmodel{1}.postmodel.dataexport.subdata={'normB_emqa'}; gui.flmodel{1}.postmodel.dataexport.subcont='off'; gui.flmodel{1}.postmodel.dataexport.subrecover='off'; gui.flmodel{1}.postmodel.dataexport.subunit='T'; gui.flmodel{1}.postmodel.dataexport.subxspacing='10'; gui.flmodel{1}.postmodel.dataexport.subxvectorspacing=''; gui.flmodel{1}.postmodel.dataexport.subxisvector='off'; gui.flmodel{1}.postmodel.dataexport.subyspacing='10'; gui.flmodel{1}.postmodel.dataexport.subyvectorspacing=''; gui.flmodel{1}.postmodel.dataexport.subyisvector='off'; gui.flmodel{1}.postmodel.dataexport.sublocation='element'; gui.flmodel{1}.postmodel.dataexport.sublagorder='2'; gui.flmodel{1}.postmodel.dataexport.phase='0'; gui.flmodel{1}.postmodel.dataexport.solnum='0,1,2,3,4,5,6,7,8,9,10'; gui.flmodel{1}.postmodel.dataexport.selectvia='stored'; gui.flmodel{1}.postmodel.dataexport.smoothinternal='on'; gui.flmodel{1}.postmodel.dataexport.exportformat='ptd'; gui.flmodel{1}.postmodel.dataexport.struct='off'; gui.flmodel{1}.postmodel.dataexport.exportedim='2'; gui.flmodel{1}.postmodel.dataexport.plotexportformat='coorddata'; gui.flmodel{1}.postmodel.dataexport.plotstruct='off'; gui.flmodel{1}.postmodel.datadisplay.fullprecision='off'; gui.flmodel{1}.postmodel.datadisplay.smoothinternal='on'; gui.flmodel{1}.postmodel.datadisplay.phase='0'; gui.flmodel{1}.postmodel.datadisplay.solnum='10'; gui.flmodel{1}.postmodel.datadisplay.selectvia='stored'; gui.flmodel{1}.postmodel.datadisplay.interpdata={'normB_emqa'}; gui.flmodel{1}.postmodel.datadisplay.interprecover='off'; gui.flmodel{1}.postmodel.datadisplay.interpunit='T'; gui.flmodel{1}.postmodel.datadisplay.coord={'0','0'}; gui.flmodel{1}.postmodel.globalplot.globalyaxisexprs={}; gui.flmodel{1}.postmodel.globalplot.globalyaxisexprsdisp={}; gui.flmodel{1}.postmodel.globalplot.linexaxisxaxistype=''; gui.flmodel{1}.postmodel.globalplot.linexaxisuseexpr='off'; gui.flmodel{1}.postmodel.globalplot.globallinestyle='solid'; gui.flmodel{1}.postmodel.globalplot.globallinecolor='cyclecolor'; gui.flmodel{1}.postmodel.globalplot.globallinemarker='none'; gui.flmodel{1}.postmodel.globalplot.globallegend='off'; gui.flmodel{1}.postmodel.globalplot.globallinelabels='off'; gui.flmodel{1}.postmodel.globalplot.globalcolor='255,0,0'; gui.flmodel{1}.postmodel.globalplot.autotitle='on'; gui.flmodel{1}.postmodel.globalplot.customtitle=''; gui.flmodel{1}.postmodel.globalplot.autolabelx='on'; gui.flmodel{1}.postmodel.globalplot.customlabelx=''; gui.flmodel{1}.postmodel.globalplot.autolabely='on'; gui.flmodel{1}.postmodel.globalplot.customlabely=''; gui.flmodel{1}.postmodel.globalplot.axistype={'lin','lin'}; gui.flmodel{1}.postmodel.globalplot.phase='0'; gui.flmodel{1}.postmodel.globalplot.solnum='0,1,2,3,4,5,6,7,8,9,10'; gui.flmodel{1}.postmodel.globalplot.selectvia='stored'; gui.flmodel{1}.geommodel.suppressed{1}=[]; gui.flmodel{1}.geommodel.suppressed{2}=[]; gui.flmodel{1}.geommodel.suppressed{3}=[]; gui.flmodel{1}.workplane.type='0'; gui.flmodel{1}.workplane.wrkpln='0,1,0,0,0,1,0,0,0'; gui.flmodel{1}.workplane.localsys='0,1,0,0,0,0,1,0,0,0,0,1'; gui.flmodel{1}.workplane.model2d='Geom1'; gui.flmodel{1}.workplane.quicktype='10'; gui.flmodel{1}.workplane.parameter='0'; gui.flmodel{1}.workplane.zdir='up'; gui.flmodel{1}.meshmodel.meshplot.subplot='on'; gui.flmodel{1}.meshmodel.meshplot.meshsubuseexpression='off'; gui.flmodel{1}.meshmodel.meshplot.meshsubcolor='128,128,128'; gui.flmodel{1}.meshmodel.meshplot.meshsubbordercheck='off'; gui.flmodel{1}.meshmodel.meshplot.meshwiresubplot='on'; gui.flmodel{1}.meshmodel.meshplot.meshwiresubcolor='192,192,192'; gui.flmodel{1}.meshmodel.meshplot.bndplot='on'; gui.flmodel{1}.meshmodel.meshplot.meshbndcolor='0,0,0'; gui.flmodel{1}.meshmodel.meshplot.useellogic='off'; gui.flmodel{1}.meshmodel.meshplot.ellogic=''; gui.flmodel{1}.meshmodel.meshplot.ellogictype='all'; gui.flmodel{1}.meshmodel.meshplot.meshkeepfraction='1'; gui.flmodel{1}.meshmodel.meshplot.meshkeeptype='random'; gui.flmodel{1}.meshmodel.meshplot.meshmap='jet'; gui.flmodel{1}.meshmodel.meshplot.meshmapreverse='off'; gui.flmodel{1}.meshmodel.meshplot.meshbar='on'; uq~ q~srcom.femlab.geom.Square���ɹ��xrcom.femlab.geom.Rect�ȉ,E��6DlxDlyLlxExprt!Lcom/femlab/geom/Geom$Expression;LlyExprq~0xrcom.femlab.geom.Prim2�Z��~��DrotLbaseq~Lconstrq~[post[D[posExprt"[Lcom/femlab/geom/Geom$Expression;LrotExprq~0xrcom.femlab.geom.Geom2�V���c/Oxrcom.femlab.geom.Geom͹�6��{L geomAssoctLcom/femlab/geom/GeomAssoc;Lversionq~xpwq~w�ur[B���T�xp�Geom2�����|�=-C��6?�ffffff�������@ffffff�������@������@������������@������?��?��?��?� BezierCurve�ffffff���?@ffffff���? BezierCurve@ffffff���?@������@�? BezierCurve@������@�?�������@�? BezierCurve�������@�?�ffffff���? AssocAttrib VectorIntFxwxwtcenterur[D>���cZxp?�������ur"[Lcom.femlab.geom.Geom$Expression;�\2�Y�Uxpsrcom.femlab.geom.Geom$Expression OpI_h�DnumScaleLexprStrq~xpwt0w?�xsq~?wt0w?�xwsq~?wt0w?��F�R�9xxw @sq~?wt4w?�xw@sq~?wq~Gw?�xxwxsq~.wq~w�uq~8�Geom2�����|�=-C��6?��������������?�����������ܿ�������?�����������ܿ�������?�����������Ί������?������?��?��?��?� BezierCurve��������������?�?������ܿ�������?�? BezierCurve������ܿ�������?�?������ܿ�������?�? BezierCurve������ܿ�������?�?������Ί������?�? BezierCurve������Ί������?�?��������������?�? AssocAttrib VectorIntFxwxwq~:uq~;��?�uq~=sq~?wt-0.5w?�xsq~?wt0.5w?�xwsq~?wt0w?��F�R�9xxw ?�������sq~?wt0.1w?�xw?�������sq~?wq~Tw?�xxwxsq~.wq~w�uq~8�Geom2�����|�=-C��6?������Ῑ�����������������ܿ������������������ܿ������ܿ������������������ܿ������?��?��?��?� BezierCurve������Ῑ�������?������ܿ��������? BezierCurve������ܿ��������?������ܿ������ܿ�? BezierCurve������ܿ������ܿ�?�������������ܿ�? BezierCurve�������������ܿ�?������Ῑ�������? AssocAttrib VectorIntFxwxwq~:uq~;����������uq~=sq~?wt-0.5w?�xsq~?wt-0.5w?�xwsq~?wt0w?��F�R�9xxw ?�������sq~?wt0.1w?�xw?�������sq~?wq~aw?�xxwxsq~.wq~w�uq~8�Geom2�����|�=-C��6?�������?�������������������?�������������������?������ܿ������������?������ܿ������?��?��?��?� BezierCurve�������?��������?�������?��������? BezierCurve�������?��������?�������?������ܿ�? BezierCurve�������?������ܿ�?�������?������ܿ�? BezierCurve�������?������ܿ�?�������?��������? AssocAttrib VectorIntFxwxwq~:uq~;?���������uq~=sq~?wt0.5w?�xsq~?wt-0.5w?�xwsq~?wt0w?��F�R�9xxw ?�������sq~?wt0.1w?�xw?�������sq~?wq~nw?�xxwxsq~.wq~w�uq~8�Geom2�����|�=-C��6?�������?�������?������������?�������?������������?�������?������������?�������?������?��?��?��?� BezierCurve�������?�������?�?�������?�������?�? BezierCurve�������?�������?�?�������?�������?�? BezierCurve�������?�������?�?�������?�������?�? BezierCurve�������?�������?�?�������?�������?�? AssocAttrib VectorIntFxwxwq~:uq~;?�?�uq~=sq~?wt0.5w?�xsq~?wt0.5w?�xwsq~?wt0w?��F�R�9xxw ?�������sq~?wt0.1w?�xw?�������sq~?wq~{w?�xxwxsq~4wq~w�����uq~8�Geom2���������|�=-C��6?�ffffff��������������@�����������Ῑ������������������������ܿ�������������������?�����������Ί������?�����������ܿ������������������ܿ������ܿ�����������ܿ�������?�����������ܿ�������?������������?�������������������?������ܿ������������?�������?������������?�������?������������?�������������������?������ܿ������������?�������?������������?�������?�����@ffffff�������@������@������?������?��?������?������?��?������?����� �?� �?������? � �? � �?����� �? � �?����� �?����� �?��?������?��?��?� BezierCurve�ffffff���?�������@�? BezierCurve�ffffff���?@ffffff���? BezierCurve�������@�?@������@�? BezierCurve������Ῑ�������?�������������ܿ�? BezierCurve������Ῑ�������?������ܿ��������? BezierCurve�������������ܿ�?������ܿ������ܿ�? BezierCurve��������������?�?������Ί������?�? BezierCurve��������������?�?������ܿ�������?�? BezierCurve������Ί������?�?������ܿ�������?�? BezierCurve������ܿ��������?������ܿ������ܿ�? BezierCurve������ܿ�������?�?������ܿ�������?�? BezierCurve�������?��������?�������?������ܿ�? BezierCurve�������?��������?�������?��������? BezierCurve�������?������ܿ�?�������?������ܿ�? BezierCurve�������?�������?�?�������?�������?�? BezierCurve�������?�������?�?�������?�������?�? BezierCurve�������?�������?�?�������?�������?�? BezierCurve�������?��������?�������?������ܿ�? BezierCurve�������?�������?�?�������?�������?�? BezierCurve@ffffff���?@������@�? AssocAttrib VectorIntZxwxsrcom.femlab.mesh.Mesh�_�q �Lversionq~xpwq~wm�uq~8m�Mesh�ffffff���!"""""����� �=��z9u�������������ffffff�����������0�֖����}y d���P������s���l���xwwwww��ffffff���}Z�����������������������Ҡ�P��������y����E�h������m?��3l��b��433333�ffffff��!��OC��c�����i3�&���}�o9���������� ې�W迿�%�m��ei���r��}v�V���Tՙ �ݦn�@����d�����F�����������ffffff��Ƈ�ۂQ�R�:��&�@ߐb��`�1!�;����뿨3���:P��Tm�!�X7���{�=�N&��S�& *H:�A�Ә���5�x���d�\`8a￱1�RN���E��D�����D��� !� �t��"""""⿠z{� �,��$�t连���忇@�9�� ʨo�⿦�ȃG�g�z��߿� �X��D��ۿ���8俴6i9k������ �澉��1���h6�{��a<�r]�DXA(���8�!��P�ca���Xց��������6���/������XUUUUU�ffffff��������Ῑ�������B ���4��.���[' ��v�L�ܿ0Bu >��B��ieBڿ������ܿ���������@��{�K�DL*L8�꿫x�� ���%C�t���Z=Ĥ��aH(�ܿ�H��m�/'��Y8���C����#���yu���_ k���9T��/�,xD�#���!��ۿ� 33333ӿ�g�{p׿1�$j��fk�����Q_��,�ڬN�:����U�\�-��ܴJ㿰���(���Zމܿ�Rkͅ��Bq�.(׿����Fb��濙����e��P!P꿋�%a���������ٿffffff��( O�k� �щ����ݗ+�� W���������������ܿ���^V���<�XM׿"�E�����a��0�ֿ�J�4��}���PMҿ� >����R�+5�Uտ�D�T��ֿXN�ୢ߿������ܿ������ܿB��jyc�����ῒ��3d��e�i/d�ֿ {�>�8��C����5O���Ȩ����ɿ� 8�N2����šX�ۿpM �z���Q�<�7ӿ�(���QU�uz]ſ�@���7J�Qӿ=�=ٞ-���n��ѿs�-X��EP��5$޿�u�� �a �E������@�n���2ӿۥ�ff述զ=�ῡico<�� ��ffffff��L8�Z&ѿ�T�����ŗ ��ٿ7/`t���S!��:��!�Q�ֿ�3�� Y�9 pm��ѿ�b��� 0��̿�\�����.QZ�\??���濼��P������v��;ѿm�S_/ݿ�9���տ��z���ٿ���q ^ڿ�~(��7տJ����Կx��j��Կ��7�D���!ҿ�}K����ҿ�qXȿJ�.��I�����R<��6i*�Q����1��?��I ��ѿ�-�Q���j1a�NN��T�.��_!��������p��������Y�?�pO/R�WZ6*���?<@X�r俗X���?��\�%R�D�2���翌G���?"z͝�\޿��\x �п/ė��῱ ��>ǿY��f�� �I�Ce��� �6� �]��?������?ǝ�?^�*k�ĿTb�#ڿm�0�Ͽ����#׿>���ֿ�e�Լ�οx��ѿʜƨ<�ѿ� ���yU@+���ٞ���뿫���:��??Y� �ᅱָ�v4�?Μ\ 2W����P��?IL���d��1� ߟ#�?T�X ����+�$7r�?� �?�bKjnS�����;��޿��f9�?��_���´ ����R.W�N�ֿ{�ֿ�6�? ��J�߿�������?ffffff��PUUUUU�?ffffff��b�@5I�?��fR�+���O�t�J���)#>�|fq�]?�T���7쿼���"ؒ?��6.����"�w3�?�b�]m����M�6�Z�?�K@@翵�b���?J����衒��`�?@�5�q뿆U�䞢�?G��܇�5� �8 �?��FW^ ����Q>�?��/m]忣���)迻I�w[��?��I�ֵ�v�!*���?V��s^=係<6���?R�+���ٿ�nS�����ek��%࿛o�lB��M!Y�wΎ�ȕ��? �p���޿�u��׭�?��y1�QĿA�w^�ѿ��'���п�̱�IĿ+���̸��8��Ω�?�Zl� �3��9�?R"� �� DES�?��l�����?��?!���������#�?=����.���iS���?Vɀ�����W/�U�?��������?�������?ffffff��033333�?ffffff��o��ȓ���FI5B2п7�% ꍲ?u��vu�׿�p�>ޙ�?��_��ݿ���T���?)3����ؿv�/*�?�]�/ '����x�&��?O��I���e>W^N��?5�C>������ݳ.�?�� �M�?`q�?�N��o����(g����?��`���@���.A�?$�G�v�#�?r ;��.�ؠ`h�?6N4}�&��������?�������h�����?��ǍJF�����C�q�>/o��?M�V�\�Rv���?��-Gx���{���?U����oݿB��+~�?����׿�%b��9�?v�?ζ[ֿ��d�Ά��~nՏ�Lؿ���4#�?2d�՚\����ò���X���ȿ:-j��(��I�k�����Y��?"O2�2����A�?�)�D�da����?k.d y��HE�xV��?Xu_����&gJ+�Y�?�ꚫ�x���^dG�i�?��������?�Y{�=�����6��?W��������L}�?��������?twwwww�?ffffff���������?ffffff����-I��?]>A؈��+���U�?g���!���ևd �?B�� �OſzA)�U�?��qѿD�����?%�$ WUڿ+�7��?-���Bտ���Fy�?_�mM����{#W���?�4�@�����_P�`�?2�BD���pԾ��?�;uE������Z�q�?c\�����;TM��?s#g),���?T4��?i`C�P����,*U�?���-���������?������ܿ�?࿚������?������Ὶ�������������?��� �!}���?_aE�� ڿ�!�Zk��?�C-���ԿD�W>��?env���ѿ➩S�V�?�}��0#ʿi (��n�?m � ���H����?��?"���(-�+�@�~��?������Ί������?���"J�������?�xf�v��-�Y���?p(���w��J��z��?S彎�����YR�?K�|�v��3���Y��?��`ݞ���;$���?��/ˑ������\"��?��?�ZUUUUU�?] �sc��?5����=��@Fh��?`������@ffffff��Tڮ��u�?D�|�������r�C�?u�� 0����Ƃ{o��?`�h3S�?����?�y���&�?R��g>��?`^Q7 z��8�Y$���?(�G�g�ο�˫���?�qA��տ�Y [��?���@ֿ;7�O���?5ɤ������`��3�?�������H�C�W�?�. ��7�l'#;܅�?v��I��Δ�ᢗ�?Y�ݜ,�v�IK�?�V�v���P�V���?��}!�U迚������?������ܿ2�V���?�1K�8�߿NQx׏��?�O�Z�?������ܿ�������?H���3Dտ��6r��?3���~Ͽ��qn��?܄��,ÿ86F��?X! ��q��������?��mD�?4HB�'�?�8���?��h�e�?:�M!���Tf!h�h�?������ܿ�������?cLޛ,��O�ߪ(�?_g� �h;X�{��?x|텑���1���?H'���.�D�#�K�?0B6��)���� ٳ�?�ڒ�n�x'���?g�ժ������?�?��e� ��z������?5C7#�)�����z��?�P�Bl��M��*2�?�#w���tz,�$�?�NQ��v�h z��?�������@=y��.8�?��)�����@!"""""��-ہ��_�?ʌ������2@�S��?x��_��k�+���?'(&����?���x,P�?��2��?#=qv5��?�0����i�ߚ|�?d;�y�����k��?���a:�ο!�Š� �?��N�~տD#lr��?�rӳ�zѿIl~�9�?�p�?#4�Ы��R��?K1J^�F~�*�?#�Ŗ俌9�j٢�?I���}ῒ �f��?үfc���XoӚ�?�7If����l�>�?�?-��ٿ���JZ��?2�kdݿ�]��?��~�� Կ~�7M�D�?��p����?��Sg���?����H��?,Q7�? �x����?�N ��¿��qp���?m~�z�տ���[Q!�?���f�qϿ2Ee=��?Ƅ�/�(׿J�����?-�'��qZ�Vr-Z��?���N���w��i�?h�P��T�?\�=#T��?s��6-�?HpJ|dy�?�}Ɩ��%���?��r�ڿ��2�_��?��vg῍l�����?B�S�tݿt��d��?]�[� `��~��l�?���鿰@ �� �?&6PJI�|X#��?��ŹC�~���D�?�A֙������ ��?��5Y����xM�?�%����fc«��?�L8�s���gɥ���?��������������@��ܚ���?dTg a��@����������28��?;�>)y^��.��?�����6 �� ��?o�N#T�?�Z���?1����?JܾU�u�?�ȴ�4����-)�%��?]n}��¿�+��1P�?�ޣ��ο�_�I{��?�W���H��G�2e�?^b)� ��,��D�?r�s&�+濉�{�O*�?n~% �LֿN� B�E�?��d�pڿ��H��?OrOv��ο�5�t�R�?�g�j��?|M>K��?��Ϡ~��?�������?�������?�L�V�?8@�}�%�?�QS���?o �D���?O�m�lĿ�5ݦd��?y0����пi4�� ��?�j#z�տ����?>/i���?"��d��?L8z�w������<9��?�Ȝ�[Y�?t�^��?�|^ڒ��S�ܚ�C�?�x7��׿ ��l��?:��ԙݿ:e(�)�?f�����ٹ)f���?�|�[�翶���D��?`������8K0� �?b��ʓ����`�?� � �G�E�л��?����|a����&��@�?xwwwww��������@�j_�щ�?��$��@�������]G���?����؛�˧��n��?�һ���|3�$��?�FDf�?-�Ș��?��(��?=}d����?�(@.I��?m�Zjk>�??H�Ż���r�Xý�?���}�.�^ $p��?$ �m�y޿0)�4�?�Z�N�ѿ`�Z9���?'�@�X5տ�sJ�T��? 3��J¿�q��L �?����|�?B� �ӱ�?�~p3���?�?�?�������?�������?F}f$º�?..��bL�?�������?�������?ht�?d�?�E���?_�N��?ؓ�b��?��YF*�ÿLԧ��n�?��I�1%пp��J73�?��h�?�ʬ�5��? ;��������'���?��P��?�z��]��?��Z�P2޿/���ݚ�?E߅t"�Կ6FJ����?�>^/���\��+c��?�g��4��������?L�`,b鿔`j�[��? ����V��? ��k]�Y�W{T;�?433333�������@���ލ�?���V�@������� ���%�?T��9�w�\y��?l��*d�ܿy�yx*��?d_� ��?4 3n��?r��º��?3t�"�P�?"���;�?~�D�W�?�R�Y�CԿ4�o��?B��@ȿ'��]��?�e� ������~m�B�?��\>��?���S�T�?t�>�?�������?�������?��Z�6��?b��[(�?A� ��>�?2Wʩ��?ef^�4�?��(� C�?)��$I �?�Z�����?�s��5��?Bx§��?.N�ʃP�?# �����?S��:�E���s8��V�?~��.��?t2�D�a�?uپ�w��?���ث�?���?�ֿΛ���#�?(� �?�������������@V)�“�?7��Т�ۿ@"""""��%��&�?0 ���xӿ�y�Ն��?/��w�Iƿ��d�6��?�q����?��f���?���0�?L�C���?�� c�k����[��?����?��n��?�=����?�9 y��?40�%���?��Ÿ+&�? �j!�R�?���'A�?u ? ��?���ON��?��Α�?���E��?r�S^pX�?�� �?�fz���?�x~���?`����?z���EK�w(93��?� ox��?�rh:P��?6e.��Ŀ���DY�?�.�5�ѿ<�h�?�3�nxLڿ=�+�F��?�ٌ8�ѯ�r�;�?XUUUUU�������@��u+��?1� m$l�?%��B��?�@3���?�E�0��?�ZS�2�?;U�����?������?����_d���>�)�? ��������@��:.��?��Z�f�?@������?��Du�?е0����?A\F���?1��E{�?�a�{���?J[�J�?2��K��?D�}�3��?;ӎ���?Ñ�t�A�?Pn����?e[,�8�?��ы��?�2���?�㛱��?g�|����?��9�1�?��� g �?�?������@�_\̂��?�V�L�9�?@ �?��X��?��;un�?�j�5J��?/"Ql��?X>ܠp`�?���qDe�?S|�!��?9�$���?io��bO�?���֬��?����X5�?mb����?A�;Q��?��i��?�������?������@������?������?@�������?��c�*�?�Mr�}�?����?4�����?�f� ��?0HL����?#y��u��?�Wk�U�?1*"���?�߳ZD��?�@ (t�?�ȕ�?PUUUUU�?������@�U��?��?� F���?@�������?AՔ-�0�?��'! ��?�tU؁S�?n9j7��?j���?�N� ��?�z��c��?�7���?�������?������@{�6���?�e�R��?@�������?��`_p�?eZ/��?� �jN�?(l,�i��?-�J_ �?��9^�?033333�?������@�Wq�?��?�u�Jj �?@�?؛�\p�?�����?twwwww�?������@@��|1�?�� ���?@ZUUUUU�?�������?������@@������@vtx,0EK������  "`���    edgL   +,09+B,EEK0K9SBZSmZpm�p������������������������������ � � � �"�$"N$PNrPt`�`�r�t���������������������������    L�?�?�?�?�?�?�?�������?�?�������?�������?�?�������?�?�?YUUUUU�?�?TUUUUU�?�?YUUUUU�?�������?TUUUUU�?�������?�?�?�?�������?�������?�������?�������?�������?�?�������?�?�?633333�?�?233333�?233333�?TUUUUU�?633333�?XUUUUU�?TUUUUU�?vwwwww�?vwwwww�?�������?XUUUUU�?zwwwww�?zwwwww�?�������?�������?�������?�������?�������?�?�?�?�������?�������?�������?�������?�������?�?�?�?�?�?�?�������?�?�?�?�?�?�?�?�?�������?�?�?�?�������?�������?�?�?�?�������?�?�?YUUUUU�?�?TUUUUU�?YUUUUU�?�������?TUUUUU�?�������?�������?�������?�������?�������?�������?�?�������?�?�?633333�?�?233333�?633333�?XUUUUU�?233333�?TUUUUU�?XUUUUU�?zwwwww�?TUUUUU�?vwwwww�?zwwwww�?�������?vwwwww�?�������?�������?�������?�������?�������?�������?�������?�������?�������?�������?�?�������?�?L    Ltri                !! "!% %& %'%((('))(**)+*#,"",,---.-/.0,#0#$,0122'2'3332.44453566277688798:0$"!;;! ; &#"<<";=;&$#>>#<:$?$>?'@%=&@%@&()A(A''A@)*C)CA+BD*+D*DC,E--E/E,1/EF./G.G44GH/FIG/IJ0:K0J0K1KE1L6235LL2354M4HMML5MHOHNOP76P6LQ87Q7PR98R8QS9RJ:TT:UU:?><V<;VV;=V=WW=@U?X?>X>VXACYAY@@YWBZ[DB[D[\CD\C\YEK]E]FF]^F^IGI_I^_G_HH_NN_aNa`bJTKJccJb]KddKcdcefPLfLMfMgMOghgOONhN`h`ihjQPjPfkRQkQjlSRlRkmSlbTnTUnnUoUXoXVqVWqYrWqWroXssXqtosY\uYurZpv[Zv[vw\[w\wuytx]d|^]|^|}^}__}~_~a{ii`~�a�`�`a�bncb�ec��b�|d��de�e�e���jfh�g�fg{�i��i��h�hi�kj�j��lk�k��ml�l��m��n��noy�tt�oo�����y��p��vp�ru�r�qsq��xtts���suw�u��v��wv�w��zy�x�y�z���x�x�z�yy����z��z�����{��{��{�{|��}|�}��}�~~���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� ��  �� � � �� �  � �� ��� � �������������� ������� ������������������������������  �� �!� "�!��#��#�$�$#�#%���&�&&�%' �'�((���)�(�)*��*)+++* ,,-+-..&/./00  110.22 20 33 2  4, 44 55 1,4678'8 '89  9: ;; ;<<<:;=:>>>?:>9@@AAA>BBCC=DDBCEDEBFFFGGHGIHIJJJHKKKJ LKLM! LM N"!MN!#O%$P##PO%OQ%Q&QR&/&R7'SS'(TS(T())*U)UT+-V*+V*VU-,W-WVW,6RX/./X.X251Y10YY03Y3ZXZ2Z3245[64[[5\\5YW6]6[]^7S_87^_7_`88`9`a99a@@abc<:c:?=;dd;<d<cC=e=de>Af?>fgc?fg?@bhA@hAhfBDiBiFECjjCeDEkEjkiDkFilFlGGlmGmInJHnHIImnoKJnoJpLKopKqMLqLprNMqrMOsQPtOOtsQsuQuRRuvRvXw^SwSTx^wywTyTUyUVVWzW]zVzyXv{X{Z\Y||YZ|Z{[\}[}]}\~~\|z]}]�_^�^x��x�`_�_�`��a�b`�aa���`�b��b�h���dc��cgje�ed�d��fh�f�g�g��g�h��h��ik�li�kj�j���k�l��ml��nmm���on��n�po��o�qp��p�rq��qs�ut�ss��u��u�vv��v�{�x�xw�x���wy�y��yz�z{��{�|~|�}~�}��~�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� � �                       xsrcom.femlab.xmesh.Solution[ʏQ�qSxpw uq~8#ot=����=  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~��������������������������������������������������������������������������������������������������������������������������������      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~��������������������������������������������������������������������������������������������������������������������������������      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~��������������������������������������������������������������������������������������������������������������������������������      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~��������������������������������������������������������������������������������������������������������������������������������      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~��������������������������������������������������������������������������������������������������������������������������������      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~��������������������������������������������������������������������������������������������������������������������������������      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~��������������������������������������������������������������������������������������������������������������������������������      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~��������������������������������������������������������������������������������������������������������������������������������      !"#$%&'()*+,-./0123456789:;<x $%34BC\]������WXst����:;MNQR������BCNOQRVW����������78>?����DEKL����  IJPQ���������������� !"()./45678uq~8��==%�t��UE> M�J:Z>Y�2)Ff>`��� Te>��,�bc[>M_e8r>V-�b�wt>:�k9k>��H Dn>@>uW-ms>�Ƞ�^z>P� B 1�>b��.e�>�7Gg�L�>�=h �T�>Wm�Y�>rDŽ4�ls>¨ ��>2��Tk�>2����Mw>����#e�>�c���v>C �!�E�>�1A���>, ���X�>��)[�[y>�@m+��>1�}y2�>�J� �>��^7���>�Ga ��>���'>Ǒ>��� P�>�xD�Ǫ�>��6�>zg��S}>I��ߕ>ad�T�>�c����>��I�ˁ�>����˞�>&(��>����T�>L�U�>�H-��ē>2�?.՜�>����$�>�~��[�z>[�P��>CNJ�ϔ>�,v���>�:&HSz>^Dv�ƥ�>��Hw��>�Ը��>߼d5"��>�c���>KG�B�}�>��2�l��>ݶ�k���>$o<�1�>: F|,ν>h1��X��>¼\s��>c\ذVV�>DHM�^��>�M=�1�>,�Ĥe�>�� �no�>4���P�>Eo[z1�>eم��>�au劓�>�TŴw �>Pc��(�>h�ar���>�]�9��>��g ă�>~�� E��>��}5��>(�����>Hr�ύ�>�r�,���>UZgX�U�> ]� �� W��>�S��7 �>v|3_�߮>�Ni],�>s����Ѳ>�7�3�|�> �9M�t�>��@��K�>X�-��%�>� hľ>��n�>�췬� �>�>l���>���;�׻>\��(��>.�ȋ��>��n2��>�O.(��>4|_q���>�4WJ~��>����ɡ�>�c%��>cә* �>���ע>�@Lu�>i4�¾`�>����/�>�{qԔ>��-��&�>��7�Q=�>6��/ �x>&���z5�>ǣvl�>k�u>(�`�Cu>�Z��V�>WtG!��>.wQP;}�>C��W��>�� ?�>�[ ���>~��ё��>��{��h�>N�9l-�>����F0�>_�%���>4���X�>�6�t�n�>~t����>�s�x��>����6<�><�� ���>6�b �>��w���>z�Qo�>�0��Q��>��  �> ވ��=�>9 �꒝�>O]@���>�]�K��>}T���>o��7,�>��ܰ�>·Lʤ��>:�n$1�>]�dIX��>ؘ��/��>;h�1�߰>_-���>_9Is�Q�>�}[ ̡>��Nm�>��g��V�>�۸f��>�-CE�D�>R$iGb�>��F�F�>k�?_U�>�FXT���>���e�Q�>(26�~B�>��F���>�j��(]�>������>n�Gw�>������>R��M(�>�G�H��>� �� �>{7��N�>��S��6�>f��a���>�y�����>6�����>�3�ł9�>"h$"��>c����>�2�jΕ�>u]�v@�>��7���>n��S�>W�w��>>�̨�>'����>y�*�>.c�9�>S�\�cB�>ުl�,�>;ƈ�>Z��U�>���J�>��� �(�>�9�H�>H�=�}�>�Mߚ�>����O�>z� ��X�>���2L�>�C���p>Z�7��>1���aS�>�oQզ|>焬��e> %�N���>�J��Ca�>�0+j ��>��w>n�>S�Ci�> ���>�i^.�>J�S�Qv�>��x����>tL�ו��>E�T��.�>��5jH�>�T9��>�*\���>���F��>� ��M��>����>`��G�l�>�Ø_m�>��^9U�>s����>�R�N�> �Q\���>"qœ�>5�Q*u�>���-��>�^����>.#< ��>�Y�A�>z�|���>"�)���>�t��,��>�|Ct'�>�� �0 �>/;��ʉ�>2}�U�>��8�g�>ަ�����>d}X�9ϭ>x��"��>�z�����>��D(���>܌-�F��>�I�@Tq�>S��-Y��>�k��D�>�̀V� �>��b�7�>�"Y���>@&N[�$�>Q ����>!��#�#�>������>R�4 T��>�ʩ�b�>��`��>�K~���>�3��@|�>���d��>����>�5���>]V�d�>��tr&�>�=�|��>�d���>�l ��> %'����>�Η�"�>�jW2J��>��%���>��5 ��> �7G �>��3 �>�� }Z��>WsT�֬>^��w�]�>������>��Y�O�>�F<���>�qs����>5���� �>�1s#m>��"�I�>�����>�eZ���>����ľ�>"f�o2��>�>��[�>]���>���0�p�>�p#���M>��'Wؼm>`�<~�.h>nϺ �>rn�V7L�5��0��>�%���> d� sY�>/�5���>]�Sn��>*}L���>���L�>G�|����>�������>�Vr�g�>vnӿX�>M���W��>���Ľ>p������>egS�>5������>4����>��)�Y�>s��&���>ޕgB'��>�kC2:��>��U;F �>°�St�>8��ƭ�>#�e��c�>�v&���>��Ǹ#�>��[O��>@�uW�>t_F����> ��-�n�>�y�����>�Y����>a1��L��>͖B���>*��h��>B<��,�>�x����> R�m[��>b������>��it4��>�J�r|y�>\�3�Q�>O^QO됺>W��#��>>D��M���"���٬�;]���U�>��8I�t�9,4�lL�>�rA%:t�>��_�K����z�݇�>�6�~)��x�" �>�*����>��ZdK�>�\9��>p'�"y�>~����>�lȀt�>��xk9�>2 +UBl�>\�a����>A��s���>`443�h�>tB��W��>q�?eL��>��z�h�>@�b��M�>���Ǭ%�>�Л�?��>��:��>�i�b#�>&IGw���>�g8@�>6S�T��>�^�[ ���Vے�>~*� �U���SMi��� 6&s|>�^�W"���Yp0�����;�œ��Tb�T�\�>���N��w>{�(� /.88�&J>a�~��/3>����e�_���z�s�c ��x��_K1Fie�u_��m�7Ѿ����"^N�|�Q�Ҁ�q�,�0�b�>���A��>���Pw��>K�o$�>ak����>�9J���>'8 P�4�>>O���A�>� ��H��>�Q1;���>h��}J�> ����c�>{��"E�>��?�̎>|)��>��>�v6Z��>2%0��n�>����C��>��7�>5��P.��>�s����>�>�d?�>5mC�v�>��4F��>6+�n��>��jLz��>�k ��>sζT�~�>����v6�>I ���>=�ĐF)�>���뻛�>)��&�I�>�)�5%�>'Ľ /ϧ>�f���"�>*�?�yU�>�p+���>,HMC�>]Y�l ��>�B��s��>u�C�3�>�߷���>so�Ce�>J�4���>����@�>�{+[u�>V��?P��>��!���>�07e ��>VRj�x�>&�y�>z�s���>C9B��~�>�y�� C�>!��Ⱦ����L����\P �����<�����l��;���~G8���[xp�M�>oQ�q�>������>� �� v�>�/`�>�4G��©>�cݷ �>����Ȑ>�<�۶>DŽ�M�>�2Z�Ƕ�>J{,������:)�����e�b��Y��OT���vIm���̘��?u>'���(���qB����� j� �>�X�o�>�����<�>�1��.q�>B����#�>�/L���>I�ښ+�>�K$���>��u~ ��>��&��>��z�ۺ>������>����f��>)a�#��>�<:�E��z�%{�¾����k t>���3������\9{�t����܎ʻ����K���E�����>+����Z������'~�����/^X������ݱ��UA�����Ϫ bq+��Ɋv�.2��ƻ?����3Dm�Hl��k$E��������� ��O��?�ז�0���z4w�� �������y�ȗ�����K�K��I�l� |���G6�>�P�|k��>��(���>�x5���>U9��/��>��܃��>��Ue���>C0:��.�> |��U�>�T ���>�����>�|�\���>���+���>Dl �>�"(�XJ�>V��]�> �ǘ3��>.����nj>�����>�̠v� �>�ͺk=��>h���uS�>}�8շ��>(�7v���>��f�>��>�WZ� �>�o�F_�>̮��qM�>�I ���>�����>D!{inN�>g�����>f�>����>i����6�>�m���>v���C}�>+m�;���>�D��+�>o�|o��>y���Oj�>X?�%-t�>��ۇZ/�>���8=�>-����>���^�g�>� I@ y�>1=|�+��>\��M:�>�� ʏ��>��n�a^�>3�6:��>���>��"W��>i�<[i�>�=����> ��D��>9��bBI�>�0�I�3�>��=���>��,ۃ��>��� $F�>\8RQ��>��6*þKٻ�\ ľ" P��ž�F/\i�ƾ�1��S�ľv�}T9Jþ�.ox�/Ⱦ�5�<_�ǾI�c��l��,x2Jˡ��� P�~�ž� _��ľ}������rK_�>�_��_��>���kr�>n�R���r���W�O�>H�m��~�>�_*^� �>��)���+�rn���$ke�+���o�!2�����/:m�@���YX��|��8֤+����7)V�;��k��~�>{~w7�>T`�@ �>cEe?h��>�uw�>��� ��W���>7��,�>�p�ʾ�4 ��C̾k�m�.Cľ�� J <ⱦ���k�ɾ���14�ƾ�yq������_b�f���k� þ��}s�y��.�˝!��,;uf+絾^z̦�w���k$�j���<����<���r���j����f��?�ޣ�pk<�f��wë�a���"sy��ҩ�_f�����5��! ����������v> eq/����5��~�鈵������_g;���c|P\1���o��'��R�c���>�~�.��>H�Ŏ� �>��v��{>oP w_S�>u��I}g�>�@�#�>����ζ>A�OB�%�>�eR1��>�k# ,L�>zʙ����>��7x�^�>A�}����>Z��lYS�>6XO���>��.B�Y�>| }��>�QZ� �>n�J�rS�>���h��>�'u��9�>[���J��>��_X���>mKdp���>�k�K�T�>�z���>�d2��>�� [���>u��S8�>�oC���>�Jm�|{�>�S�Ö=�>3�J%�T�>ر߂ܼ>������>#���ʶ>��g�>�N �\q�>e�`����>��A1Ru�>��p>p��>��";^�>�P9��2�>'@h��>� hS��>��h;�>�N�~Y��>!���w��>�EN��>/��j���>��w��#�>N���d�>B�`BWw�>���� �>+#mra�>>iZ,&��>��� ޡ�>xZ :�>B�� D�>�@4�ɏ˾��R��˾�s�k�ξU���e_Ѿ��\E�ʾ�nvؼ�ƾSg�Eɾ�`�7�BƾM��}GѾ�ɂ:q�;o��U˾��Q�%ž�� hDžP����ʾ��(�qɾR���P�ȾU�,.Fž4+��Ç��,���L�ƾ���þ?d�ːa>7�� �n������?`��RŹO߂>]�)�� ��Sɨ�xԳ��!��@���yZ5��>J���1��>���oĢ>��"�S �>�8f )F���Qfq�ic>���\��>�P���;�R&�#�ӾO�O8M�оI �J�$Ծ"LRzatо��:��ʾ��ǾYw��i;yx�ݫ�ɾ�Z�ľ���q����~J ¾����Y���E���ƾ{˛ ��h���yf�[����.;X��9wH�=<���^�!j���UR�|IJ���£��}s���,=O��~��X�q�q���w����|:/���S3�:���H!Tt㏾ 4��qƙ�P�~������@|���n�>x�h7�6�Kv>�:,�9wp>�� ��g>r����Z>�����C�>�skq��>2�$���>>+����>F�ⱎ̝>��<��y�>������>4��q���>p���̟>}h�A(g�>�H���>���н�>��R�B��>�ύOX�>����_�>�&�2_3�>!���ָ�>��>���>0L��y��>>��w7�>�{fo��>����d�>�B���> )���>Ƶg �>*�u{t��>�"�~�>��(�Z�>�C��� �>.<�dS�>(��Խf�>YT��;��>��⊸��>��� P��>J���GO�>�z�"��> ��Ԕ�>�����>}���7ֵ>D�B䕾>ϜU�� �>����>�1�^ s�>�K*��>M���ad�>��}���>U~�1!�>}�C^��>�(;r�>�{t���>��|?��>�+��w�>#6���>p˘~z��>����X�>����>'f%��>��+����>�� �=��>� 1�Ӿ]W��2�Ͼio���mӾ�v“{�ξ,�Do&�̾�#޿Y�ʾqB���Ҿ�^ �&ξ=I�Q�`Ⱦ~���-�ľ\��~j˾)ٞ8�Ǿu���U��8b" ^и�漡�ՁľQ�S�c���m���#E����]샾B���r��8���G䖾��B븾3-M�Y��h6����H��}A���#|�z�þ���Z�s���D̰�����A�˾rv�F�}Ͼ2���Ҿ�b1hb;ྕg�Hоj��>վ�R� Ӿ�c�T�[Ⱦu��K <ľ�#��'ʾс�c�%ǿ���ch��s�<�-n���yc��þ3��@;��5�> �O���|����շ�>"�x����k��jw���Y������;\fMv��4�E���ё�b�ǰ�َ�j�9��I��Aٻ��tdr9N��#�~&m��{I��2�����{���t,%A����>�螾��lbʳ���56��X���p�ܡft��� (������bIr�(���J���J�B<���_�ũ{j��C:�Z�]y��{>r�'A�r>E1Q�Ԉ>������>��R���e>��k1P�E>�|��$[>��Ҽ_wt>�B��?��>�K8>� �>����> ̷�7��>�Q�"٤>[�օ�f�>�<`V��>��$���>�b�� zþ�_�� �����H����T%����a4[�j������Sƫ��>-���H��� ��������T��>�����>����ҡ>���3�>5�~N��>��?~+��>�S Da�>P>@I.��>Q�ǁ!��>��� ���>%��(}��>�p�����>�$ ���>������>�G �2.�>�W����>�ti���>hTZ3z�>�[-刷>j�D����>C�v� �>Ze�����>"ٽ�J�>���_�>��Mw���>Ψt�b��>Šh����>�_��4��>L����>�����>Ѳ��F �>R�����>7k� L�>?���>j�����>p�P���>]��ݦ�>���ܠQ�>�����>��q�Q�>�-?d�>�&^�2�>\Mq���>W�d�9�>���:��>Qc�*���>� �n[N�>Rs%���>b��Jy��>�s���C�>�4��D��>��_fuž6/��m�Ǿ���MǾ `��$ Ǿ���)U�ɾ�����ʾ�4���þ����prԾ<9��EҾ5��Jξ��r��>Ǿ{�dʾ(X����ƾ>���L�о����Z;v� �qʾJ;ƠG�Ծ��������2��e�Ế��F�;��d�}p�ع����S��þ��aU�¾�yr���Y)�r�ľ�M3��ʾ>h��ƾ=�)j�¾�~[G���Se2�����_I�ɾ��r��ƾ~�ď�þ�8'��[˾aͻ1��;��!@#EȾ���ʾ6�6 ��վ�u���oԾ��P�sEԾ����=/о?�`�Ѿ���C�̾���Y,ϾG��T�Ҿ��K�wҾ9�9c�vо���ԝ!Ѿ���ž� �~þ�rݖ�Ǿ�\�c"ž�&�� ��� �c}����IYd��¾���"���ߗ��s���O9 �+����:>��ʗ�o�ȷ��آ�6B��}� t*��a?%L}_���NU�]B���5[�dK��7&���y���xeZw��"��r\���4�l��P� ��<���U��f�������^W��M¥mx���� �����ۢ�&p��n��N�0��ya8S?/Av�3�� �Ɯ!�� �k�2t�!�B���o�~}��yI���D� E�h��d��i/+�\Y��N�L�q�:�7 '�>���YR�j>E��.+�> � �{%r>�G�z�>�X=�>�!��pv�>��q�-�> (D��>8�g�"̢>8�aKN�>���~�>�M��gʥ>�ra�vEþ�lG��^��OJE6ž`*?ae��s��T����)�P����%Ґ)��)���6������F>1_����>�QD�rS����>#�@�=�>b��D�K�>�m���>�:4W���>����>�,7�l�>��|�_*�> �TUq�>��.����>8���}K�>�ў���>��eˡf�>�zq�Z�>����Q�>�.���>�W�/�̮>_M�xk�>L�1�X�>��;��>����0�>�'+�ʩ�>i��A���>7_�H��>��;��1�>ۂ#SA*�>S��@>[�>)�����>�7�c6��>�!�Y��>�����>'{���>�٤��˹>����g9�>��݄IC�>�#����>a��Rzj�> �� ���>�lR{:�>�HvC ��>ʐu��>�k2�|��>�+�yT��>p!�rS�>��;�$��>�č1��>|�2.��>�͎�?�>����5�¾p.��Ǿ&�~g��ɾ��p��=ƾ�4�*2˾Y`�[�̾��m ��;V�T��ξ#��q��Ѿp��<�;ξZ��L|?;�9� AҾ�8���о]v���ϾT�^K�ƾ1{1�dBɾ/Q";%MǾD��=�Ⱦ�?����Ѿ0�9pϾª��6̾�\#�;Ҿ� ~ź5˾�X"eоVuF��;���K��Ѿ����Ҿ�/�Z�kоa;�� �о���ڲþ�w�V��žS]~ҡž���0�5ƾ~�mc��Ǿ� Yi�Ⱦ�� ~��Ǿ�3����Ⱦ�{L�H̾9l�xǾ���k <ɾ�k��ξ����ǿ�@a:��˾��k�oɾ��ϻɾ�u^9�˾�mu{�ƾ�v�n �ⱦxe��ѿ��y��о���о*\�g{�ͼ� ae�v;����ͼ`צ��ξ�w#��nʾ8b����ξ��܈̾js����̾��hľ��0�¾(8� � ƾ���8;�þ�v���%��z�l� �����jbg��� �gþ���������|�i �����h㱷�ź ��@��*��!曻�v�7:�a���d5j�;��8�1:�î�> b�䮰���<�������jV����ޓ�����F;���v������Ξ$�Oq���n�M���B m��p��ߢ��3��Q��q���� ��n�Q5I�y��I���ge��If�t�˵�>[��~��t>��f���>v�g?�w>��a�:��>~�L�'"�>�� @a�>�#S��>�p��:�>����>�>�=��@s�>��/���>��Z�4�>8��d4[����� �贾O���¾*��y-κ�������O���맾܈���H�>�����_��ƭ��~Q�>@Tno����XqꜾ���D�v>��бuZ�> r�f�ӿ>P �� }�>v�Rs*�>&��ϴ��> ��@�>߮��Y�>��I[&T�>�[<�ߤ�>�a�p|d�>�yŒ�>cxAY��> +�Ԗ4�>8޸н>���n�>M?\��>�U'���>v�%� H�>L�MG�;�>P�8�U�>����ߵ�>��L�6�>�>G)7�>� $B�b�>��(� >�>��w0CV�>EV�>��S�׃�>�6�R�ո>�8���>,����ľ�x'��ɾ&޴�wþ�y���Ǿ��w��ž n��qӾ�f�,/�ϾI��c�Ӿ�z�+�;RZ5���о�J#��Ծ�MIQVҾ/:�7�վ�C��&�Ѿ�}ꣷKϾg9S�y�̾MG�jо����9ξ�T�I7&Ͼf�i)Kjʾ"@]�U̾�.SFƴɾ�v�1��ʾ�=a��hξ���m�Ͼ�AׅbsϾ��`0�ξ|'#�̾���Pz;����9;��W�\Ⱦ��ĴȾ�*��zRɾ K�q;ɾ�Т��[ɾ����y�ɾm�@��NɾH]�9$}ɾ�%����ʾ�j��r̾aie�ʾ�!�; �ʾ Pe�¶Ǿ�KRG�Lɾ_��u��ľ��Z�v�ƾ�����U;k�`V��ʾ��'��̾*y5��̾.���Ǿ�N�xɾw-\2�ʾH����¾�j���k���)jp8ľ��+?�������vb��sK)����pǶ/LM����eJߨ���؅�ݟ��O���1l��� Bf���M��E���"j)렩�]��0���.*.r~����ؖĦ�;�U�!����i�}��-1� ;ɠ� ���N��R�����y�O��RtQ��Gś��t�.EG��T��*�xӽ��>�<��Yz>'�B���>��$�Y�{>M�:I=)�>N���>�'"i!ƣ>��x��>3�6��f�>j�F�>��U��!�>Em�c��>6�d�i�>^�1�þA���¶��-Ha���:v�@�`�� w6-ɨ�=�K�����n��������Gj�����҅��8զ�>~W��9"�>�JrѪ>R�������S�����x�X��>vi�WԱ>6w�N&ո>aQ#o{�>��7�Is�>��+v�9�>��y�oX�>5��5ڿ�> ͎��>0Oc+Z:�>��HI��>J:.�T�>=*����>}B�C��>CXn䮰>-�Ն�>$?U�7��>MYi��ը><��XV�>3\-��ʾ�b�͖=ȾW��=Ѿâ�e̾��@���ž%�$þn�K��Ⱦ������ľ��� �$Ծ�z?3�Ѿ�����sԾ�^2Ѿwx���Ӿ����3о��}{^ѾܭO 6Yվ��;x�Ӿ?�7о+t^��;��S!�;�z23<�ξ�( �J˾��vTξ�/-�̾�L�Ya{̾��� ��ʾ�~,�˾-�!�+˾-�����ɾ�}V=O8ʾ w�(��ɾ��Oi�ɾ 3d{ɾ���C7ɾf�]S~>ɾI�u���ɾ*(����ȾU�g���Ⱦ:�:Xɾ�M�ʾA�j�oʾ{�����ȾO�IX�Ⱦ� ]��zž Q�\Ǿ2җ��¾C��r,!ľ�+�`RȾ��0�@_Ⱦ3�Sw=xž����ppƾ� ��̣���N�ᓼ�hUv����� el��a�>q�S��`c���4�����/���Ѽӵ�������(��Z���x�k� ����Ĉ��n��Q�=�h)���y���Ӛ�r~�if��K^�G���fy-؁������p1�~����m���J�G�PI�>�j�zc[{>p�9`�<�>���)�y> �#VY��>���>�!��jǠ>Ӯ�q��>�&���>��aOh�>|�|��> ����ٚ>�3I�>�)��b����h�?ZD����K� d¾���Jg����M��Nj��4]�������P�����ck/��^>����؀��t������&�0�R鞾����߄�>� {�>ERZ��>�>�fʺ�>�ҜB�<�>?q��S��>i��uِ�Mq=G �>�TC���>B��!G�>/!6��̾�^XLm�Ǿ��*���Ͼ�+�iʾ�ưo�þ$��v/9��+•�'Vƾ����ϑ¾,�嗱վ�J1�6�Ӿ���6�Ӿ�z��� <ѿ_��*{ѿr � ��̾�[��:iξ����x#ѿw��liѿx���{gξ9�i)�ͼɜn��"ѿq֌�gҿh���(uͼ�gc�о�:dc{ҿcqy���ѿp�-�<`оu ��v�о��f]m5;_�?��˾��y�ї;� �ou�ʾ�pj��ʾ� �li�ⱦ�.�i ʾ�gm� �ⱦ�ڧ�1ⱦ ϐf!2ⱦ#s�$ⱦ� 9���ǿ�@��ƾo ���jƾ �7 �ƾ�km�uǿ�| nǿ��h�ž!f�7�'ƾԑs��¾i���þ���ƒ�ľw�3(�4���k��:�ľ="iUC�l��gG�Ke¾_a������y�TqQ+���p�X� ���bg/Ɍ���Q(/���A" e`~��x�a�x���\���b������c��7�frۮ�� ����.��5r��������������������z���%��d��(��87�� ���+e�%��> �/Z�>����-1v>*h9�wk�>�y5��Mq>"N3��o}>��o�;��> ��Ñ>`�6�Z�>N�>dsю�>׉�ޣ��>��xT{b{>�3�3:Z>�� �.��S�� }���@�4�ɾ����dP����QXFW��M�/u> �'Dz��P��Y�|����܋�����MO���� g%�!��Xo�jȾp�`�ľ渽��)ʾ.��ΌAƾpE��L���q}�{���*��P#þ�Z���;����Ym��оt�����Ͼl�;�\�Ͼ�T���;�§/˾�EΜo;����"�̾s�$�SǾ.U��'̾���!Nɾg.��oȾ��"͙;ZAh�D ξW鵨ξ��]�˾���`u̾vc�#a˾�$�G&�ʾo�SIɾ��{��Ⱦ��I[ Ǿ�vj���Ǿ���/�žห��ƾ}fEb��žiL�8�Rž�EP��~ľ��wh�ľ�`i�ľ�{���M¾�q���6ľ;�e�P¾bľZ¾�^�E ���^_�0���g'�p���i��I�����������H�Q��z�#C=����ד4ﱾ�u�@������BI�O���ns߫��d���>��CX�H|��$e�Rۘ��8@�����v���L����j>��B�l$f>�_�٣[o>��9�\O>�wZ#�>��C�)?>�焥o�s��f��^f�!�! �3���E�����j���b�����*�SI�� �PfX����'����� լ�'K�����9^����b�֗*���?�4׵�����9I[���-N�Ъ���`��+ľ �\G������;��O�kθ�žց�:n���v�'����������L^�%�¾��v��ʾ�׾y��ȾGS���ɾ��2�R�Ǿ-�x��ƾ�PZ���¾K�Nr��ž�:���þK���*~Ⱦi����ƾ��ƙ��ƾ� 0��Qžv��&ž l�h Pľn��þ�줅Iþ�� �þJ� ?h&��p$O\���|���,��h���������;� ��u#�n�ľt��`eþ�m��,����=�V �þ17��������2¾n"G ���~���¾ ��05���?�'��B¾���Dq��4WI�vW��}��������iL"��]�n0b%��%������\���ż�(�S殸�z/� ;����MB�� �Ĭ��d������)�Μ��(��C���7?isI��7�@�E��gC�Ը���0K:̽����+��� ���D϶�_�D�[����������L�P�xȻ��� ��/���ATv� ���g<�h��8A.-���_B _>���+�rO���G�]CL���m(gg���<�3��͐}��De�(���#�Mj���Ry�����bV<�H�� ͵�*:�����Q���Ǯ��I|� �z`��v���]�~��H����0a-)0��h,~ސ��+of�6���1#�m������&��~������>�|ʥ� �P�p ��F�iO��Ǹ�ʹ����g����@�|���H���ӵ�w;dL3��� ���6���U�c��UG�R$���aѻzj�����`��q*h`�~��ZPZb٨�-��^���`oo�¦�ámIk������D>��s������o�n�z����:0$sZ���g��uX����9 ���a Q�&����3dM��5�,ć ��� J�<��\_��S裾5y��疾*�䝾0�%�A��T $�쭾�h�c�����֩�rެ�LL}c塾�I� ��|/�����k�BK���PM������'����Q_YǤ���Ղ�j���S��|��| ͼ�١��Jl���ԣqf)��Sezh�f�����V����=d��P� {Ɣ�5q�vۓ}�� �㰌����� {�]��?p��K� 1���M�y3�� sC-Z��-�5X<����!_R��2�g��=��>��=v^��x��������j��e|���أ��� )u���M+d ޔ�ī�`;���� ]ћ��Y������J�bR@���QML����~��$Nw��t�L��������s����= m���.H|�Ǒ����P����?���듾�v��X>��]WC(@)�� w�ο����I ��a�>�[v�v�?j?����>Xv{��y����IX�~j����0��n��,�7+z��|�/ �e��{�N�q��ŵ���j�����?L���"��r���&xuQt�[��q_�Y�C ���d��zK��D��KFqZ�x������������������������������������������������������������������������������������������������������������������������uq~8���������?=b���=��q=M!殼q�=�X[`?��=�D��޻=��9I��=K �����=������=��Ct��=8L&���=�iC���=N�%z�=Ӊ�K���=]��#���=?�g�Q��=Vh�b��=k|�����=���:��=������=Y5̉��=7�E���=��а��=�n�Ȥ��=�W�D��=���_��=�S���=�@i~2�=���+��=���>ă�=��|0�=Ap�GX��=Q3p}�=绵wO��=f�f=(#�=�O�+V��==������=\ �AJB�=8V�Ƶ[�=�盲���=ϱ�f �'>���t��$>���'Ne>-�|]�>X詛�X�=>�����=J|H/�>e�|w��=�� ,��=��6�F��=��L?�,�=U����=� Y��=t����#>���}� *>�T���&> ���&>��޼�(>pփ �+>w���C#>&��q�!>ƃU��d">�g���T>Z����>-5+��I> $M%�>�`Å�>����8�>X{��a>��p����=7�U�KN> &��+�>�$�=u�=�U}!���=9�5���=�V�x��=v4HЊ�=f���e�/>�����2>l&p� .>����[+>��?ON2>����I0>�e�*=,>�����,>����!}5>AÁCAP5>�q�Kf*:>T�4� >��.BKk>���� �>(���&>������>���ݤ�>�pMt��!>�#\�w">�,m%O>�\Cg��>t���t>?H›>p�^�)U>�^��tq(>���v%>~ �өiA%>���%��">.�_D >œ���">Ob�J{� >?�@�v>ߙ��+>i�4ά�>���x�>߆���=|�Ð1�=���| }>a�����=@A=6�%�=�`s���=Jbe�d��=i�\,�=K��n|��=�ŀ��4>�fWg��$>���A��)>b��_/'>� �X�,>G��!LX$>0S��ud)>� ���&>��u��/>�> ~1>Dx��+>є���.>����%>޺;��2>��Au��2>��A-��0>�ud��0> A�\2>xR�zL2>d���0>ÁWrH1>�*s�ZH >�?���#>KrN?5�!> 8��Ij>߂�Cq$>��R:% >p>��y!>��/Y>�L�N� >1E,M�>����i >%%��3>���,>c�����>+�r���>���v>9�qpL�>�vs�� >O���=X����=B����=���b:>��F����=�E��7>/�ū�9>��a�4>��Bdț0>c(��3>�e6���;>�/�C��/>r���1>�*[ � )>&�N���*>���ʵ)%>�y��v&>}���#>�x?ß,>7�*��->�C�@��'>�Y/�*>�V�+4>kwYO88>��� ��9>|U)� 5>s6�'� =>/���|<>$|��Y;>����B�;>t�V�/�>���i>07��~>���>Ia'�>�� �>n�dž�l>�?(�_ ">kW>bQp>`Y�T^ >������>��gv"�>�0j�>�MN䤦>�⸝M>���)��>��ܮ�>Td� z>����+�>�����>J�1�U �=�/#Ƕ8�=Q�_���=y���֪�=<:����=��Jo���=6��v���=͞����=�l>�y�=����}52>9!���1>��/�0>�_��0>��L�\�/>|�:�sa(>����->�B� �*>��6�C&>�H�ΆU.>2?���*>7�Z�K�(>��G_$>�FՍ��!>w���d&>�ֽxL#>gN�.>Gv���/>�l�"�/>�w:�s�.>�.C��&+>��_0��,>-�7h,>�?�e>U \i�>cTM�'�>��B�A>����!>5㗹>�>��%��e>g�� �h�=�D� �=Q ��@��=E��8� >ͲQ~(�>S��X>����=W8fH]�>Ԍ^��U>��E��6>'�a��=9>�$9&3>,�n�;2>���Jv->�w��n5*>����.>���?�()>QR���#>Zc'F#~>x^�D�> �C�@K'>�����%>�:�\>Թ�r�&> ��{�� >:kP">"w���>$�|�B>*�3�>�_-��0>��Y�v4>a�˔��1> X�^��/>�ˮ0>���?7>�P�� }3>ku�l�2>Q�n�`1>��TC�->R�{��>��s|>t�W >x Ii�2>�_��>��$q>aVk�� >o|�H>��cV >UF���� >�ބ� >�d����=?.hT�z>Ǥ��>�ZG0]|�=�D�`�=��mhe�>DӾ���=3AR�V>F5��4�=�X�� A�=_��}5�=��r�dI�=J�Si��=7Oz?�=q��u9�=:Lg�"��=ٝ��w=M?�>Ϭ�����/>��iң.>7^dD.>��b��,>� ��z->���:,>z��`bw,>��<�|�*>R��m�1(>2����$>�����)>�hl�ֽ&>~��F�"">�5�4K>ڕ� ��#>�F��HQ!>8_�)�]*>F�%�m�)>�`��M�'>�G6��)(>D�Rb%(>���| >t�Y��c>*����>�X^>�D�~���=�Z(��=���W���=��U�>��@��>[1��=>�:����=TD��>,g�8�(>kt ��y/>��s��)>����->�K#;�)>���E%%>�"�!>z9��A%>\zb�� >��I��>ρuÏ�>����}>1rh��u>�"��������}b �E��9��> �_�Wսw�'l��=ӊ�h��>c;���Ժ"|��=O|�q���zKP|�+>Ʈ+,>�\�r��->}n�1$->�����z*>׍�o �(>�LK���)>]��G%�)>�� !^�*><��I)> %�m��'>�P{�%> ᅴ�%'>��z�e'>�;-]a$>���70�$>P�y�~>1_*���>X.��|]>�q�n���= �ϭ� �=�PϨ�= �u���=��q�n�ZF�iL�=�)����w��xh�*�a�e�=hxAw�M���b�~���^;���=�K��,�={.\���=�{ҽ~�=<�EЪΒ=˹'bm*ƽ1���VԽ[�� ཊ��i��Ž; ����ͽ69r��Q�9�l߇�ݽ�U����ѽM��}�*>ʻZ*>�*}(�(>�d�S�(>Y��)>�a#��+(>Z�֔ԡ(>�� G�(>�ڧ5K(>���A�O(>�����&>�N�`��(>W�&���=�Iq�'X�=.�Z��E%>lýֳ_ >�����">5�rY�#&>7k�0��>��d� >��@��#>ד����&>������'>�k�[B'>YZ�5�'>���5u$>�5�g�&>�d�o�%>����>v{?�yq>����!�>'t3 >ڀ2��={=�=�M>w��:>�`� ���=�i��i�>4��|>[��d�L>�[h 9)>вш�e*>>T��+>0ۆ��*(>����{�&>x��)>���ũ'>�/t�)>�4X��)>%M�k�>+>�&�%�_+>x0���,>�v�t��->SV�Ѵn->�V��/>���v|�/>���6�ѣ��� �z�rJ���q)ۣ�p�K_!���1�f���F!��$>��IJ� >[ÆE,1#>�jr��><)��9�>\$H�2 >����9>~�>� �=чHCA>T�9�5�>�xMz�>�;�b�01g�]�� �=���!�w���̬�$ok�譾�s�=�X3��@ ��k H�������n&>�Ԛ;��&>����&>��V� �$>��uL~$>��m�y7#>���ڲ�#>G�V�d!>H�O�� ">�琤�m">���AZS>�` ��!>�o�� >'B��ԍ>� ��c��Q����o"���flHP�=)�P����ƞ��۽�� F�y���zN'�_t�����_m����@�97�����%P�/{�(ŠB�&!�.���,Ĵ'��7A������jk�����B���{Dg{ ��=쒆��G��� C����'xK�׽'�O[��0����(_�����PG��ܽ(?����!>ј�#�&>��B��'>V�%V'>�(�T�">��] T7%>��!cN(>u����v >�?���i&>�Mx ��">�;Z"7%>Ҟ��t7+>a:e�>)>�880c&>U�al��*>Py�(>Ek.Ѝw�=��><J�=�� x�=ʾuj��=� 'c�=�]��>��"T�=�yڄP>�N�.L!>���\}%>��ƶo#>��&o��>XM���&>��i c!>S�붥#>�;�S#>���>���> �>#़4�>#� ��>l��~�>����*�>��\��\*>QV�b�->z9BV�+>ӛ���(>,�3��/>�9P��,>���L�*>�4�Ӧ�&>M_��� $>�w���(>�F��(&>��BJ�->�>Jd�d->�����/>� �g->(�iP]�/>'B���0>�w6�x/1>RM�Ny�1>�H�Q��3>t����0>z}GL�00>d�%�q�3>\^?&�2>k��r#���QSj$�����?&���aiP'�{���2%�W)" ģ#�;Ҫ��(����(�,��!�R�^��0���8f(&����/|$���VLH�!��`1|̴>0�MR%�=�+�2�` >~��g !ӽ�5�)<>&_&���>��� PJ�=~`�m���V�i��$N�$�����8�6!�9}��6���ƹ�� ��eG��yj���Wh��p >8��6�>j7��>��*R]>߾ J�K>�>6&�>Vt��/>�>�t�>��|*��g�M�,�!^��$�.IzY�(�]��!�T*��W1���&���o{GH!�"��f����6څ�#��V��N� �{�v�����;�1M�l�)m��Ճ r��gL��#��V��E��D��(Rx����;��}��@���C��m0��?�j+F ���f[+��/���p����=�n����Q�z�y�!��@߽Uh�=�����o[Ɇ�B3j�ڡ��@��r��O%���=�˨��M�=>NQ�X�=ʪ�&sV�=:�Qj:�>� ���� >KU����>ΥJg4>���V�{#>l��yh%>Z ݃�>yhy��(">x,����,>�-{�X*>N����/>�%z%�->l�����'>I�� �b$>̑XvTx*>��e�y�'> >�ސ�=��N��=�~m1� >4��L�>��gc�=��Sv$��=�C�;>/_e�Q>�7��A~>�2�?`d>[ :� >9w�c �>��ɞ��!>��v�:�>I:C�_>�D��0#>);�r�1>��X�c>'�$5�� >Gc��u1">"V�m�*>���%>~.q���'>�� �p�,>:��G$>�����)>�%p���&>�}���.>��p�p�0>ְ�,�+>��u���0>I*�2��.>�U*��4>�;7�Y�1>t2��yd4>l�{�0>UH{ �9>Z��l-8>_E��+:>l:�6M^5>�F%�F�2>D� �Q�5>��W��;>�)��ɖ2>��=t-,�����@,�/z_�j/�!�s��1��+���D+�]B%��M'�; $z)�ȅ%��&���o�?�1�G�uW�D.� ���+�k��߇%� �(c(�%�r�5���*��S_���)��]��)�|�K-�a%������ ��Ů6-<'���>`q#�����Ȁ�=���M��� )��c8�D�=�[W�#�� �n(&2��a� EL�9r >2Λ�� �=b���>�>�!�f>���I����M<��`�=[ҧ��[�=5>��Z.��2 _~-:�j3E��3�A�Ĉ��0�#��{�4����N�0�eѭ��v+�=��(�e ��-��Fgn�5*��^S�B%�̫���� �*qV"���~��@��;B'�N4�@�C#�h�Ą�� ��V\kx��^>�䧹��f����l��k����Yd� � .��:�����~����*� ��w $/Sཋc���I߽ � ���,C~�k�@.#�n���xs�!����;�k��O�=��j�QJ>�`�=�ܽ͞X�-�ؽ^G�3��=�o����=���K��=��7�S�=y =?���=|����=)\6@�k�=��ma2s�=s)/�+S�=fĶ, ��=��2�H��=��R��W�=J�O�(>G$6�>_r? r>�wm�Rf�=�2����> ���v� >Q�3���#>U��t�>���!>�G���.><�Z=�_'>K�����*>�=�� %2>{7FG�u$>" KM�&->��W*[,)>qx�#Z1>�d��t >TGd\g�>�Y�>��D�i>w;]�j�>$� �ٹ>�9��$B >9�C�# >�r��G0>B+�V��1>ʭ��4>F����0>8�NQ81>�uA]�8>��3S2 >Eлm��>�Y=U!>��9uz�>�u�$>��M���>s �y7#>�(S3ƀ%>�5 y�!>�R��.�#>)ߤI/(>�ˆ� ".>�w|ao�*>�T�$�.>ߖ� .&>1j�0�*>�K:*�(>^�6�{F7>��ӌ?79>��כ� 3>�8���;>?��o� =>���[�;>)�$|�T;>�&߭�7>+�!�3�9>ƺ=� 4>c���=3>P۹|Ǎ7�. ���D7>-k=^���='��&�>t�|�3�=�M#���#��ٹ��U �N�rqn����/ 8�!��������ΰN��Ю� 3�=�&>�0' ����[��?��MS>=&�/~>�^qm>c�F���>i��FSF!>�>b���*>>�,\^�%>K��W#->�N�?5>��(��&>:S ">ܤ���2>$�b�l.>"sy���'>z*(S�,>$sc��)>{7��>�X#^>�y�E�>��xD�>#D��'� >Ͼd�f\>Lq�>��>86� >�U4�w->�`^0/>���U*>�r�Gv+>�zkQ0>yY��0>֘:�+�,>Xv��B1.>�;N�|�>H�~n+$>�T�T!>�4b�%>�V�>�fp�2�>¿ �h">a0�h6�'>�E���(>�<� ��#>���b3&>(��N��6>�yV|��3>�4�HJ�0>SV4�b1>���[�0>X �Q=.>}�<�|.>����+>�����*>8�� �%�Jęq�(�CW���'��2эt'�Zɕ��=*��9�O�R+�*��qh $��]Ľ��7�����:��5���4���;�2����+�.��7Fګ�'�����*���x�+j'��np��1� )m ��-�� �*���|U25�M�IW� �;���_�% �Xş���'R�|9c��X$����1�h"��������-;�nwF%��&(Gz*�V��U'��� �(#��|`��,v��!�[_�0-*�3JDדH'�A�>k��#�T�XY��+��?�gc.�ض�,6�(��՜T�&+�|�,~�8��M�5���]R��4���I��4�Y��z�y0��BB���1��O�p0-�|3���/���x�Q 3�g���2�m!���0�Q���p1�'��i>&����m#�Q;���=(�Yk��%�B�e,-!�Y�+�n>�������"�t,�-� ��#1�������VӤ��Ǻpa���.�h�6�s�=��������G�/� �F;2D���&��һ�� �P������Z�� �~�GP��=>,�Y��� �0��Z���2�>��ge�a��r��Af �N�ݺ��Y ����⛐��(b��©꽫��%�k��}�-0�������;��q �`Խ��7d8���A�7�ah����.�L���Ľ��'�ѹ�T�9#+ҽ�f x��=$7>�=��QV�@�=lQ��Hw�=Z(!cL�=���=� �?���=$jv�=��7�r�=��� >[�:�>$�%;_�>��>O�,>�Y���#��e;w��\��Ƙ%�ƴ��k�!�����\���s����<����X~�����P1�NG�=�C}g�0>������5��yB�=KE�чp>��&Y��">�P�K�>��`#$>>���^ >D�a�_�>�R1Ƈ�>E,�t�)>��<4U.%>�|%�`�'>]�7u�&>�k�Ґ�>g��H,�">~��Y �$>PR�-�>;L�i�W>�*���>_: ���>N��;� >�[{�?>�� � >���BS)>�G�K�+>����n�*>$-�pq�&>�)!��)>���q�p'>~%<���&>��]j8 >�v��>$>�g���/">7���o@>���!��$>���;�!>?���^ >$7>��*>̼��E^)>��tSK'>t�x�I&>��}�}'>m���%>%��j�G%>�_��3�#>�@�k $>uڣ�R">�{�ٴs#>#��]�� > v��}S#����j,�'�y]?@v*�TMg[�&��E� �+��u�KP-��Fm��.�].��0/�8Yd�N2�� ����.�n|4���-��ID�i�2���'�/1�hT|�0�8T�� 8'��;/a�)�?q�8&�'������o)��?��� 2�����0�;Z��u�,�Q'O��2�vлj��+��o_@ܰ0�aD��L}.���rרH2�ctO�io2�����0�&U�}61�#v�f$�����9N&���n:cp%� �-�&�����4(�B�F�k)����f�)(�=7.�@)�U�+fY�,�ۻ��,n'��2XTL�)��"P�֓.��� Z(�����,�1�]��)�U�⥚2*���#&C,�PU3}�)'� ���J)��)�!�2�rZs4T"1��=.��#1�(��� G0� -�o��-��0��LӴX/�d!KE�*�q ��/���ծp�,�̷@��^-�2�ĥ$��8��d"�s露 �&�&�6��#��u؅vp �t�l\�{��/5�:�!��hfQ�}�_��1 k�s�#s�i���K����?Jw��:��#���B!��e(�/R���6?�G���2\��_��e ���Wʀ�lBT�;���(۫g��hW����e+8\��M=�罯��J����:X������ңνr��yvtڽ��+��ŽL(�~qA�֠+� �=]_/�=���K�=s��Lk�=�|y��)�=l5u^��=���9 �>��*����=���CE��=�HSoo>b(���>O�o��>1Ή%� >�������\��MK�Bv�?q"���F|�K����D) �l�dg�^�w�(�c��=�?.��轈�JZ�� >1�e���Wi���y��@k�e)P�=�i׍�>�@FK81 >�r>'4�>dHF��>��F��>�MAȬ�>S�T�>�Qe�ү>$�ת>v2~dK�>ԏ =D>��c��*$>���;�!>���=W>[z��">������>k��_� >�1z�z�>�d_���">k�&?��!> i��" >&�>�r��� >�N��>Ĩ�!ͼ>6�05y�>ő{c��>1�����>��2y�D>8��6>{>��L%�V\���d*���m��#�@�_U�f(��N���9&���x���9�Z�^�e�3���[�70�8o����3��.c7.��P�� 1�H��8�7�!����:��I�d5�-Q\�o2�$�v`�q5����17<�m� ��+2�{EZ�O�/�fゖ�#-����ߵ0�?4/@z�.� "���/�?�2��*�������,��O��+*���R�\+��I�`�.�ߡ�De?0��X�JP0��X�bTX/���n��,�pf�r.��LB���-��p� �(�K�{a!')��@���)�EB�^ׯ)���-��)��}1׭v*��N$$��)��_��)���mr�N+�m�Vp>�,�׏5�>z*������C+�#�/�>$(���:s�)�9O2�kX%�f���+'��|L#)�-��$��&�*�U�e^�,��u1ݻ-��<��p8(�1�e��)�u�+������"�f��A̷ �ٳL=Е$�+wH�&�!�q�g�v�I�����y��n����xՀ$�L��.����� ����y��!����χc �Q�����7|���C���-�lcyj!��9�Z����:ƨ�����I!N���\ُ!5Jڽ�6D��F���Tս%�!��콡��*���=a��+��=B:~H!�=*}�f�=�q-���=�$^���=jD���>�%\8��=�0����=]X�)� >��:�>N��~�<>����>�q��A$�U�Qw-�yrRZ�"��#/*���H�O��? ��jlHy�!��f@F�;��A�|���Bn.��L�=��y� >�lԜ…�=d�b�F >ͽ���k��w�H4�������=���n$>���M�D>5���&p>(�����>@bU�� >��� ��>���5�>?vG�>N��Ý>��r<r>:�G�m>X�я>hf'�B> :� �>�X��Y} >76T �=��UyC >�3�4��=7���&+�Y��uѭ(�-]��1�3�ޓ�,�`��?&�t2�m#�<�^q)�A�`s�R%��{8B��=������<�������<�P�H qz<�P��>�7�diW�4:��׃���4�ވ�?R�1�1~�M�4��` ˸U1���i 4�) ,�~0��)�1�����8��}�d�:�B@9��5���K,�24��_Y��0���d��-�A����.�b���H/�&}$� �+�J��bT�.����j��,�����,�sإ;�+�I� � ,������+��2x��3*��fxg�*��QV �*���o�}*�o.]�9�)�u�\/ի)�287�)���~?�5*��)�L)���ޖ@+)�O�]$�w)���\}*�����*���¬ `)�A�h S)�JP���%���'�ԇ'�4G �E#�� ��"~$�Z*�S�(�-BQ��(�o�)�d�%��}߀�&�p ,Z�� �Z0h��Si{�2"�<�')����6�Q����Z��^W1A���#O�8��Z�Kp������% ����I��6��� �� 8Y�����9�O���{~ L���3k�����Nߥ*�X�7A���z����u߽�ZW�4V���!��=�9����=��̫���=�O����=cD� U�=H0��c�=��bbZ>D�Tiq �=QT/ѐ�= �B)�k> �qG�>�~��Q�=�d�:3��=?��� ��7����l�`�"�̲�=����-����0W2���/����罪B�T̾=m�����$D�x���I�����`)�� >��9�N>c�v*� >�);�=��#��=���B>�fV$�.��i����=k͍n��=f/a:��=�ef��,�n�B0K�'�;�+6-0��Lo��*�dC�IL.$�}J9�� �4԰���&�C���"��~8�D� ��w5� c��H4��{)'��3�Bz�4j�1��ɲ��1��a�{[-�جu��.�Q�i��r1��v~J,�1�j9����.��A;#0��r1�ǹ��bV2�=ޢ.0����M0����P��2�~ 0�@2�e�DZͫ0��Q�u�0�dyF�-����N`,��%4�k .�MZ���r+��G�$+��x��+J)�DY�ݗ�*����F)�B�9���(��B<��(���1a�(�����@(��Y�d'�lX�;�&�o�� �&�Ah�`��'���Gƹ'��S@�qJ&�x�9�M�&��&�.#�}����P$����z�>%�B�N� �v�XL�%�W����!�!UAh��"��i6'4 ��7�_X��RT�tY��G�&0����~w�v�D�JA �%�J�"����4������e���qȲ���+�'�M� �3h��h�݉��I��Lz��Ɖ����а�e��K�Ƭ���0�z}^�=~-����=�Ȁ���=G����=��[����=zg1����=5 in�=��Lt}`�=O��K/�=���ֻ5�=6Ae(�=I{�m��=���{f�=�L����cI�D�P���L��X�s�F�o�K|ll�|?��u�=l�P�I�^n�pq�ݽSm��f���3\!��fQ��#�>h��(�������$�� dx�*��?�x�&��7� ,�!�s�\~���QЋr�{#����<� �Y��11�����$0�0�1��D0�I>��M.��MY�À+�u��6��-�(gn� -�������'�t�{���,�������)�� 6���(� �m".�{�����.�´`E�.�]��䎁+����>��,�+�+��W��z+�dQ���t)�ed �S)��%�5�v'��B7�Ha(�����9&�_�m�b'��nɀ_\&��gi5'�%�[����$��| #2%��d�2�$�<7�J�"�#�A�!�$�3�!�G�"��6v�ˮ"�rm�bU ���2�.���6�i ��a%�����sC��̰������<����% B�o5F�� ��x4@���%�X��_ ���(�I��2ѷi���E'Y}�M����?�j��E��d����p��A��=��ֳ���=sAc. ��=c���ӯ=�/�N��|=�g "��=�x�h^Խ�FmE�ƽ~MY���`�(�M$��L��3���U��� ���~����_yE��nA/����b��/�J*��ō~���'�r����h������M��$��N/�7�!�>�������*s�%�����$a�ફ��3"��� � �q׷-�F#�>�d�+���7w)��g�ڎ8*��� ��'���wQj&��W�=#�&i���L&�Olt�$$�[�p&?�(���k^�'��:5@P'��KX�A�%��NXAh%�@�{�٭$�/Y���K$���&嘢#�j(M�#�x,�f"�T V?\ #� ��7F!��S�=[ ��J� S��ѿ�ƫ��i����) ����h����ν�>Y8�ƽ�MK ��޽��M���l�� �����4�6��m ����]R�At�ŕ ��� ��mCcF��R�QG �����y �<���:3 �L�Ӎ��V��4�� �3pλ�o��B����V�����O��� �)d��{!��X �� � �3nŋ��L���[%���|��#���ӑ."��bZb H$�� ������i�@�"��V��$3!� �CpT#��`ea�"���'���"���o�b �]���!���P ���_��h �5�����}2���G��V�J��wY� �����i��6�r��h �z��@�{�:&� ��P� �(��8=�j�cK� �%�az���_����,�bD����>.�콥ώ$����K�9�kH�HqҽEBK����D �nȅ�t���GiNB�����ߩ���L\� ��� #sg ����,���i�������J ���po���S%M��Zw>hm���A"����������2�J�% �$-��U��{�b.���$_�8� �����Ť���$���L �H�H��߇���|wR���>3��Y��N �����_�:����Fq6J�����b���� jx�; ��0�.�S�R�F�� �6��|�J�Zɷ��}YP%l���ܔD�n��l�~Q����%Nx���Rր���ܽ Uǧ���ՀT��߽�$�@h[�)_,��Ɠ 4���xk9+?r����պ�`�����K� ��<7&����v/������ ��)I�X�q���-�!��X������EW�3�;��8��7��p�M�h�����H�`����g�)�D�qb����Y�����t{�� ��S,2L �m�BYUp�شa��+��N��0�(Ք��{�Z���s��u�{P�R�#������j|�Z�����:� 9ས�1��q�u@ �ˇ��o����U ���6E�D���(�Q��>l�Іn����]��=NA w����p; ����M�c ��6�J98���ǵ�x��|�v���L�� ���OR����j��f+d^h'����L��ki�D�]�D�ܻD,����ZI���6/O1�彬q�)���I��g�罄K4�0q�� ��M&��>L��޽����5��K.#�۽'{L� ��+ɣ�����.�o�b�&����d�%��=�������̸7�����,��q������|� ���IvW ����ο��Ց)>'��|Z�>�����F��ཙ _X5��n����ѳ�+��XW�oP���~9f�׽ǫ�� ��F�4�ӽ�R���/�����;���Y�����>�#H��G�I��Yu�Gh���Z>%@�LV�rƍ��k/ �ֽ�E��&��q;�AO�۽ ���]����^���y�ν�-�1J�ڽ���%ƽN�Q�Aҽ腶� W˽�[G���J��1N7ӽW��Dq�Խo|�a�����An�GŽ9fG5H��0� W뺽=���q�9��.\�ۓ��=y�>����k�6����7Pf����[Ϲ���i�����6"{\H���G�L�T��΀Zb�����ʰ��½f����ƽ��(�{�ȽgXp�؀н5�/w�ҽ^΁�)ǽ(&��焻��f� �ӽBTE��Wν�h,������*B�$�Խ*q�A\����<��"νom��Gٽ�`�e�>ѽ �E�����O���#Uٽ(+�#"�ܽ-��}�W߽$ѡ���|���޽-K��/ٽǣ�UK���c���⽶�0�ҽg�К�Ľ�� ��޽����ֽ�����Ƚ������� 깐W6 ���LN�� 1:d8�Rm�^�V�)i���ܽ�s�C��|����u�;�N�½i���^�ҽ3�b�*zݽ�=F��/ӽk�F��½�qӻ�� ��j��}"�.Q=sP���y���i�Џ�>���4y�>���� �Yp�����#��L� �9ѿ������b�꽿�lWAu���В=��j��e��C�!Sc�����O8�潆u��⽟}\ � ��,�0�w���o۽�8�i&ͽ�No����<�h�d߽gd|�н�ϛ 9��*F�;����.���� �O�P��{���s��Y�TԠ���G��@0��u��,����du���D$s6"�`f�>)��jʓ���؝����Rf`�ը�� �����r@��fe��X |�V���F��ĵ ��0ͨ���Ш���m����U�S����vO��jZ����{ˈ��UP�j� �^K��p���R � ����3�k ��DŽ�C��'�2e ���t�_�>6$V,U�Pb�V��d���$@���1!eHD�vT�B������ݽU��\O!뽅���.佣�������Df��ҽ���@�۽Fi�wP�н��y 7��V����H�@ �z��.��i4�X#��ԁ4��;ō�R �`��1���������3ڻ��o7rC Z�g="��6�n�"�$�c8�\�ަ��V;���/՝K�����@��Ԥp'y� Tq� ��Nj7�Ny�U����H�U�M�����Ϊ��\��B ��������l ~�C�%/� �Æ�E�y��j8�S�r'�˟�/�D��<��{�N����2��apb�K�DR���`����x���xz����ャ_��w6��V�!hL��D������ư<ǿ�#L����ҽ���E��ӽ}(J�(��3+�\���=j0� �F,S���!�������J�����m!I��.���V#�����G��Ȯ�Kq���� ӹo�s��'��V�fu v �a�r�E�Y�R � ���ۆ����yI���:�=q�:���,�Q�}�/���� ��d�Fh"�j���I��_"NL8$�P��' #�_��!m #��&t�*#���Jq�;���H6������`�Z�$Ɵ�J?��Oed�"��E��Qr����Q8�;N�POF ��K�}�+��>�� �H�!��KnC\�E6����C�>-"?��i|�8�f^� �b���P#l4�P�ڄ���p��r���d �4V�O���<"�g��kp�׽��13��|��)޽�)%�R|��)�X̃�˽���g�ҽ��:[�ý*D���孽_H�:NY�|�Aq`����i� ��nhFa_�(��x@��׏wd���H��$������Kr������;��4�ދ�N�i�r3��c�>\ ����@����:�+�_�F� �jS���F�����}B�3��R��2�T�|�qi�R+�����d �Z������v��ɨ��9�ÿ����od�'Π9���.�Yg���3}�Gˇ����K)��g�&н*ս�[R�սn�����佃��%���:1^DY�}������e�䄉�`��}r��| ;�����_x����"��ʑ!�_K�n����`�7��~G�ف�vg��">�p�-1B��L��J"��t��L ��" ���Ϝ������T�6�� ���� ��h0c����_5�\��� JO������Z" ����;̯� ���w���F}Aۡ�4�K�Z�GJ��}��wr�jg"|���W�j9��w��. �Rhu�M!��v��+�12�%0���`�|3�J�YfB����l݄���[� ��J@����tx��������XQ���3��f����׼�����K��k�����y`� \*�rp����k}�j!/ � � /e�õ�爚}�!㽾W씗s�� ٍ_2�齏I�e�pὡ �/ ��� � ���2Լ�6�ս�����ǽ^�{�P�ֽ�1R� Dǽ�F���L�Q� ��D{A H��H��Š`�r�1�M �=z;k�_���Y �S��X�O����hyr��L&*��{��P��"W�k��k���|ݻ ��DbW� ���J�|��y�������L�}? � �Q� �U\@]l� ������b�c\Z�P�X�&�A�-P���u?���?6�$���DR�� n��r��b���E���'���!V1{���@�<ֽY�� ֽ��(��K� ����"Fc��$�:"�����v!�C�Ap�e������~�����P���ݤ�R��vӻΕ�� ܮ��������o ��{�v ���H���� �������צٿ���I؅��r�� ]��K�燚{��^�3 ��= �"&�s�=�>��<�转��U�b�="[�fIӽ[����^�2���=���II�̽=���=�%}�|2�U������/��� ��h����H�}�Kahn�E�&�[�0�4-o���[�����DZ4������oj����x���P�`��S���nݟ�|��1E����0(_ ��T�$� ��q,�;�콗L�* �<���Y콣� ��4㽆k0L�!�V��*�P��ݽ�;u�. �=I�M�w�ʽ�ي>1�=y�K7��=��h�ýŽYlɴ�=�Xp,G�=�-�]�=��!e�Խ�������}wнMxi�&��s��>�2z��� vۮ=���O�=���.T�=0�BË^�=?�Ss��=x�8�="rU�č�= ^%Q\��=!l����:W��'���0�b��M(���9��v�  >0��D�ӕ4%�f���.�#�f^����m�~���B�[|ד��|P]�F��g��� ֽm��@�ս��� � �snTO��b��� �@�M���LOB����H����߬Eϝ �^��?�����Ξ�5��+�0���WD��L� �� �E}d���4._)�s�.X��&����W�u��Qp�2���ɍ{hn�+��5�)�O�����G�~���$\79�һ������1�1�Ź�nH����Œ0�t��d�ͅ�_��"��D����*_���l>���9��z��� ֊x���J�L����s�jn@�������� � ��+�����L\Iӑ|�H��zߙ�%�X+%� �Y(?>�>�i�~>�Ug.>�D�m�>7��/> " >a��� �l-4�J��ذ� �h�'E��t��f��� &V<�@�h�������^�׽Z���/��x<���V{04R���:�3�=x�n�"�=������>�ٍ�<�=��5��?�=�+˷H޽��;5�\�=��l�n��='���:�X�;Ѩ��OZǂ��b��"� �V��no� ��L1w� �T�3�' ����+u6�g�v~ �\�2c�� �0$�M+�R-�����R�ef��g8�����l�t>�o�� � >!��"�G��h�����=� x�W�=����=^@����>.���v�=�[���=�̣�>ƈ ��=�Kj�X>�rq����=.�3����=��r�=�=���Y���=��&�9�=��,G�=f�;=ޓ�=V?���v�=�$T 1�=��r�=�����=��sP[�=���i!��=�=T3��=�w�ѿa�������1�6X����V>�(�@�< ��(��� ��c@B ��H[�w���'��K3��7��.4 �ߨ.�Z �����������S{���r��s*���ЊF��#{KwNB�} ��4սz��cԽ��ưӽ����ѽY�ݤ���q߅�ׄ�'����z�����d���2mv� ���P�� ��? �����;��+��J fV4��Z�E�Y �� _4W�0&�]f�� �K�����������LD���;=)���,i�,�����]Y��)}�"����a:kr�\iZ�!��̽�� ��Ra����K~՛^����dQ���j�� �Q���i)��1\���ـ�t���0�#�u�r��U��j��7w�ʴ?8@�h�?Z}�|����2�/T}��!�Ԍ4���L���0)|���n^fN��H.�,��w"�� >{,V�k >c����>fS8�P:>�r7�� >=k~w&W >��ږ�#>l��~U�>{��6Ų>d�a��>�� Ћ�>eg�m� >4��h>�>�S���n����R����xP��_�x���H��=ڔ Eg+��Q1&�O���ɬ�ǭֽN!�i>�M`'���=���p�=J ּ_�>������=�ԨT _>iUXY�&>j1�\o�=g1�M���#�Ԑ�H������u�UYC�2�Yk�@��X�7������B��� �\�q���Xw!Jo>FK R>T(�ꮷ >���,>C��T>[ ��h>�о� >S֑2�T>T�1jZ0 >�t�*,>Bl� `�=���L� �=�v���M�=�4?$�\�=�%����>�x�AMP�=����G�=Qu��*�=(X� �|�=� ]{]�=П5���=�����M�=s~�s=�=X���Y�=Ƥ�����=���1��=|ҸϫX�=��Ҭ�=#�,�/%�=� ����=��_W��Ͻx� D̽G~�[4&Ƚ�5�S�ý��Z��l��p<��.����҇b|�&�)y %������zgK����5�S �|ejO��⬘�F ��6{�����h���,�5�0; ��i}���jăG~~��t���:���<��t��+�����A]%�w��b�eY�)Y�B/���1�3���L��5yc��@��4�S��?[ "��Hr-�� ���!�v7"�P-�sA��%�n�e��O����� R�{#��)ǡ���̐��ڇ>�-D(n�>����G�>�K �՞>7�}��>i�K��8>��@޼�>6�(ٌ>Be;��|>�E쁝>Q�ۙO3>��c� >XK�a�$>�7�x>�NfV��>z�v��w>_ �� >O��]Vn>Շ�=:,>��� >�����_��m�y�VQ>=�/Փ�=�SC�|�ʽ�E�'J>`�9aS�=Q�����=qi"���و.�WֽE��}S���m'1~���|`� ���=���������b�����W���� >3��6�8">/1��>�Dq�>�i�ы>�� �Q>�B���> &~dC�>�εC%�>#���5>>kD��!� >���|>��n�"� >�Ϳ�>% ��r0>,�� >1?��>p�DB�=�n ެ�=�g9�\c>����>�<���=@�U����=F9��s��=�A��=˒�l׹�=����X��=��ڤlN�=Džm.u?�='�����=�&1N�=��`���=mNJ�D�=DA�"�=u�{i���=���Dw.�= Ag⨕��� &|~S��x�ڰB`�������=���J˽zU,�;ڽ_�t�ϱѽ҉���ս�>��彜 c�V׽� �⽭$�_ϵݽ��)C潶�FU����~�%��z�2Lfܽ�������yR���&�rˑ�q �"�W����h��֠���}E���0��E�t�$/ґ��=��hB���CJv{ �aBH6~J�3�Ra���;����'��I�;��G{�D� ;�x��� �͔�^��~#'����+6�����WM��"����s��QHl� �-�ro����V��+���z:��Uʻr� ��1�?� ������76�ɮ� �&7��Z����f��Ȣ�����������DcJ��in�ک�A������6n3 ��Zр4�!����\s��X�ي-)#�u�׾o6$�yM_Y#��Mf�@#��?�#� �Q�)�!��ӕ%���A���U��ӌh e >�y">�{�.X�>61(���>��RԶ�>��~#>Dk���>M`J�h>��OD�>R�ޚ�>�}d_�]>Sr]F>N&�[N >i��`�m>�� ;�> �/K��>>���>7�!W� >'�CC��>A��Ĩ+�= 6��\�=n�����=:���C@�=y)�s��>�M�Q��=�YJ�|�=�@#1��=� Rѻ >�"�J>�u��z\�=�!�B�>�B�(��#>l;�䫮$>��.U�#>�]����#>�j��P>�H3X��>�C�`�>9�}s�>�5�!>,�[���">�:��`>��zm�>��J�B>������ >cKo��p>���� g>|���>|��$�%>zU4iG� >3.�v~k>�΍SH>Z��%��>WĻ�/=�=y�'<� >U�A����=��61l+�=Z²���=�Wʄ���=9�KOq�=t!<�=�C�[Y9�= �U ��=7]l��=���a��=�c%�s��=J��=R��=�ϯp��=،[��=|'����=�ɬ� �=X�o��=��R�,�=�̦1���=��NCIJ=4�P���=���j��ý�bm{敺�G"_@��ѽ�4��Saǽ#�q�{��� b��݊��rWh]�9������G�����u���ҽ�^���ڽ[^ump�影\1?܃��T���ZiW��ܽT� �� ,�>s�4����=�U���>������>rq�1�f�=�j�Bl�ӽR��ݴJ�=�*��e��=��=�z��Xܛǚ��%� ��7齳n�{������a ��h�q�����i/I���H��v�'7���n��r���d�; �z�z�\�g˩D-����Q��ų�����8�u���W����_����`�!����`dz�����١ ��U ��'�����B�sw �[��rQl�\�����B�����T�Z��1g���T��2��u�.(��l���ߪ �h�N?: ���n�*�����g���� / ��r�c ��TAd��F�)�+���@/����Π �b�jW���d G��� �2 ��-�O����'�l����)���<��1o�t�������=����\�=b �w����8�J��>$P��������j> �‡�>�P���>���S>����C>Ïo �>2r�nm� >��R�Ӯ >LO��">K�4�>�z�`��>��;��v><�D#y>z_`-�>x��>L>t��T&�>������>� �ŝ|>�>��>ɐ�A�>ڮ � >���CO�=j�>{R>�}ͫS >{�J�ؠ > e��>pN�� >g�2�n>��\0>~��2� >�yf>~�tA� >�@nQ]8>� x�4>�~�;�� >S2V�b>���@�&>E7#�2>����>�DŽKS]!> �3^��>����"�>!�Esh�>��qn��>��)�>m�o2Q>5wk�>��<���>s�Y�,>�L��T>�3�AG>?���j�>�GWu� >i�F�^�>��Nz�� >���y�>W}�� >3!ϋ�q >��S��>|�U<��=�>hw��ݸ> �~���>uݱ|{�>��7�)�=��G�e�=81Y�, �=\.��D7�=��yh��=S���o��=�7SM��=���I?��=|���k(�=��u�k<�=۷���E�=�.``�=�G �M�=H��'u��=ݱǞ~��=L�����=k�g �=W�p�7�=}7�OV��=&�L^�=�-��)@�=��Gv��=tm8�&�=�V!�)�=�(A����=�z���=l��ن;ӽ>j�pֲ�y���ƽ��#5紹�F���A̽v���ݽ�|�)�$m_���ֽ�| ��AXn6�� ��9c7��X��]�������1���P >**��s�>���p�>$AQ|[�>�-Ã�X�=��.^��=�K���>�o::>��=y��U/~��D��9��C/�Ҏ�=�\J��нs�����s��F�� ��N� _y�T�5�� �h�h�M��[��y,!�"m~����^X��y�q�!�~| �� ���uv�����m�Ň�j�� �yI/=�� ����%�����������p/�8��`�����BN�:�� �[A�f����B]}���ij$����N�Q�p4�2D��-���Qبf��uB���2!T�P����<6����Y����Y�j�. �#K��Q �u�5��E����ϯ� �M�[y�t��w��c�f�� �� s�'_��j�^��Z�i ZS ��Y�v�Y�A��@!��\Ǣ� �=���*` ��*� O �$7F�� ��V��N ��x�r��֏e� >x+�Q�a>��_�k>��t��>��bģE>�p-�C5>��|S�@>-�y�̵>�zVD�|>����l>86��Թ>2����>a)`ܡ�>Vk-��_>��[)>���\�>�mA7�>R����>� r�<>�@�G>��`�>��DY�>Dl H>�UA<>��%�8>��U�s>��|�>VvъE>���V��>��E�� > ��/4 >"w�a� >�7ʵ�z>lq/h;�>*�W3�>��&�l�>�-Į�>�e�Z4�>�.�O>D��3!�>1��J�H>6� y�>�"�>��>]}'0#<>V�|'�>��g�B>�}�͚>��O >�6wv7�>�:�wM�>��8�>����>aЭ�o>��ʭ��>b�(P�>�ڜ�>�C�>�s���q>?�L�R� >��b�(� >�>�N\>F�CS�� >2�[e��>������>6��$M�>��O��>��ީ}�=-�@ i>'�^�f�>r�L�2��="� �h�>pS�no �=���v>�n����=�i���=�ͻ�&��=7*�f�=�=�tg��=?!s��~�=��� ���=7S֠M�=j�.��=����V��=Q����p�=N:�f���=��C��S�=���i�=s�N*V�=����i�=��N@�ڽ��L�{V���Xj}�6н/�i�@������{)6ҽg�Xd�7��\} �|�G3$ݽW ��佪4#(!��M�F����.���*�U�g��P��̃>�Tt����=��. � >���q��>v�{>��v���=�2pw��}���T�=�Z��� y��=�ɦ� ��=�e������� ����4��������>��>q�m���K���r��7P#Wn��6�L�����3^!A_���] B�t�� `ɹ8���>. �6��^*?0 ��C3h�_��1��m�m  ��ZY�����ϳi� ԋ�,�g��y� ������� ʌu���,�����\��s��4��<�p��~�l�F���b9�צ��_� ���U�y���ź�O���� � >�H_4_> ��d� >�z� ��>F�����>��e�">���U�>�i$���>����>$\j8>G�p:��>T k � >o^蟆">]+y�]Q>���i��>�b�I�>\cN䵣#>���mK>ʅ�4->�9�eH>z��< �æk>p��>G����>�����>���V7>�1C�� > �w�>a.M�>�^�DI>���dW�>MY���>>4�_�>-���>)�\�>sb�k��>�8��>n����>�$�l.�>�u�Єk>X����>��E2�>?�v�> ��3��>&8�Gn>G\�\c�>�Y���>FpF`�> k�� >�Lt�>v,��k�>�s��>�61��>SQ4{C>X�@c��>�"�Z� >j�c�$�>�X�J�g >gK���E>�� �� > F��� >%�l᪁>"a�p�a>��f+M.>�sE�.�>�+ ��:�=2�y�UF�=]9{0�>���b��=�j�C1)�=�j(����=Cc�S^��=��K4="�=�f\�F�=��M�֟�=G1��=Im��=Ϻ֑�L�=Y�9���=��20��=�ķ�Z�=��#yݍ޽��K˩½��s��ӽ���{P�ý"A۲ �ӽ��;�R��W��콘 Zi�޽�;�����J��m��uu}�W��3,�>���DX���_Aӽ2 >��i�!>�>Y�C >N"�P�>ۦ.k,��=�uW�ق>:W���>q�`�[�=U�k5f �=^�ø�����P��ὗ����e$B����=���Kb&�=��( ʻ۽��_��A�����ڡ����q�������ޛ����^H���'���tΎ���`��[��?|���RP���� 4s����d�������rrC�������g!�s �����Jݽ?��q��]ub���|x��=�>T?=�->0�\Jn>��,��>��� �>:w�� >�y�[��>B�7m� >JtW��$>.���~#>����#>i��#>�1��a >d�0�=">�ha��>)Yon��>�P��R�>l�.��!>�7� �>�d��+�>\�B���>$�x��U!>������"><, �G/ >�c\���>1вF�>�e ��>>0�� �>�m.�W>�ؼ�qU>��5��>�Lg��.>�b�g�>\����>%~��A>�]<��<>���%e�>��x�.>0R��W>����>!8j�S�>�q�Zw�>UVYA>>LC�> –`Ԅ>jR��=�>jdyr+p>X�����>�/咩>�;sL��>�Jγ�p> ��U�`>\���� >��j'� >�Q6�;>���2E>�o[m>av�Z �>�����>q��@>� �&5U >nҏ��>� *Q���=��t"P�>_����=��8�6h�=��v�2�=��ut�=zѮ%�=7]��(�=���-{�=9??�)T�=k���(u�=��0:,J�=t�b,���=��z%���=���>0��=;)*z�ܽҷ;�#`ýO#�6Jӽt��G\,½= �Z9tѽ�������#4�罠Si�ٽ��G�z�X'���m콪<'3��� �㽴�YfM����(O�>Ϸ:ϝ>�=5� >qqiQ�>l�U2+��=�Қo��=aGػ �=�E���q���|͜x�>�i���=������=��-�������X��S&o~���[@6�н3�?���{Q[R��������="<����ӬW�h��m���ƽ�w��>@�n��>ҡ�܄>�r���>BZ� >ߒC.��>ԀW�&�>v�ݪ�Q >S�<�R !>�=p���>c�� �;>��Y4��>��*�m>5pM)�>��[O�n> J?��>I[��I>J���>}��Ifw>��%�(I>$�F*�>Y�q�zJ>2c��n�>�A�C1>�q��h>���75>��� y�>K��Ї�>�=�S�>u\�<�>�e;>/����>�C��Y�>�� ��u>��h��>����$>�83C%>��>=/;B��>���]�>��H��>�,���>�wݔ�> ̞���>Ϻ��>ڕ �jf>F���U� >�� H >��XN�� >q��N��>=�CF�@ >�~�~��>}�3� >�c9�d�>�*;��j>j�]RJ>b��ve>�{b�%�='bp���=,x�� �=�o�IP �=���,��=��L�Ť�=��D_d��=@�]O��=��=.LT�=��xb���=.Wڏ�d�=�XP& g�=6���ӽD��Gn�����E�̽������u �=�Ľ�qTXq׽D�%�%ٽ��7?�ɽ���;�Pɽ<$Z�׽�S{\�ҽ'�]&\ý� ���`����;2�>?��m_�=��ͮ�>֗���>�˺Ƽ6�=��yX�ཽj5�X��=���hȓ�=��Q9�=0�3m>��=�JCf�=�s�yM>aK�<(, >�A�:�>���׊>2��7�>�`�0z>���� >��M>���u~�>�˰ŀy>��(���>����O>X�s�$>�Z�]�>"�q8>}��8��>���S�>�}�Vr�>grQ>�d���>��<�pK>���-H>+��MH%>�~tk*>ܣUՊ#>��P�� >��`6��>�`��'�>I��q�T>��� @�> ѥ���>��V�F>>A��� >�e8>B�� >�<)S0c >����+ >�tZl� >�7@zƥ >�}1�� >&�e�" >�M���>;�N]|�>��_F�>:<�V>��ϟ��=��@���=�8 ?���=�E���j�=��a�'��=�/ۻ^�=�[�w���=˼�!��=�L�v �=V�j����=���@���=�L�{��=~�hrs��v� �W���;kYA/���E"['����ҧ��c�w3D.̍��>��@Z�=� �֜˯=��ň���=M �x��=qf��1��=��� �=�� ���=�\Z ��=�a���=:B�Z�=X��/,�>�':���=8�2*b/�=���&��=��bW+� >c n��>=[d>�l>�[+Pi�>��Q�U�>/�W >��O#\>7�U�� >$ �?�>��$Y�i>+d�H@>{�F�(�>�� R4>Kf�D>� >*#Q >�L�� >�� j[>szHM�>�AJ�4:>�� ��6>��$d� >{L%�� >_��A >�{8��U >7rnӬ >�%A�>$ >�W��� >)u�- >������>��3��Z>�O�iD�>�oB�>A�Ŝ[ >]O�n �=I�ڝ���=X��A�=��� V�=�v�H��=��D ��=V���`i�=|���ɑ�=ptX6Eg�=�-&� �= !�K���=9�t����=�;����=F���~�= ǭ�\��=L�2"K�=&�_G �=�������=Jޘs<�=OQr�;��=ӉC_y�=l�M�~��=d.v�a��=hi��&��=�\}��J�=<]K\�>�V���~>B���Y+>lG� �E�=�WT�>�����1>��oVm/>�ѳ��V>ʫ3�>�>��/��B>Cx@� >��� } >���ĸ& >��m\�; >`7�.>~Cؤ� >rq�R��>x�c2�w >���ش >'`�Z� >{ϲ���>�]{5��>ɫ��MX>���ޣ�>m�6�>޼rB]>(�bNmc>��ޣ}>�g�8�3�=�o�(=��=&��e�=G1s�D�=����w��=��Ӥ�=��'�D�=�� �2W�=O�?N �=e���;�=�3��k�=��snj4�=�J�����=Rr�u��=� �}=��=ARRΠ��=P����=Enᜀ�=�y!u@�=�\B�ƌ�=�؍RQ�=E���R��=���4��=��+q��=��  c�=����O>͵:�X&>�Lӡ��=��d�T+�=��F��S>)�DC�z>���|>�0�>C>�Qo`�)>�����>��QB�>(l��>8T��#>J3����>{�f\��=:�P�l�=��h��o�=2��'u]�=�Jd��=�����=��3_���=�#g���=lxF)��=*��&f|�=�qۙ��=6���� �=���*$K�=BHi�;�=��P� �=-NYO��=[�u����=� �I��=�L��\�=ʱ�°��= �Y=��=� 8�0�=2#S ��=q�ٙ�=�/a��=�r�u�=M������=$���{�=\/η�B�=>�u{�#�=������=>��m�t�=>���v��=[��'#��=^��(�=B�����=�'���;�=����{�=s���›�=):}��=۫>�� �=u�ʢ�=�fǷ���=�-��i�=D�q'��=F.lx�A�=Rp �@�=?�f~r��=�����=)o�K�U�=O�@JY��=�c<��=]�z��6�=�:HP;�=楌 �.�=���{�=a+�U�4�=��by��=2�u�u�=G{��]�=�o�����=�`��+��=� s0�=GI��4�=���i �=f�B��r�=8\����=q������=��mL�=�O/o�1�=΍���=�qdP��=މJ����=��/@!u�=޲MAq�=������=�|YK�T�=��|�)�=2�Q���=��T���=���'g��=�#@a��= k�K���=2V�Gq��=� �q�o�='�h���=G���qF�=4%��[��=W�׽�u�=�?�-:4�=�v`|���=5�8T�=��w���=�N��@��=@�x!�o�=��� ���=L�6Z��=U����=I��8ZĻ=G�{��=���2�=��( ��=QT�;�=@vڿ7p�=���Ϥi�=�W"6��=�[�.�{�=��dկ�= �����r�P^4��r�H�z��t�]�[h�pU�������0�җ���` ��vR�� ��K�����QKP��!���U����+��${(��Fl�Q�� ��� ��3h�E�|1����/�J᥷���5�"R��9��S�!�(���f�2��7���R����fz.�����#�~����4���H또���� &?Fy��%���>5����t�?�%a���?�Y�� %��Fs��4��DTr��?m�:���"?����#���QL��2���ߟ%�!�<��a��/�j�"�?��t D$?&���F�[i.%{(��0�R��^�z]�� �|���?�{T��P"?& �cCp?�Y�mJ?��yR^ �-8��Pk��z���t����wGU@����w�(?���c}�?�?j���>c�R{���>��f+>�����\e�/!��N(�'��>g�@F����I�\9� ���J �>��e,?S{.�����x�2�7�T�k?��C��?z_T�O���#���!�/@��?o$k�{�%?.Y'���O�}�� �:A����?juE���+?�!�(��܎bukV����F�1?��ݢ*0?����bL�T(4d�3���� !?S(�:��1?����oM��W���C(?�ܲQU"?B���|$2?��_��?�xr���?�T~B�"?���=C�1?�`��?��6K��"?��>�F !?;�8Y�*0?���N?�~8�B$?�[�E�/?4� �ԡ+?�Vua�?�.V��N"?�^���?~Z+z��%?Rd9S�s?U�I??L���?�����?�|\�,?�P�hĠ?ϓv��l?��4��*?�� �>|b��^�>NI]���>���jϾ�>]&�_���>uq~8���������?=��|�W�=�V8�h��=im_�]�=�F��U�=v�X˯y�=[��\!�=.��w�=��a�[�=i��i�=n�����=�?�T��=$�����=? n���=��S��=��a>��=PYP�@�=o%2�c��=S�h���=}�dHv�=�`h++��=V�w����=Z�h���=��@�=t!��N*�= �t�O�=eP��=ͭ��on�=߄����=V^�dw�=��%C���=Ώc y��=��G^�H�=66����=�Q�x��=�?�rq��=:>�����=��l��=P�C���='|my�=6�M�>����S >ϔ����=�*�p.V�=�ƾ0i�=��1��=� k0, �=����=�� ��=T�M ��=�s���=�Bvk�B�=wh]&���=��[e� >̲�d�4>��p�>��#�1�>�؊�� >�6�h��>��۲�� >wMȔ��>_�n5� >ϩ�1> ����=�eR����=I���NN�=�H� ��="���x�=������=k��AP��=����`,�=�0k�K�=����~1�=2�l9�C�=�g �=F�����=��.���=d��) >��� ��E'��>Б�>r�V�R�>۞��Np>��;��>�^x=&>�(�>�gW�[�>ˑ���H">��`<�=L�Y3k��= Y S��>;Ws�v��=sM�{���=k�0�ƒ�=ﬦ�И>���)s� >M�iE��> �k&d�>���d>����H>���L�>L��ه>2���B� >�u��~�>������ >�О�V� >� }��> �[�n >拾 Nw>^���ze�=�ӆ ���=�s�\U�=H�ӄU�=x�� ѭ�=���n��= Y-*b<�=�l‡"�=��[��=@���l��=I��c���=6 ���=N���5<�=�(�'��>#��'I, >@���8 >��Spx3>�� 3>:����n >Œ�uV�>�{T��>1M���+>����`r>@C~��I>������>I 2�H{>����U>�h�e>ܠ��=>� &��>A5�6��>�P7Ē>bGG��_>�$�?�>2뀘s�>����] >`�zX� >��ȁ-(>�,�N� >����\�>�TѲ>l>6֓�">�^�P�=%�Y�_��=R�B��t�=�P��<>J�����=e� _��='* (��=E��O�=`�;�a�=2DК�=��܂��=����'��=�Oj����=�q[�D�=#Ŕ�o�=X2yij� >����!>�lgn�>�ڛ� 6>���bed>|R�>#j#>p߻�2>L%�+�>r�,U$�>ѧt^��>�,�"y� >��ֹ�d>e71�� >��x�m>BƩ��>$�U��>��I�?>�Kp��0>ɥ��� >ކ�3u ">��]0�f>&�L$>:��#>�Uu#>.�<��=#>`�L%W�=�q�>N� �j>8E�S>l��6�8�==��E��=(�*��^>�B� )9 >\?�x'�>N~g���>�+p >ƾ5i�l>, ~I��>�X�VR>�a(3H>0L*�}�= r�=�E�=�i%]f��=�����=r�6uu�=Y��P4�=ry�tR�=,���QI�=���:�G�=���׫��=p��=�1�s��=f��$��=����Z�=FZy�r>�F���>�����>Q�߻v><�cMV>�,8�Y >�!�G��>�:��c�>y|�>tI�T2>rhzqg�>:J[ۢD>�V�z�x >1 v�>�?2��J>�T��� > oA��[>�7 _�X>R��_�>�_4c�>fL�> �#Dn!>j�ۃ�>��l�>�qM�I��=g�Tsu>�#��=��M�5�>�d�K��=� ���>�.��?�=A�z��=�3N�X��=�!�|��=��mա�=����=���v ��=���&�=,�峧2�=�'J >G1[Z�!>a<'H�>�.���P>��2vU�>l�ZP>Ϭm̥>$ڎ��>>Up�Fg >>���A�>HA��1>9\V��F>3�%��>MT����=�_�(=|>����>"�n; >��-�m�>��3$��=: 8��=]��#.r>��Az�>LT��{'>W�1p>��v�P>L�$? >B�9i<>u����D>�.۴OH>į��G>����\�=�Tt�P��=�F`���=���o�=�����4�=J�����=�1�����=tE�"���=g��e��= 5Z��s�=z�RÁ�=�=���=��L��==�5 ?��=G�M�4�=+Y� <օ�=������=��^t��=������=. a���=".�2g���=|�ɕ�" �="�e�����=�C��[�=G" �"�="�@v&��=4�h��&�=�1O�`=����������������F`X�"����0G"> �_h� i>��ap� >$q��(>�L�l�>�u ��>6u �6�> 78h��>��_���>��D_> >t*O�w>V,�DE�>�3�ķX > ��+>-� >6 ��3>lT���l>*��9)>��ך>�B���>b5Ѓ_�>�<w>�c.��~�=��%a�;>�����>����FR�=�ܧ� �=*����$�=(0f��=��|���=�a �=�t4 9Z�=M�y(��=:bC�J��=��5���>��؍">����]�>[J�\��>(�|N� >�k�C��> �j�� >OA�u�>������>6ݐ <��=����>�6����=�<�@a(�܏���������{��=k��2c���c/��\�=���|�=�wԹ��"^���=��(|7ν��Z��E>_rjP�>#<`��>���\>w7�π>s_@ �l>��o>< Q���>�ͺ���>NoM�{>��h�T�>��� r>�ϵ��,>�l�O!>H�$Rw{ >`2�:�� >�V����=�r�2 =�=�����u�=>3@�G�=08���3�=m��U;�=WZ�w��=N�*�j(��c��X��=��I׽��^���O��=PEvX����pV��W��L/�xڽn1����=,\��m��=^��'���=�z4�=]�JeAz=�;�������r�Ol��ƏMܷjƽ��=�N}��H�4�j���+l ��4Ƚ ����Ľ� 8 ������k�>mф��9>��h t>A����*>2\��G�>������>a��U6>N_��?>D�!��>��p;��>���^�>� O��W>X��� �=� �� ��=�� ��� >��f��>�. 7 >�b�"��>feuJ}�>P����>��z!g� >���W�>S��h�>�h(��@>�!�>�>�0K��� >R���z>��G�>�դ��7>;b�}��=�����>����>�e6��?�=ztr����=��=.]��=xciiB$�=�EW�\��=փo�{��=�dA��=\|J���>IcT�r>�v((�W>�'[-�>}����>Μ�>v� ���>&�#P>,7��&>¿s�� >���� >X��A?>��Cx�>C�~� �>p���t�>����";>�x� iQ��`5 ������Y"�"�ê���M�_G���[D6����И� >���9a>���X� >���>���M >��DlN�= �d���=� S�p��=�=���?>!GiC�,�=���5o�=��^��K�����QB��Xj��U�>[�� l� �Xؽ��Re��=!O�:q��-g&������Z>�K?c�>��z��>u��� >� :� >Ca��'� >m���B >�>���N>&=*�6 >�3�=� >f��>a-�}x�>�Y��>:�P���>�*������kU+�� �|��[�b�=( 6�|� > 4��Ǿ>$�3\�N>,�/V >8n5 � >*���>��萌>��3'rR>K9��SN >���88x >H��> �<��>�#U��I>S�k�߱>@zyD�S>��KJ�=��:�dw�=Ɛ���1�=hO�Sr��=8�K�}��=��_�a��=�f��=��b�"�=tl�s,>�d1�\ >w�,��) >-ג_�>6�{���>'��)�L>��=u >�I��Ґ>m_�Up|�=S� ����=(td�� �=9�Wa�>�V����=�o��G0>� �k>^6���>K�B{م>��J��2>k7@�7>\{X���>��h�>�(?� �>3tM� >6����:>$�Ed��>�j�i��>��q��>�&�)U>��=��>��MV>~�2Ӕ>���'t>�l.�̕>>��T�O>��v=��>���փ�>����i>'�4�F>'�WD. �Pu��� �,?�����ŚJ�@G#[� �ħ%\�r �)!��4��㜑-��������TvL���<��������� �_��>����`o=��=wDq�=[N�-E!�=�n��ҽ��� kG�=���X���=/J�+���=�"�+��rp7�������� ����8ru��&c�Jڽ^[��v��� Z�8����L����U���c>L��?S�>�?$�>�]��S>��6��\�=/�t�=M�q$�=�����==9{/ʁ�@��j�kϲ�� � ���=�"�mf���y� �#�2'�z❖�g��8���K ��{Q�oC�V�x���`��*���"d��"���?{�~�(j���ڽ���g���'�<:g���K �:G�ٕXh��轐Kn�|�����<������b�i�9��\߽kJ��@w�������e ^��Ž��_< nս�e���ǽ|�ȇi6ό��p��ֽ����e �=J��mI`�=&9�S>�=:�X�2��=���BHm>B��S>0�:M� �=zu��6>���|: >�0ty�y >9��P�>���� a >����,>R����h>$ZE�F>n����>.�w�>��!�} >�r�>|�'��>L����=h��8��=e ���=��٭/�=ƞ�~ �=k��WV�=s��p&��=�/�4�=�� �N�=����=��Y�K�=H��� H��K�>p�'��>c�O0�� >γ��?5>�[�%#>]B�b>Y�qm >.����>����=d > �ӥ�>W��U| >�gs�eW >މ�]�%>ul�n��>�0C�P>d�;9�>C�[�c�>�m�]-�>3ܛ�n>,;/5>�0 �O�>��x��>�Y��K> _]d">2P5_�� >��N�I">^��l��>`�ȼ�>ov�A�0>$��V�#>����>"��[t���.�*���!7�8����(�����!��C i�H��7������;���Eq�J������E�&�N��l�F���j�.��5�e�B�?��튊���v���� �`�Z��+4]D�� ���֟��p�V2x<�l��2, ��c��Lr�=xyI}�b��"���!E����=���R�_����,�9������2��#=�Dg��=Fǂ��m�=D}[d���=�ҙ*��=ɀ��$CBG��=�d�"�=�Q*�5�ġ�=�J"�4������㲝��P zs��"��'i��R��0��O<���*��� ��p�P�?�~mֶ ���{3����8 à �Ե���/����@�J ���� ���������g ��gxq����ؙ�R�v�^��3���{2����}*a���ȗ�()�����}r���3�{��ƽ%�]�6�ŽS����e׽� �@�W��M�����W��f��Z��ֽDB\V�Ώ�S�;�:_0��ýu$٣�?��Hپ�4��= wT�j�=�hc�p�=V����=����e�=[�x��U�=K� �{��=�1�a���= �0�=&_ �Mn�=(���'�=�;� |��=����h��=���J<)�=��}��>�N�O���=�`l��=ĨLQ�=>`�&��� >�'h�Q�>�QM Xa����>���VU>���]�>��?f�[>|r��� >���^>�;���>�70@>iՠ��=�GX+#�=�� �l��=u��m���=� �y�S�=�yok�+�=����q�=lB�f��= '^a�>��Z�t�>}�q�>\+�Yu>=r�$�>�l��=��0��>t��YZ�>�-9>˖��`�=�5+��=>b��輜>V��,� >��X�( >�`G���> 5��5� >%�,�>�V�c\>���U�>,�玀 >��]dY�>�.fp��>����#>-O�C >G�9��!>�/s��>)�QiU<#>Dc-��J$>JęǷl#>['5kE#>v��8�� >,]�\��!><�(��>�<~��>�߈zu ���C�"�=QGE��u?�^=���q�U���]���#��P���d�ڊ�|���m#����|%P��/���s�tM��W����D�k �J֦���KK ��{������$��S�����g". ���n �[�Y B���5;<z̽�ށ ���g���P�&��Y��ߍB��0�FM�!������9�خ� � Q�w.a����-z��pt/�ט�@��g��#���k�$��"���#���� $��+4� g�$������<�5D��h���*����!�L���"� �P�9���<=�.�~l\ $T��pZU� �Ҍ2GW��\N�+�w�`��2����.�9�+�B� � ���_��g���\�]�٫����?�I�W��|����d�b����RZ�?������WC�����]�1�����G4�?'ս���:�J�~| ���ҽ�Δ���ݽ���@���-_��`k�@O����j�x���ƿ�ڽ+� �������н��m����B��P�Bֽ S��̽1T'Xײ��3H���`�����=#3s��= ����=d���x�=�����=���]��="+�gM�=T�c�;�=�%p�v��=�����=�:IJ��=��Z��=�L �l��=;�zkg�=���&�=Z���z��=c�J�� � �8 ��4�������w�A� ��;�d��r�����꽦#�>��=�B�6_����X���۽�op6�=��ZxF�>��M��P�=4���>��=��\$>j1���>�^�hg>%�k�^\>����>�Z��#>H�*=U >�\w>��!'kB>ٓE���>�o� � >����b�>��J:z�=�N����=��'p[�>*�K�(�=��M�:�=�-I�R�=mt�8ԗ�=f�]�$��=��郗>�ޥp �>j�!g>ԙ,{�0>��K �>L� Y�>�M���>�9��>�e�=]�>���I0 >�� �~8>���>����=>\DjE>�*�i� >N@s�/�>�4�cX>�J�M�M >S\�%�>�')>��>�P��W>\d��>ȝN�g�>�^^�0>_k�i!>�7�M>@�GNoc>�]u�> ~팠��������ԑƛ5��O(?�zc�7]�:8V�ߌU���*��iv �� 0I�� �ľ$��"�.�dF����}���6^H��X`\%����*19����k�ڛ\�I��T�����Ү���n���,���deI���;�n���v �U!�����8��8�AɃd�� �K�o �~���� ��gC=�>c�Ż �|�,����kr*P�UV]^�� �oM_����nj �TȠ �J��/h"E�1�;��� ��6�,v��� z<��C~�C��W�����&��n!���K�P��@[0���P�9��b�����< � ab�e�j�\����/������cF�PF�ߨ_I7l��ہ�_���'P���0�M' ���GL��F;������>@"�s�rc� �w������6��K,����އL@����OW���bp��������'��j��D��" ��8y��5N"����ە�H�~Q�f"��<�6#e���-# >{�"ƌ>�Ľ��$ >�O̹�=V���;5>�qȪ(��=�#ʼnx>J�.�� >����f�>�$#�5>�"�<�>x^�� >z�;� > w�����=�����=!L�H2�=�ƺW�>� �Ĥ�=tb�=��=�x�^$��=� NY4�>d~š�G>�P!㷠>�ο��>�"b�>�� a>2R��>{��P-�>!���J >><�bgj ><9�� X>V�N� >�� ��>�.>�2z>gJ"���>��3��>$x�+Ok>U,8'&>*v!7j> f�Ь�> _0�6� >]�~f�{ >�QV�E >����{� >y�V/ >ѲxKh>)��zm �R4w�Er�A���}��_`������>�X���t�I�:���V�i?�x���;�+w��n1�x)���co?����w����վ|����Ev��� j�9���>=U�����˓���\bj��еu�U�R�5�u]���X.r��%)F����[�y[�;�z��S��/1.N���yX}��%��[����i9�\���� �8���� ��`,Nc,�����[� ����v]������%���y� ������QO�����S��7�w3����g_��R"Y��V��6�]��g�?��F����<�l�k���nN�_�&wĿ�pa��o/�jjXXw��o<|44�͍#%���L��=�����쬿�r.����[�i��h�z'~��q����9�� ׼���B�/������*rZ�)� �$��sٳ ��|��{�<}6�� ��;0���8\�K��#L/������c����.oC������Ń{�1P�@���&)�����c �����>��$��i��Y����������o���bSͨ��u����Q���D���3齛��B�⽑\>����YW�e���ըٽ|�ʡ�нH˞t��N�{T�ֽ� p i���[�u|½����t����{-i�ɽ��x���=҈C��s�=Tgi�F�=��i8�=�֤tWH�=vM�K*K�=��|#�=��JA�=~��b���=��Db�=X��|]�=����C��=�Qq�9��=��po����a!����3YLu�� �p�����B�g��O�3��_���=�\���fѽ(�'�ӳ�=ջ�s���ѯ����|W�p8-�=�&NԬ��=�K&��>�O�A��>���&��>܏y+���=*`ޠ��=o��~��=<��B!��=�D&� �>�U`W�O�=h���R�=蹘�:/ >kb4Fx>�4�U�3>�Z���6 >`���>Cgr�> 9��,>���A� >f�=�>�\~��>v�B�e�>~�4a>��E/>���E�>��j��>|�<p�>ӂ"��*�=7��>[�>q���=l1���� �Dm�{�q��tz?� ��4�Z� �DP�H��L���"��������pnB���^7B����f]�S��r�ir���:-�½ ��O�4�"��?���n���{�i����<���x�h�#�d #��d��/hfuC�]t8��\���u�Z��Q�����6�kb�(��r����#P�,%(�O��F�I��+M���D<{���= p������,�_��8 ;��v�Ũ���,��T��K���n��!�s��'�Q�:����j������+���p$�7 ��Mde~�����Һ���!��S6��������~��Tp_ o ���z����M +�\���6 u�� �йz��!��b�F��1�ң�����L�������W��z\y���'q�i��!{����^F�� ���F�C]�~%t/�� ���9�& �����>������ >+I����=t��o�>}��[�=P;~/>�=�C$J��=��o�k>�A�f��=L{�y���=0S2=��=��R���=6�00�=[��Yo��=�SǨ��=,�F�Ig�=���X��=G���=p��5�� ��b�>��u��̆��_�����tN��"���� ' �_��h����m*�� ��sq���$��F� 4�#�^+�� $�&�Qg�#��2%� r �NY��P"����3�����������ϛe��;��9�ي� ��5�05 �n�'����v�(g!� :�{�"��k"9�_�i��?:���E���J�b���ذ�v�S�س�*���(+�7qj��Ɇ)�j�����Թ��B��mW�M���w7�ç�2i �kT�����O��S� ���ESA���i�-�b�F� ��%��B��^�Ik���E�9�P�����ȭ�"Fk i��@e�K��)�p#���0p��r��S^�WL��T�Hn3���͓�e��[�|1Sq�륣��� ���ǣ �&���M��&��V�b[����1� ��H�W���n�cmT��}3�n � `8�������{{N�|�� s���ƣa����GB����:�������Y�D�����v(�J�9���E�LZC�JOۺ����⭘r�;�j���Œ��cɽF��6t�׽E�����Ž#^�}3۽kϷ���=z�:ws�=Z �<�]�=��<z>�=�W����= ��U�#�=H0����=y���7�=]dm�=��tX?��=l���#��=�"K�w�=�+w�@b�=mk ����>�E�����>� + �.�9�]���.9���m������07Q�н�11�|��=�2:�9����7���ڕ���*&�(E��=����)��= �d���=�mԺx��=n��1�=��rй�=���ؽ5T��=��.���=�c�v��=���m����T6l��҉�t��Z� �����H?R64 �>I�b����a���,)S� l �����k!��-��98��8X�P���j����g�����q��Z���c����@����$?b���S<��l |���b����������a����ܫ����B��`�[��3���i�U�K�H���Q��P ��L��F�����q�K��8ǘ�$���S�bF ���KH.��n������vW���Ƣ�l��{� ����4P�'6����w6����Ӵ��;����(��C��pe������@�(��C��b��9���C^/'�Ƨ�g��FwG � ��� nd �5m�F� ��g���e �H^ ����l���A��+ ���2����O��w{���׮_��R�>�v�&�ɯU3���,��_���1�$) �����o"����t忣�������iL���5����/�sϽ��޽���w�̽����wང�<���=��U���=�ؿ� �=W۔�j��=��Vͽ��=b�,���=Y��_�>�=Oj����=*�L��i�=b[�9 �=��^x���= z:. o�=,�}�p�=~�i�ؠ� �� ����j�ڙ���fM1���"�?Vキ7�����=��D*ս囄~�Ľ&�9�Q�����/~�޽>����v��[O�^��� qI �ȹ$����j������X2ם���I�����= �: �J���g��= A��e�f� ����x*������x,��� �7��_`J��=j�u�L�K���=��b��{W�^-�p����4ob� �( ��V�Ѻ�`�P�K�]���ΰ}8�n�Q��>��s`]�6���~^�3����&�����M�ײ���HvBe�h8��F �,b+2����85SW�>@�9$@�,:�CqV��r@) ���=$�� ��6+�H �_��ls �.`e�� �#Б�� ���Ј; � � ����L Qx����׳l��]-�i�x�C B����@�PE����V�Q<�����o�A���]Bc��UP.͌y�������PkD���/�W*!ҽ��W<���Ǒ��ѽ��ʹ�⽢��w��=rc��v�=��zE�=-�ɝ�<�=r;8���c=�@�K��=N4�}�w��r�1��쯽½�/0ǽ~��+`�ӽ6D��R��u(hi0׽���㽁FHB����"����[Zkq�����͝��n���۳5�F��ɪ�����r�oܲ ����H�����x�V�����D�������Zxp ���}�r��`�^�� �r ����%�N{��YH��R�)��� \�֡S��,ͮ� �XDjMw*������% �� zl�Dɢ��#����|J�P�~N0U� c���� ����|v� ��7��_] ��s��p �0�-�� � J�x= �[�a��� ����N$���>3����^3&n�Ό�7��b}�� 0�V���t��aL�:���nK����� �i[��� o�oj����=q;��!�jI����������\�l�ӽaMLp�z�m n!ӽ�������&ɽ/��V���J���є���t�wѯ��Ҽ�`Ž�$J�"׽������U�1��PԽ��ŭ��k)�����Nj���?+��L��̮]֩��+��g���c������Xz}���7d3�B�&y��D^��H�\��#�Ŗ�VE���f-�F�h?��lo�`���՗���:KX�{c�� ��)$��� �'����? ��^��.X �n\�J��R~�_� ��p� �#�r�_� �j��9�. ��R��� ���&u��:U�L\��L�!E�n���t`����˯.����2e�,��M�{�w��@{�0����,8S���J=�3���� �����jA��_]���}_���7͈����(c=K\X���;�u�����90Խλ���O� 3L��/Խ���H�a;���ڽ7Yƹ��� �νԴT������%Ò ӽAr�:��0W|/�]�]��~�߽>jj��/�鹁0/��X�U�8���1i6��E�w��2k9/I`�6 �>�8���K������d ��I��>���f��ܐ���6�� �2�٣���X�V]:�⁑_h��H�Ryґ��Y�����26uK�4���,���T˅�:���!�2��:���Ħ�F���F�ش�x��s60���RP�o��Po% ~��Gk�U��;uǡ�R�]��ӽ�1;ۏ��\�bԽ��7�^��*'�L��R:� Ľ�RM��ս�g>`� ƽ��x)�ֽ�Zn u�"`<�� �|����*�!:,I��b�(���o�(�����J�Ycエ�.[��q�? ��Au��Z���R�Y��W��rJ�%<����$���B�߳h���)�% _���W�X�ݼ��j�UA��رp�;���q�y>R���U�'g������m��gC��*�l/'1�lK?��-��їQ��ѽ��p|��W�#�ҽ����!S�`/"R����"�ƽ!��߂�ֽ��9X"lƽ����oֽ@h����T���BS�ԉOI�K�&�N��C� ]W�����m���I���D���q�'c�����Ăx�v�|��K�� D�h��Tv�IC�!ivKZ'�����$�7Y��.��� ����uu�潓j�e�|��_F��� `�ν 0�+�߽5L�B�н��ޯ�ܽ���ώݽR��� ŽXP��ViԽ��׶=ý��l��ҽ!�5_��s/aL��M I��ٽ8�*0�߽�aH�꽴�&����Cz�R��Q�u�Z�4)� �役�vb��9�4F� ��ݽV�jjǽL��� ٽ��F�ʽ<�AtK�ս�G��ս4�������U�蕼�ν0‡9໽~��E�Ƚܐ�5Lٽ�v� ޽����QXܽ����ؽ���zн8{���ӽ�t|1%�ҽ)�|�Ͽ��"���ѽ`�a�ý'�f�E�ͽ�61Q��ƽF!�H\���#���½�¼s��+����������i���ws�O0ǽ�55�ۺ�O��1�輽��_��8��WE��R���"]��0���6�ĆϢ�=H;$<(ؽb�����gZۅ����i�B��%����s|��I��Ѡ�9�;Q,�P*�����޷�+F �]�v���Z�ĥZ� �v���U�ƥz;��Ӂs3Ga������:�����%���D�r6C��<� �l@�-ľ�b ��:S� �V��5� �3����1]��$���5�������� ���O�#?$�y����&�@��� )��F[b@.�a��!�i(�/�!$���)�0�N�EЍ1.���Y����=gv�U��� �(�*�^�U3"��FS�b��§���Z�0�M��XW�� �>2�^F���&8��W.�P-�x�R��a&�������3���F'&�/��C�~���o���Ʒa&�'�S��0<������� ��*=1?V�O�W^��\�����yY�a��C{X��Y�gE[�d��� _��[?loU���ĀQS� Vk6wT�oK>y��P�N���;5�� y��X4���X.�;��'��:���B�A��7 M92� �o�l�-�@R2e�8�&�a�K�5���K�;�%�d��5L����&�1�+�1�))��:������B_�ދa�ˁ���d���� �`�K���p^�LE5^d����0�a�T��Rk_�t�-�� `���6a��g�k�a���g���a�m���[�ޠ>��ʳ�zA�(qȟ�L�=7��NE�&0����C����(KH��C�>�S��aΔ^�T���v�jQ�[`蜿O��u�AJ����Ї�Q��+�(�O�D�YS-2[��Q����W�Y8����[�o�";;�W��H��U�w��6^R����zU���.��R�~�W^w:�v4�3�T5�J�����@���gȬ�;�擶��v0�� ����'��$�_�5���(6q�/����� ��7ƫ��v�3�%��ݚ�����B�`$Pz�g��Y�9W�7�f�\��gA���Y��*�ʬ�_��y��ۢV�Rɛ�@\��RIT_Y�(4rޫ�a�;цtvc�2#tlv�^�뉘�4.a��v��eDX�(���d��i�"e��1�bb��?~��b�2J�jmd�U2� \d�,H���b�s`���b�`���R�2>�)��U�G.�@ �S��pDZ�N�8 G��\V�.���Q�ġ���qS�V�+�I�Ѕ Cn,@��iJ� �D�>@!c=�U�?CHDN��I��4C�8�(�[H��H�=sE9�9��g�&4�$P�߾A�f)'o�<�J�_,�b� g��V�}�R���Z�+G�6�4`���.�N{��7hj���(��el���w�`If��]��zb������e��e���n� wp ��a� 1c` �c���;�[��)J�]�� _4܋W���Z�X�)O>U�}+���_��S{�s`�\F�t�HZ�%ϐ ]���zHqf�^픖�j�` ���l�ҶC�Chg��)p�d�2*o�n��nn����}%�n�\�E7�E����e�8O���Z*$J��[�ܨ.P���^�A��$��FF���9�_J�S�"��T�L���`P���i�5R�Z~��1�Q����&J�va���L�^K����N��;��I���ټ �E�f|�R�;�(h9��4���f)G$A��#L� 9�f _v�,�9���>)#�:�K�2�1�p�.A�(���?��n�?����F�����1 Ҧ�~�K� +�� 3C�Z��/�R�x�Y?3I�����O�16��� ��q��E!���:jQ�0���;T��?�Z��?c8�=tW��E�pm��61�?�S�{9�2�h�M�@��z3N��i�����l� ���PNe��n�{'d���8B�c`��!�)]�tz��;a�p��#�[�G��U�E �"]L��ɻQ��Q�A� ��Y�F�[X�W�t�r���E��U{6�Y���*5�R�@d��T���U���M���r2q'E���jx{8�4�H~�b���\���f�t@���d��O�a���M�Əb��k��E�i�/A?�e��Kbd�1pҜ�Tc�뒁�9%`��,{���D��l6�F��в�i>���)��@�۴���@G�>Zi�ЄD�$g�tr@�_�V��KA��j�~!R@��\�&�>�� �E�;�L����[*����b<;�8|/�'�2�/��j�.�R�9nX�v�}|߳4�bf�v�+�kC�Z6���rf"E.�b�tc!�XB��%�rj="��PsU���*���ཞ�1 �����Z!P��v5J�p������=���ܘ�a��U^� a���r1�`���d� `�6�f�Of`�|n�z�h_�:�q�_����]�?�} �Z�t����GW���aQ�\����MY���q�-T�R�0M�P�h��J�2V�&�o�DS�D�� ,V]����C��\�6�.�hpZ����&��Z� ����Z��t�p�K����%��F��$l��P�d}�qr�K��"� I�!��žV��!��?�)�1��2|��A����Tm:��^��]F������1���s�:�g)���A��ҍ빂a���"�\�j�^�s`�x�Y�Ԁ\�H�]��W��C�G\S���n4��W����*�R�x�jf�M�@�5;v�C��F���N��w��F��aG 0>�ɥ=�X@>��l�+�3�:=^(N|>~}�kA���0� �E8�9X�� �3>2���(��b�^^ >��[,��^��2���W_�������`�a�p�.6`��m@�7v]���*��[���E��\�� ¨2�\���$N��]�J��Ω�[�^��Z�Z��<�$=X���.�Y��4��Y�0}� ��V�� ���V�R��%��6��!�7G7�>���6�l�\�G�.���O1��,�܀) �o+� �c��/'����'מE>�&Xn�x� {a}@�">��� (;>���ߘ�U��X��D>� V:>��q�%> go� ���H0;� �>_φOR�b���oݽ�U`U�Ľ����,��=�1g�>U�b�l�>h�%��E�=����s>���� E> �ggbm>HG(���>�\��D�]�q��.�]�T�,�F�[���䎣U[�W� {�[��–���Z��Ti��g[���^�v[��h�w[�� v� [����D� M-�f�:�FbG���1�����G��?qWE�:�ا\pj"B�& ��<\�0��ս^]��=�a��^��玟��Z��M�[Y���dۃ�[���/�TZ�q���\�7�X8m�\�v7�P^��RQ<�t^����׆`��l.yu`�l�_`��QèCa��jܲa��R�u�*M>Bd��[�R>�ab�I>�ώ<�BO>aR**TS>�K��Q>���O��V��8���R�{�cB�ZU�^�_��P�|괖�L�>� j-&=�J����cE��HV�;�"�,� S��I���x�WsB� n��o7�>��ڱWC>��G܋�8>.�P��L>�#HW�*H>�Y�ua#>h��� ���{GW$F@>8s���/>�����X�� ��gY��O_m-Y��m�0�$W� �&&�V��,{�aU��Nv)�U��̺�ZS����q�T�B܄��T���^-4gN�ȑ�ϸS����w�+N�/n��O�2Hy%Q>�5�T> ��X��Mz�5� >|N��}�>��4g��'> Ɍ}��J>�0����B>�x���n8>���zP>X)�9>�X� J>��)30�B>��r��>�>W+B�!>sʛ�J�->p�<�.>Q�F�+�!>b3�@OK>*���?�->3H�C��)>y� �J >���y��>uJ8��%>�zF�>ɺ=~��>��.�|S���w"^�Y�ֻM��Z�注A��Y�{�� ��T�6-��W�&�5) [�� ��QR�"�����X�n�+6g�T��u,vW��bO�#H^�2w�n�\�-�@B��X�\_��T�]�ւ���[���5��� �ofZJ8K ����ܔ::�s��^�rL1��B<�Oi:���GM7�0�.7� �9����>S��$�K�W�J���U���ՖP�"���X��20�QXS�(��*�U�����K�W�2��A���4�F���9O��A���#`�P����W7(F��1��[^K�F;)��T]���CF8�`�X��\�_�A��Kb[�{��ԕ�a�^8cI��_�&��� �]��\W�rY���p�dV�W\ʻ�n[���-ϦX�F��}�`�J�Z`�v�65��a�3�}z[[`� �}�a��ۼ��b� �4�c�n��7��c��60M�e��^s���b��F���b��h���e�4���d����g�U>ڃ���V>M�2h�X>��P��Y>��.I��W>n�A���U>4���e[>��r��Z>X��_�S>�6 �YQ>�z�/�X>vD�˿�V>�!ଃ�S>�~:���E�H�5�O�0�l'��u>��� d�G>�q����F���; 6�|�* "��ldZ\�L>6�!�b16>,;� D>y�m�&S>�QqM��$>��٭R>��+�YM>���}�C>G\�Q�牯�=�M�\<+�ypP��@�9��I�R�����F���;�Z�7�]��ւC�Q��a�:���E�w]>l�N�`>�t��V>�IL��s[>�tI4L]>�Q���Y>�L�؂:S>�>�Z$�N>�����U>(�"0�R>���z9>� �&�H>�Aa4J�A>���1D8>hK�<%N>r ,q�B>�I�mI>�5_�/�6>���S^�3>4�Ѽ^�@>��o�<>icE�!:0>fK$i��(>���_?u7>[�$U�U2>5;���b>;����!>�d� :c>�g�d�g+>'Mݦ:L">~% ���iI�"K��4��8M���2-t���E���N��o8�0�R�/{���G�w?%��I���Fj�U�n��c�wW�h�+{<�P���4 �4T����`��#��EP]����~�a�b]]�@|`��V��oZ�O(��V��bv}s]�ڼח�hZ�lޜ�r�/�M���ı-��X�n��8�4/ַf<7�G���2"+�Ub!�&(�}�ZXxe5��a�59E3�R<6���@���w�E������'@�Rz�R�D�v$��a�S�� v�jJ�jG$�VP�鰟�ZU��9b���I� �'`�xN�jNˁ&�R��PM��=T�Z�%R�]�����>fW�����uZ�MI����_��aw46�V�dz9W��\����b�+Y������`���0�8�b��F��$^�� <輒�b�\��� a��v`'gg��4="8��c��]n\h�f�CԷV�b����-J�l������j��O��dm�Υ�]�g�f���e��(��$" h�� ^��$o�` ]> ��d�1��8_>� �C_o_>�ފ�Uza>^�9p�c>�JQW^>����Y>�|FX�X\>�h>�I7Y>���7a�c>��>>��`>\�_���^>������W>�feJcX>�z ���]> �(l\>�C� �[> ���<�W>�����R>��,��Y>��;��U>xGq{�v����K>e�a��:>׶T��D�n<���Q>ܧ��XxF>~�+� "2>��ҡa@�׼֎��!��|��>:5���{M�?B�����h*>���ܐ��'_�e2+��5���`>�6��. m>��*�:f>cQhv�b>�Q�x��f>i�,<�b>`aĤh�^>��� ��Z>�Ɛ�`>��<�-)]>�+U��W>eK�E�Q>���gT>�T ~L�L>V*���Y>��ָBoU>c�V�R>> ����G>�|�7��C>�(���N>�y�țqJ>t��'�?>V��#d9> �¿WBE>�I�C�m@>ۀ��)>ߔ�_h>,�$<��">@�a�5a3>�Y�qd,>j8���9>�o��">���v2->:���4>�Pk8 �>���v >��FT> �d?���G�i0-����p}�g���YV�������_�$���H����+�~!� ˝��0�osj�"�6���[�,���:>Ѿ'��2����1�g�J+��D�`ƭ�OL���ç�&�}#�|�C���a�R�lZg�U�r2�B��L�����@�R��c믳`�8V�9�Z��?s*Ӯ]�J�٧+0d�c;�]��V�t;X��7`�٥��!\��+�jNc����d>����{I;���țC�C��7Y��BB�vH�%8������4�߶Fp�F@������;��r���b��jJ{��c�/���;^f��ֆ�4�a�)L��(c��N���H��Q�9�PQ��x M�-^�U�HS��y~v'G�6�I�� M���d�4Q�\�߲�aU�\u#���W�?V���R����\�V�*S�O\�Z�%>Z{g�`��5�o�]�`�3U�`��i����X�cc��<�]���.DJ[�4K�i��i�:��G=l�Oe� \.e����àn��:�0�'p������n��S.�hn�P0�c�yj��[w�fl����3�Of�:S�^�he��lh��4j>�t��G�l>��4�?f>K{8b>cT��f>.�؄^(o>����2xa>�@��KO`>��2+^>>R�(�zd>�^?��a>v��[>�@�##lW>����_>��C��[>�\[&�S>�ĉDKL>�H�� ;W>��R� ,S>�h�-�A>/�gd��>v���s�3>�ӻ�)>�7���;L>J�FW��D>��T�F;>� Ys/bA>��<�i*V>��( �Q>Tad�lwG>����3_>����8�o>����p>.g-�do>g0��M�o>iƗ8��a>fKte>|��7�`>.?��qb>��� 6k>b�sw�m>ʘ��h>�j���e>HŢgW�[>��nD��V>0�n?z]>R��9+8Z> ���0CS>7�GP>��V>�]�g�S>��c��5P>��5u��J>��,��D>�l{z��L>�� |H>����@>C49>"A���C>��&4��?>Z7d\$� >�\&M3�+>z�ɚ �>p��*��'>�� �3>��_59>(�T��1>���#FQ6>�� ��$>��rh�>)�_[W�>.�;赶>�׌a��!>:�?�[>�*�u��=G��9)��=��T��:L���?�Tf�"��ui����;G �l����/iؽ�;�|��2�~w",�Cu9n-+��?�~e�%�3�m�|1��`*AM�+�dl���7��0��)'����4��c�z`/�lG(OV>��"5z,R>B�����F>.�@M[�S>�|U�M>i���5>wt�۔B��te?�7@>����&&>�7��FC�Q��}3]L� !SO�'4���ZיD��C#b8S��U��^�;Ѐ��4X�meg�5`�����EN����L}Y�L����*T�x�[�e��5����`�+�\�[�Z�-�7U�_�1LvW j\�l���SE�f9��6B�����ǥJ�1?=�6G��㺌��>���c��9���چG�C�� ���@�˜3�d`�y<ƟYa����?M]��P��^��2��'b���{���b����I8�_�%�H���`��R!�P���Ƶ�pV����N`HS�L��$uX�Uy&_i M�u0�� �Q��g�ʝ{T���hgZ��� %8�[���ȼU�0�<�s�X���cmvi��jz��e�B:!���b�W �ex�b�0& �vb��-刓�`����@��`��"� �^��c#^��(��NX>:"����Z>d ��eZ>�,y�!Z>�`~>2]>CO�f^>���DMV>IN�KǪj>�R��ۘm>�4,�(g>���ن�d>5:��'a>�w��TZ>��\���]>��R}1 Z>��<���b>� �ܟ�`> ���]>ܬ�7k�g>��]��R>�FuN>ە�$H>>R`C�HM> ���R�V>�\�{T>D3��a�Q>mj��ΫW>��|�u]> �ܸ�Y>5��RQU>,�=�2�Q>�F&$��S>�����]>�*8��Y>��>�L?V>,(���^>�}� ��`>O !~�}[>c\"|5^>�~����k>b6K��ah>�(d�%g>Lb���f>��$�Tb>�+���c>����<`>�%T�ڙa>���Y0e>ώ)8��d>�,�׫�b> �<qgc>��j��X>�w9aȝU>���^�Z>?�e�H�W>}�x�.S>� +�P>��y"U>ig�Á�R> �I�nI>�_9�M>ٯ�ӏP>�����J>x�LE�M>�ǧ��E>��=�?>M�k��jB>� ��߄;>g��{1G>�P�@�@>pS+oЩC>R�V��-> C�N3>����g*8>j��*>��ErT_=>��p��1>� �LR6> ��K�&>w�D�o�>٧�-�.>�Ԭ�N�%>��� �>�u,�E�>��L,>4�{� >�۩�iL�=>�/ �N�=�?��=Dؾ� >_�{����� ���WT1�+��Ÿl�����lМ��DH �D'����\�0���1| Q"� ~���3+�6�~mH5��T�;���Yn<�2��^{��8�t��P��U>b_9�VdP>�XnDcX>�Sf� �S> ��ƾ�F>X|^6>�;E�L>�(���_B>D����^ؽ�e� "Z5��j���w*>6=HAJ���,���E�}o���T�-P�� O��S��gV��~��9<�{C�P��N���F�z��|�\�U�@�W�ǐt^�_Z������{Y��>]\15Q���rc��T��ѽ�'W��G�H�����oA�̻tJ�D�vt�v��M�'�w�G?�iD$MD���<+�H�����:-\��;�0IJ^��_��]�L���Y�)w(L��\�Y��&aZ�����O|Y�(Anf R�jSV�V��F2��;T� �L5M�wni �V��÷���S������Q���κ�]�r�O��9\����$Z�(x��W�X�Bo|[�"Z�0��PMqX�5_�H�W���\)�U���@YdV��]�,cT������U�0zM_peR���a��U>>��ԯ/Z> �:��p]>���1Y>R�RC�^>��ѱ�&`>�z"�p�`>r����Ya>m�S��^d>��.J�a>�<'m��`>t���*�d>BYOc>�����a>�Q��n�Y>渞���\>�1eZ>T3�'GM\>*c^Ֆ+d>�jJ��a>�iЌ��_>��s�5�d>�:��:�^>>l�� �b>ʆH�$�`>���Wd>~��k�d>ډ��w�b>opbH&c>�9�?�PV>?(�|E�X>�|�Bs�W>| ��(Y>V|~��Z>��p�G\>֪���Z>j�!~�\>�^���_>���Z>��Z���\>�H&}�a>�f�f�Z>L>�._>pF��^�\>$P|f�%]>��Õ�q_>�?!�J�Y>\:m�#\>f�>��d>�Ei,Kc>����c>D!��Nb>A)�ޯ`>�%�Ը�a>��H�3pa>N ��b�]>Ƙ��>Na>�?��_>�|���V`>N(I��V>�r�NvT>���g~Y>�&�',V>�0�QeJR> ;�\�fP>m���S>F�g#lQ>�BV��^H>��-�mM>�B�7��J>R�g.��D>��I�EO>j�� H>K�:�PJ>Bt3M�lA>����:>���ҁmD>�r��^-@>e��b4><�u�B�->5�@��8>���I�2>�d˓�m$>�-�9�>ދŬ�G*>4 d҅!>��3� >c���"o >�/��>�=����O>�s���.%��mR,�r�5��f���� f�T+ �L ��O�J�k�.���!H�4�t���pJ'�����0���c�/;�d�Mo��A���A��6��S<�S8�2Q>�ؕ*�G>�z���T>V�b;~^N>��jK,�Q>xOC4�;>bh� �Q*�p?~F�>�Ҙئ�=�b��&G�C><���e0>�y�9��E�~� G����R�X��X9�M�9l� L�P��I�2z�2��t���C�����LI��T�>G�nY��K��m9�B�7�#��F����=pV��o��{S�/����P�\�#�x�T���>��J�^�b��Q�њF��P���B6�T��o7��S�&�a;�Q���uUX�P� _�[R�����P��t�RX�O��L���M���ܕm�M�@g���8G�Iz�q<L����c�`E���.� �W>ξ ��]]>K�́M V>ϟ[��%[>P����X>���{�l>F�6Ef>�ȟ�@ b>3�#X,4f> �`@�`>p�d1B�b>&�T�j>�Ů�m>�N$f�ng>E�l~�d>IdH��g>�R�f�do>htߊa7d>����i�a>⾅M�5`>-��ӟ�b>NL�Ka>�e̙%�a>EJ���]>6��� `>0�}1]>v�/��q^>ʩ��8a>m�L��b>�����a>�L��oa>Z�~0��_>a�� ͱ`>i�GB�`>>�-�P[>�B�C�[>��q�\>�$_�\>���L=�\>l�gA�q]>9e�g��\>8�r��\>泹 b^>�O+�a�_>����u]>&+:w�U^>����:�Z>�,���\>�F��ʿW>-����Y>����`>�֞�U^>0�< ��_>~\#m2`>.|�*��Z>� 9%�\>хP ^>�$!�U>�ND�ÙR>�b-E�V>~�M�T>�/��cP>‚����K>�6�J�Q>��9{2N>,�7�\G>��c�B>U2� 8�I>NQ&}�;E>��Q��=>�@x.6>����1�@>�k�P �9>����40>a��\ &>�7�e|3>���[f*>��,�@ >Mߦi>۽��>y$�� >8�E�~k(�26��$� ���y99�M�1?mB�@����&ٙD� 1���D�c6��L"-�h(�$�d��0����Ok<�hN�b�A���q;g5��]�:��7}v�V>E�O��I>}�kZ T>Ϊ��*�P>��;�<>�n5@�S>��&�LN>v��u�CH>�W �>Q��|��?�O�s��H+�e̝7}Y>������+;>��%���>�Y�a*&�(�"f�/D�N�|�NL��F �=�G�=���w�J�.�쳟�>�h}I"�B��Ķ"�9E�6" �%J��ĕ��)I�jst�]�G���l&�D�M���V�B�t�}LK4C����{�B��L{qL\<��0(�i'��[��h<��cj���0���^��5^>rL ]Ju[>˿b��c>�C�t�_>̡��[�X>�f�O˝U>>�Ѵ�N\>����m�W>L�5���p>��ad)o>�P��o>�w� t�o>�:hZ_/j>y��(m>� ���f>�.w�>�c>B��h�*g>X5o7yIc>m�0�+Lf>��Zb>.<�߫c>QD��k>�[>^��m>�c� 7.h>2��"�xf>�кr�]b>��J�q`>T�o���`>-a���fa>���B�^>�*AH� a>ȷ>W�_>d���k!`>➋t�^>,?���K_>�l-��^>H=��&]>K0�]>ʛ{�]>F���q�\>�U-��\>��e��\>\k� �\>f�@)]>G1�|&\>��v�\>��J8;V\>��am y]>��L��]>��Tx�;\>`j,�-\>ꇬOTX>�H9R3.Z>�<�qU>�����V>�V$ �[>��Y�#�[>7��&�QX>�� y�jY>����R>�AP/P>�hY/2?T>�%��:Q>=ķ�T�K> �vI8�M>��M�/�H>�#D�-�B>5f@��=>,���+XD> zf�1@>��*gZ�5>�ם0�b.>���?a=8>�ZQ&1>�%l`6>�o<��">�X�v�>��l��%>N�^5�&��`����T/����H��� ����~N������y.������2��=�$�����)���*��6�kg\]#�:���Țd.�JY�E1�L�>���R>�A)���M>���,�T>��;�P>>�N��E>z�J��o8>�m��d�>��J�Z#�L�[��J>M�潺@>=P��ą1>���>�2�lB� ;��)����=���y����iI�z�1�(����2���=n#>I� �1��2�*���K�n^����Q��_>r���¥Z>��`�x�a>2�N[<�]>^�)�tV>18��`R>ky+MY><2Y%�U>��� :@k>���_��g>�8�ZȐf>To��-6f>�#�S�c>���Y��c>� ��T`>�*�G9a>���;�ic>�«���c>*y8a>B���w�a>�޴?�hc>��� gd>C/J@��a>Z�&��#b>Io�#�d>DJ�@�Nd>�i0�k�b>�x���b>����Ê`>3jE_�_>F��y�`>����H�^>��rA23^>�Ǖ:A#\>l� �2�]>�w�#j\>��ꈘg[>���}h[>����C[>i ���Z>r��a��Y>�a�5@Y>�u.�~Y>���ah�Z>�����eZ>�E9�X>�����Y>���WU>�_~�V>C���y�W>�i[R> z��gaW>��Y�x�S>$�>��T>c�v�2O>�^aY>J>���RQ>�+�,��K>)SnE��E>ȱ�7EA>�V���/G>�S �jB>j(�+|~:>ΖD���2>��&�l�<>�:m8{4>�Z�r >�n�ϴ�'>aJ����>Kּ8 8*>���]r��Ω�=� �eӋ�����e��������u#@y�"��2�I$���P�_r�o��m�;���[��%#�� <nj7��v g:����nz`�h@:��m> ����`D>��DpQ>,6K�/K>��a�w�8>�L��砐Z9� >m�l�2r>��>M\C>�����(>ϲ�|6:>��*�_�[>dy�t�PW>�Lj�S�]>�����5Y>������S>��e/C"O>�|���U>BZP"�cR>�$�L!c>u��d�a>�D���b>A��O�`>��j��^>.�>�f�`><��/)`>}TU�(lZ>jV���_>��U���\>&}&��[>r'�V��`>�8H~�a>�<��]a>����^>5���`>�4—^>�Lz��^>���R\>�e��!.\><�b�Z> �iH$ [>vpR���X>��|�Z> �y��&X>ηe/7W>ݓ��|W>�٠�GPW>,��?�T>yt�]f�V>����ѾT>� ��g�T>b]=GD,R> p�K'>N>D�;hCR>okbe��N>x.���fH>gk 6M�C>JÃj�0I>Q2��jPD>�2+�->>���v��5>���Б?>n-�gy�6>���'��>*z��t',>U�o�*>�΋�K�->��}����՚� �� �� �� 3P�����q9�د�Pi�8�9ѽ��o �>�W�pwi�=3&�`>IŪyO>H%�D.>z�Q�u">>khS�/>oօ�˚H>�9�%�B9>P�a���A>�pZ3�M>�L�E�8>�6�<‡B>�Ug��H>�3Y��V>ɽж��S>+��.�Q>��nκpX>��[�� ����@T>i�x��Q>��RhrU>G�07*^>��)b��[>Ck�?},]>��6=��Z>꣨܈�X>y���gU>��R��X>4H�'�hV>� ��[>�R+a��Y>��ˣ\�Y>�����%X>�*�(i�W>B���W>��B���V>�:F ��U>���^nV>d$v?T>Rl�Se0U>�N�98S>�;cٜ2R>F����N>J�t�{Q>�]ۄ8�N>��w"z�I>\[zD��D>jׯ�kyI>�i�;��D>��V��@@>�x�V+�7>�@J�ev@>LWX,VN8>�X���G>C��/>�� �g>,�4W�/>�v��0�> �:'<��=čS�.>�۸zT�=��@/�>�Jdf�j">(X��.>�g , >��<{s*>� ���6>&@���@>wI?�3>��֒�<>��~.iG>_�{�CR>j��z��M>�� ��R>�8=XfC>F��P��I>7�>��N>�k�ˇR>��?tS>�Q`�U2O>~�^�1�P>�l̥��W>h�<�=�U>:� T>3ƍ@��V>�T�k�Q>3l�#�T>>��#S>Xٰv'U>�4Ùq T>b@R�T>Y�� .;R>��G̉�S>�<����Q>��or�AR>*�X���P>/��.��L>ug+��KP>|�t\�K>j� t�H>)���P�D>�3o�JH>� v1D>��j��r@>��W��}8> u��q2@>-�-�?8>��?~ >_��I�+0>s�(�� >ƴ&��%0>����d%>��D��>m�'�l>�gǒ >1\�T�O>�bPU�b0>��Ka7>��B;7)>ީ5�Ru2>�\�?>�>q���D>��3�F9>��=K@>��ZCJ>�/XM>��v���D>�*(�H>��]�n�N>ܢ�5�Q>�'G?�P>XN�+l�P>P O�:�I>:=�mU�M>� �)��K>�<�}=xO>�[+�eeK>�\��`L>��>�bI>97s!EG>laK�χC>�>�S��E>��FW�uB>���cpi?>�!8Q��7>����n>>�OhU�6>+����%>�\]#[�/>��O�� >7�?�.>�c�.܋+>rEY/>P��$�4!>��Ŏ��>��7�2">�&�|x3>~B)���9>j⃊�O,>���܎U3>�I2��?>����B>��QV �8>����=>9,��E>����m�G>�8���@>���^2KC>�l�H>����L�F>��&��D>ùF�C>qyۧ"D>d�}�9A>{&�m��A>#���$?>��>�%<>8�F��5>�)�K��9>6�L�� 4> �H��Z>���C�n->kn�f�>k�K��+>���+>��@8� >���K">�k{%��>�WyÔ!>4Rw`�d2>oz�[Ќ6>���"�)>�3�5��0>�����W:> �5 ��@>�T�q�L>>�����Y@>���zE4> <�h��7>�=�{�:>�f [��>>��XP;>`è9>W �8B�7> ���Y 7>K��V�52>L?��-84>�2�#0>$� H�>sl�_)>�i_o>�� W��&>*m:(�'>����>R����? >ʾ/Jڡ>��wZ��>�� 5�.>�m ;2>��Gw$>؅���/)>w���4>�ho���3>'��`�->����`40>�ck D1>����+>O���8->���A��'>+�(�b>��#>\�;26>w�s"!>*��h� >�7�uf >��M��>cM�<1>I�$�>��A2�#$>�Y�sT�'>����ؐ&>ju.�#>x䖱0<>D�a��n>*>��L�>�N�@S >a4e.+�>�E[�R>��%���>��̪�6>��A�]>xCY� >�E�l-��=]qPO>����9k�=�T���u>zx�Ia>\'d�>������=4�+���=��|���= �܌f��=x�wBn{���o ���4�(��`����R��ʇSq���֗���_��k|���`�:�~�Jpho�����h�n�#hmk8��r� �Q���W6�#���V��� k��L��~j1ʄ��ȑKN=��=.�R���f���>�����!����2�q��������N+VH�^��s��F��_��xX���X�� �v� x���`�+��w�:J�'��>�FP�f� ��N�������b�W�>�z�ɸ?ԜD��� ����r�����J�>���IM ?\��b� � B@�]�h�f,���i��/>�*=P��>9a(]�R ?��g�M��l⨳L���K�������k1��֓�Hm}�> U�aؘ ?F4cL��>����?��Y�l�jͩ|�#��V�����X� ���=SV�.�>������>t��6��>;��QR��>F��>�]8_a|�}!��'?v˸��>9F��LL��6$!�w���6�0��>4���e�>��Ý�{�ы�AG��R�fr�> ����?�\\K���D�9����0���>1x���d?�W:]�~��{H2v3��Q�_KU?@+=pN?��f��x��dI�z����gN@?e�ΫA�?$s�m���%e�y��Nu8o=�?�?���?X�L�N�v���**B��> 2 ȗ3 ?����Z?�;�BS�>�����?�ڣ-�2 ?�Ku�"�?�m�y=G�>^d���N ?�:��"�?V�^��?&��d��> �Q ?���9#?u��X O?�tLQ ��>$�'M� ?]��?IT?�ڗ2e?�U��>}�_�?}�� ��>y�׭��?^�]3:1�>:��ۢ�>4�fP�>���A�c�>h�߲|�=䰣W��>D��;E��>.Ӿe���>�Z����>uq~8��433333�?=s�h��z='�B�R�=�=s�=���KC��=���`� �=m�*���=�G��x�=y�5��=�p�v7��=����<-�=����h�=?��&�=@i����=����6��=���tb�=��-5Y�=�3V-�=+�J�|�=���?O��=)�U���=��C�J�=�8�x��=�~��gy�=�)J��=0"��L�=���ᴎ�=,5��PA�=�#��b"�=���6��= �Q��=@�����=���I �=����=�=7�@�*��= �}`�O�=4�8z�=��@�8�=�>ɋ�=Ѷ����=��x �A�=N�^Dܩ�=7t�H �=�F�R9��=�+��=Z���=UWWT��=�S-��= ���>��= �ݺ|�=._*s��=ɵ� ��=k��Ba�=�7J��s�=$�[���=��%��=�\o2���=r5u ���=4��C�>�S# ȏ�=���|)��= (���~�=�e)��=7�1CV�=1�jT�]�=�:�.�I�=$:�G�D�=�I�d,��=�]z��=X4Fs�=���G�=��2l.��=�Mψ��=Q�ݛ�=f_P�=r�;�X��=I�l#�Z�=��wI>B�ƱC >���_>���Ⱥ>��aSc>݊&=ۢ>:C� �D>I�w��>�*�G >^��� >��i� >�P� Y��=�Vt6�=��iVuT�=VP�]�k�=\��0���=� �R7Ą��=ʴ�vV��=i���Z�=�#^1�>|�����=�TW�=i�8(���=���p�f> u�d>��U�6�>eW�J��>� �����=���� >�p���>����4>5� y&�>/ e5.t>g��,a>k�>�t>8O�� �>��"(���=���I���=�l�ɒ��=:�����=$26�ה�=x7X���=�p�u[_�=�����=�=�Gi�*��=F,��#��=�K^�&�=g��u��=�k �k�=�0�@���=҇*:��=[aG^&�=���� ��=9 ����=A���/�=$�@�X�=yfo#�p�=����ͼ�=��o�l�=�tX� >��Z�6>��'[>?n�*�O>�/= ��>���]�>�17F>Ȱ�k�>!�+��= �H%x>�z#���=����y�=���yY�=�`��>�P�\[>�UC�=��=;_)�a��=?*>L8�>x,�� >Db}8��>)����� >�.*x�>U3O� >R|�gd�>�k\x��>�6�����=�Z�(�=��w} ��=��#���=����Lr�= (>w�|�=�c3�H��=y�_���=�b`&q�=J�dLu�=���L�=+����= ���5o�=�)�p���=�Z NE�=S�X���=fE���:�=�R��Ҙ�=������=���L���=)�����=�l���=���R̀�=�y����=����=Cn��P�=wq�:`�=x{{��x�=h�~�D�=�]���D>�k��>l\ij��>�m�䁈>7`>q�>|ORA��=,��J>5:hV�w>v���:�=�F�՗�>�um K>���m9�=zZ�BA��= \ ���=6b�Tb�=��iD���=Sz�y�>U5[:�>��(�W>���R�>�awWk�>a{Y�ǝ>�ka�^>�Ў�1�=2��{7�=vA8�u��=oq���=�w](���=/<�7��=_oZ�q]�=����v��=cZ��>��=���cy$�=�5�r�=��3�i��=��N��=��K���=������=�)���=s9VX >dC���>B�'jck>˃l O'>qd�G>���>s����>Z�g��=3�$���=�T?4u-�=l�XBl�=��}�={V�~IP�=��?׭�=l�����=�C{���=JH��=A'_��j�=��dެ@�=���X?��=E$��>� ��  >�$O5>�T�\N>��<(g>�%m5o >��Ml��>3�$>�YG1�?>���O?�>�b��=Za��� �=Hr�At��=e0��^w�=�9I��=?^���=͉�%�=&T�=V1����=V�S���=lu�:��=7m��B��=��#a��=�,3�m��=]vo���=?������=WF�(���=c�U$��=���^P��=$�P��=���8��=���� �=��=�8��='����p�=T1 Pi�= 00�{�=?����=t�6t�M=� ������y�X��B>ھ�y�>,�ߧ�j>��,;�>W�C��>�� 9C>���6h>m� �]>ͨ�B���=�� ��=�b�Ý�=�?9��=�YGK.�=�8��H��=ă�עf�=�v&2�-�= @�&�>���{��=�5���=�t~a��=y�wˇ�=�l�L���=�k�:���=�&����=�&w���=*=2N���=%��]�=\Tj��`�=�� �E�=�F�Mu �=�� kҕ�=������=*x��iy�=����9��=��1k?>�F�r��= �]�T�=B��E��=��c�6��=���D��=Ӳ~��=U��x�=?WTp7��=��8 E��=t��b��=��'��ѽ u-�����8��=C��YЩ�1��e���=� ,�m��=ݮ���սA�XFu�=&M���o��K�ٸw�>L�ë�9>�g�:>�J���>�&�h51>Ȥ�=��=�F�7}��=���zd�=Rh�)q>�.ԣ��=Dv�h=L�=��3���=�I-�O�=6w+;�=w(���=�b?;�D�=�C,��=&2\�e��=��&�#��=s_��~��=��7@���=ߍ���(�=!�� �|�=Pe����罡�Y��=�3�Q�_Ľ�A���ݽ�V/��]�= W`P�潮��әܽr+lS�)ǽ���7A�=��R�z��=ڌ���=z����=T\g=Z�u�E��8����ި��*�̍���v�ۤ���f ��@���n].���H5e�����Rq*���w��5~k>="����=J���=��y�� �=û��k��=�\�O��=�(����=yX�xq0�=�m����=�o'k��=�( 7ν�=;���Z�=1v�eb]�=�F��*�=��+�(�=c�" m�=1!C����=��N>{�=:�%y�=W�6����=�0yLb�=��̿l��=�i��3�=T��b$r�=8nH��G�=��y�~�=6e/ݯ�=��G���=�uC͓"�=� $��=#��D�%�=�)����=�X�Ox�=)#~�B��=��%^��=���iO`�=��%�N�=L���:c�=�������=A¶A���=ئ��M$>�p� j�>WK�s��=��2ԉ��= ��o ��=�^���=��,$��=�'�1\��=�>��>��'�>r���>��Ht>���8s�> �>;���St>��B �����;���t���<�8�;�8.��<���>���� ��o���qD�=k)�ݻu�=&ίp�x�=.9�iT�=d����=�-Ҷ<�=�����= �����={��S�p�=��v��G�=���G7��= �u�B�p�UKsZ۽5�ͽ#��N {wf�꽲��܇MŽ ��s�=�=��b�d���MD�sѽ3X�ʩo�=i�J5��=��Y�Ҭ�='xS�p�=o��4�=��M����=��RoG��=B&��vE�=���o�=J�_PΉ�=��*S���=�b����=|ܜ���=„Ԁ�u�=K�:���r����ǸW��ب=Le���d½�ae@����vi�CCʽ���D ��j�4$��dQJ�ڽ9��s� h��6ܽ�a֍�콝�d&��作���������2V�jý��)Qн�=���н�L�O�ý�1�?�2��yI�lX8нx�H�r̽����#欽��0a���#]М'ǽį���_���a�F.u���D k�=3�M~a�=�kB�N�=A�/�Y��= ���$ �=ȓ�l~��=R�:���=_è��"�=�˴�h�=L�rD�=�22���=���>�;�����=(O:28a�=f�C�#\>���� S�=O�?g��=�ik��=� �-��=���9F�=UwQ���=�'�j �=uz�d�=�k�V�=�=ƴ�?�'�=b��J�=�Uw�D��=��% <�=�v�.��=p�hl�C�=QD�_O�=��]]��=��f�y��=q�2HY(�=��N�K�=�L$J�Y�=g�]��Z�=܎�e�=�~ܸ>̡d�"N>��F��>q�h��=Q�׹p>�E��Dz>�Hq�n>b���3��=�6�����=>��c'�=����=>�c�F>ظ��H�>"^v]�W>������>���3�>)^��֢>��y(�>��k��>/�@�{�>ݓ�zp�>�eui �>����0�>��w��>m]`�������������5��z�G�B����������IZ3g���D�P]��E�4 {���$�J����g�Wă�nc�<��d��� ����z������=�'?�Bo�=㋠�½�=�4 D�c���6�^��=[�N�J=�=9�D���= N�O ��W�-m�dؽl��#�彊�˪# ����##�ƽP=F{1���L�y���#�jw� x����=Ұ��tO�=f����=b�5$,��=NV�9��=PBy"Y�=�?u,�=<y�8�=��q�1�e��n�������:�� �V�,���6���Y���F��Ⳃ��"��{���f����q����̀MG�[���C��A�۽$1#�8F�y>h��=yq�j�ڽ����a��X���={���/�z�*� �޾ؽ�3�`�սd�5@�u⽕����޽����4�ѽ~Ms�q˽�Ѵ��ٽ�+*q'Խ���x��Nʆ���½�p+6���l{��ν�4��ĽkX����=�L{�ո=j��.7�=�p~�T�=:$��/�=����i�=G�A!L�=��Ɲ�`�=������=~ j�t��=�gq:`:�=5� m�5�=0�I���>���Z>8��+a~>W�\�>֔��E�=*������=��ϔ�/>�l�܀�=:�*��w�=�տ��Q�=k�x��=ae=}��=Xq��D��=�[UZ��=R��`ׄ�=M`�ߚ.�=� ����=�p��f��=M��C��=��3M��=Ⲡ� u�= H� � �=3O�����=�9e�Rx�=�� ^�=[�p-B��=���"�v�=�qY� @�=�3w>��j�{��=�S>���=J� S�> ���7��=� �vp��=eM� ��=]o>���>2N��N�>�DK��>$1U��>{��Hs�>�1���a >�?ګ �>~W�e��>���mc>��(��>�� >�!���>A�Ñ#" >��8��0>���`�k >`����>�e���>'��s(�f��F��6��-6��f$����kyǬ�4�Z�����v(���ѥ����� 2f���X^S`���R��-����%�T��&up�,{���a^��9��)D��=��h��������_&��� V᠕���]V�j��@���:���}�c��j�=��!�m8!Ё ݽ*�a�=~�� ���&t���o�w�ӽҪ�=D� h7��=��g`U�=���9d�=�lCjͽ�8,Tu��=�X*���=�׀r���Ot�V��^��o��z�����RA  ��q�|�G(d0�����?fw���9A�O��ѵ��h�������s|��U�++��7m��&�zT��j����q���د|����ֆ9Dڭ����V`�\�f ��v���JCd�"�G�@2��o:���۽�E�\5^��$����$��F����Ӂ"��C���yĽն�XMս;� 5Ͻ/�Vh�)ܽ��QC�ý�L|l� н�����ֽŀ�-4y��bA�>0��c�+�f��=���N~�=��%��Ŝ=h�g���=�����=2�.� �=��+t �=��H;�=�"(��=PH�Y$��=/�R�{��=�N ��=h+�����=�B����= ~7O��=�1j�/��=G�E����=��k�V�=��<��=I5�[�=n�A���=�9�D�[>��u�;��=h(w�QP>z���0>�с���=O�g9u�>��`ok��=w6`��8>w;}d��=Yf�Ws��=��ڕE��=�:K���=��V>��=�������=;Kj�3��=�i�!��=��-���>�� J�>��l�G�>~O��D�>�b�W>C��ʊ-�=�����=c�� 6�=��=��2�=��Fys�=�$�q��=�S���=V�3�{��=Y��ML�=��6Ծ��==m��3�=��Q���=�Èm>��$�x>�,�+�i>�k�i> �=s) �me>�r�O��=�C}./w >�u1��>pawCH>(3WI�>*�ԃ��>'���>7/C���>�#�V >Y�1H7>'�����>�I��J�>x�*�S� ���m�J��{;���t�doS����f�h0���s*���ꐓ�3���_�y��1UK�ۀ� �F����/9z{3���#K�:Z���Hm�������Y�+纼O����r�Zӕ����;��x������^m�'����:9#z��*A��鸽 �S�ս��w��̽"���"2��潘#�A��ݽ������$L]��8ɂEz���C��S�齁L�+&�}5M��g��͕t+��۾�@�3��}���D�����.�ܔ�e(Z�J�u��{F�x�M�� ��M?��i�}-�s �+,D|���dq|T���@�y�1���9� U3� ��h���D;$Z,��@m"��� ���M���,C t��t �\����f8hK��^�' 罡���2���?�����Q�%�� ���}8ܽB��^��; T�c���K��˂½\��]Cν_W�,�s��u3��a-ʽq�/���ս,����۽9��>ӽ��<�ؽNS1���ƽ�A��f��ָ=�/����x �Ħ�_Ǫ" {ý!�*�����\��ڞ|���F,�A���.�� e�="��[�=*/���=-�R�8��=�ߢCٚ=�4��z=�����=l�(j�x�=�6�����=�բ��=C�`�8�="��N��=���Qi��=�����c�=N�5܅�=�Ԑr>�=��n�@��H��_�����C齁xC�/����TJ�3s����1׽��RU.�= }y���὿��uqXȽ Yi0�=�' ��-�=zVN�'�=���`��={c�\ �=����>�&z�Q��=��c�^�>3�?�@��=ĝ����=y5��+�=&����(>!5z��>�s��#V�=���3�>f%�"�;�=�C��+�=s>yv��=� �5�J�=����V��=��{���=L���=6H�����=t�Z�NG�=YԃP>y���<>�����>G��j��>Gt����>f��R��>=�)�t>|*�jv>i��!>;�=�<� ت�=:�A�2�=�� A��=�2O��=�6S}�=��f�Ƀ�=3� >��=1G[�='�T���=|"���&�=K/2�� >iO�Ȑ�>�C�Dy�>��̻�>I�iK>M��}>� ���>0wPф�>����g�>51s 0����^�c����&m���_$Ȯ������� ��^d�M���#�����B���O ���� ��Rf�?޽$�J�w~�9��� X⽐��(�� �o\�rн3Ԫ�9սx��ڽ5ˆ��̽E��b�$�cU�x�ӽ�-�5�ؽ�l�4�3Ƚo:j��M��G���v�нI�/���ǽ�ۼy�ڳ���� 쨽1W����u�!`�ճ��ۧ��y�Gè����c}�œ��&�$� ��`���h��=�ߏ����=F5�sd�=ڰDr��=$\J(Ӹ=UҴRk��=�mB ��=F��5"�=�Z���=�2�`�d�=�_�Q�?�=��Vq��=� ��=���c%����J^a�� �R�i��u������TS: ��1�ю��ؽ�$�9V�fݴ�B2��Z��3�z=Wf�mx�=��L�ͽ��i���=�K�eS��=��ы���=�jc;��=�q�o��=y�x a�=�L�*��=�$lj��=/'Y ��=l�p�~��=��ڙ��=w$J���=��-3��=�+��\��=��ݿ^I�=�3!}��=�C:z*�=� s���=�ء�Ke�=�Um>�0�=���T�P�=(o��=�t���=���.�>2�ayM>�Jd���=�$��׎�=�4�6���=�����=<~�:a��=����\��=5Ӏ��=�=kÀ� �=5� �+�=�R�|�=��x}���=����$p>2i��u�=���[���=���B�=Z�_����=�_����=�ad]�=�{�4� �=L����=�A�h�=2�f�)��= �1�8�=��sE��������������@.�x롱���<��G��BYST������˫�4 &\2��=��d /��=�a!Q��=�?����='g*fM-�=�Y;.�=Ǎ�O���=�������=Q<�+c�=S���b�=�@?�v��=S��8��= ��n��=��� � ��=��f�#�ϧ��L=��X�Dlf����\��.�����vj���� X5��>�=y��_k�*h�;�ez�̣Og���(D��L �)/%�xF� ڂ��� �(ק[n�����q�9 ��0��@��u���8�R���{��0�h��� 8���o�>�`�������#d��] �q�7;)0���-�e������Mc���A�dM��M�H��� �]+��c����*�zl�+��1V��Y������1���#π��=T�����X'K���lCRY#j��>Nʩ���s�7[�.������� �b�I���6��β�?�N( {������0��wX�+����EV���FT�#���qm���Ü� <��S��B����2�����Gف��� �H����3[ �������ն��|�-���h0�Bj2��s6�r������,����e�w��,�b����Y�-n��Ijbz|�s������,-����,���}r�܀�7콜�0 W�L�3��߽����aؽn)(b\� 8���Xܽ� �Q%�ѽ4]V �DȽ؝`T�Խ��Ht�ͽ�V��v��H��gd���Ur������-���7�����=��v�ae�=�N�5)�=fpQL$.�=�� …�=����o��=�O�/���=R�����=-��iaK�=e뫥=�=kO��ʿ�=�+[�Ȇ�=�F�}"�=^�M��������3{X���Һ- �������J�J�K'�޽I�����'[խ���ī��Gݿ�D���!�o�=�����=H[�"��=(�?���ݽ�e�F`��p�%z_]�=��5� 0�=.�cK��= �v�7�=��TR�.�=Z�xU���=t�m�W�=�w!��T�=�������= � ���=�Am U:�=�ۣډ�=pv~J���=�6�,�=������=�m��,�=�.F鯻�=�� ;��=���=�=FG�cx������.���4�,~v��Q� �z�9PY��4���j�������߼�����_�����+�,���^ �gcPY,����� j��d��U� ��6 ~�M"��@ �����������v ���a�B3��n �h��տ�,��Dp+l��d+��Nu���v��g��Ϯ�E� ��e�ɘ��v�)@0���A�%�xwa������ �J�� ���-*o?���]Nn$�|�S��� �������e�:3��8K��H�Aǟ���͛�R��K�������`r���"b�����hJ=e��,HDn���������uD�����g��������>��%��<�Nl�2���e0u�/ƀ_���ʏԠ������%����K�p ���c��-���������΁��G���_E�/X��s�������R�����<�����:*f?R�����[A���<��w��%b�J��N&(�z0]�9M����-��M]tA��Ī�9u�߽ ���\�HZ�1��ب1��׽g�$�G�н�tc��ڽO ����ҽ���̩7���%�*�ĽO�b�<��pN!��ǽ��C�p>�=8�ղ��=� ����=p��`�=l��Lت�=0d~F���=}e����=&�y��=}i���"�=�b�8���=���8C�=T�(X<��=pL8���=M��~;�����R{�Z�-�6�5���ѓ�f���](.轁�φ3�ڽ�驐7�����Eג=I����D�!ǐc�=�W�Bӽ���(��=|��#\��=L��S�=�Mi��u�=�K�?l�=�8�O��=CHW�Žɯ��X�={��,`]�=(�7{1�=0)x���� *�vJ�����������/�p���|�I�������l3��I�������E���(��A� ��1��qA �Yh$ ����� �U����8\S��7���Ɣ���������ԋ ����z�<����� e?�������8����>q���Ty���� ��15���H����V���B��d�L�����a�r�t���AG^����>.������W��-��J�%���V�����u����1RVi%�Bҍ~����^p1��ᦷu��$��罣(@֭�⽜��|��#"�>佹�Jݽ���u�Խ���W�Z߽HUh"V�ֽQ�h����W�sAWʽl���� (V��̽�DU.Y�=W~��М�=��@��g�=�����=�j a�N�=m=o:O��=_�c��=�jJ��y�=�L�,�=�=!8�nK �=g������=|�� �= ��2�%�=�y}OM�~Sɮcf��a�+�o�Ŋ�������k۽B‚�?�=����½3ž/���ֻ��G���O�$˽��D!�ܽ� �f���?\����4���oI�6�\������#������ߩq����"���9x��6��*Υ�b��c����t��������a����ē^��(R��R�H �!����,�& ��e �)ކ�YeC������M��m���\z�Nm��R5~-���n+�O���NN������D���4�}S���gհ���J�_�!���O�������<&/����a+c�����Ȓ-���adR�����Zl�X�����4N���� x������/�=����W�R���OP�����$aے�*�� �c�����&�)G����s������w�H��r|�M���X9���4xql&��zeeg��je�g����QIT�j�Q���z��� ؽV�F��Y�$4@�4ٽ�#ֺ����ݞk�ν̻���ܽ��m�g_н^�f5�=M�%>+��=����_}�=s�mn|v�=J�'륂Q=ӒS�r=���]訽�Bl����D)�2���iB5��ō*�Q�нt���JĽy�N�lѽ\��s� 뽵7zQ%�۽;+tS����I�vJA,� ۽�VhR^何������N�| ��*� �����������,�b����u�z� ェ O�B��W(ᑾ���-� ����-�+���� &����W�����ʨJK���Wr��i���(�rQ����z$�E���챪С��WE(��~�� [�N?��q�sg���zM��5���K�C�B.��[���JJ��Q���S�����I�q��=��!P��~h��W��^�h�{J���0[nL ������ܶ�������{�7Aֈ������0�H��\����@�T�dOoĐ��7�є���ѧ��8ڽ֎��t�0 �7��ڽ���-1��2?fn� ѽ:3����S�L16�ѽǠI>���+Pk]���z��[⢽̶��כ���OT㴲���B�>Ľ��L4G�нYc������%|�-ͽқ j�ٽ��hHH��b9��ս�o���޽��1n���&�P����_ϲ?�� �Z��$����R�e ��0?�Πt)���+R*�]^���?@b���>��G%�AwR����E'���\'&��XƘ����� ������ ��Z� 3z������p�����ũ@����<� ���*,����"uv' �� ߤ�[������`��c�2�>��R��$�������/�zY�\[���ei뽉CA��潬@��ֳ꽄���B2�F|��n⽆ ����ڽ2��N��὞߰3��ڽ��Y�����Y�E�ѽ��"���4��� �ѽ*���T�ǽ:����������غ�3{1�ó��`�{������(���ҽj�8ʸ�ٽLJ�-��˽���fJԽ��� s^�P ]�~�潖�L��۽hV.v���rP4��pL-���ゥ���M��U��n�꽸�T1w���Q��p���q.[Ό�n^����(�JQXf콎���h�1�����]l�m�K�{����lY��1��ͬ��� ����0�#�w�m-��g �BjDZJ���:�C� �Vڽ/O��}��Р/ٽ�4Dc��FV�L�yѽ�C�������Q�0�н��aGνH�����89����½���L��{���ĽH�>�fսӨ�/ܽ��HR�Ͻ<�_�@ս�}J����~uДۻ�1�x�!۽A7E�r7���{�X��F������6�v�⽡��G'5�pԻ��,��b�����ʄ0����I��b̥� �JI����+�M��5"W=��7_��Ὕ��(G�޽�-~���׽ h[�VܽDO�d�ֽdw% �*���:��,н�1�7���b�l=RνC�?Pν5L�׳��/�a�Ľ��6f����'|&:Sý�G��7ԽU��`v�ؽ�����̽���;֛ҽ�<���ܽe�+���G_\����?ү��὞ =DCHֽP~h�CBڽ-�'�ݽ�vsL�ཕ� 3�޽�:&^4ܽ� �\��ٽ�!�kٽȔ""Խ��A�9ֽfH(�ѽy�k��X��Wc�d��˽ QX�����ɽg�ܧ��ɽ�+�i��:<���������G�հ��#o�j�����z{н�e� Խ����ƽh�ty�˽ި1��ֽ��;��wս�Q�pjнi�Y��ѽ�Įځ�ҽ�X�x��ν6� �*�Ͻ�N;8�ɽ�:�^�5�������Ž�0? �P����]�½�o6�f½�d������_�J����6���d������f����M�[;#ƽyr7��Lʽ��oO��Ƚ�d��/xŽ� �kּ�:��dF���6ٺ�<���j��_֫��JZkio��4c���� )�� ���m�F����{5�������J��%�����ô��S���,A�ٷ���Q� �J��M�9����5��;L����Yvx䏽�]�M����66z��i~��u��=�~���ʟ=��ϝ��=��l��n�=T�� <ȿ=^��:�g�= �".&�="d!���=��������������������yH�=���{�o�=������������������=Z���=R%�;ȥ�=�x�" �="&�^����=�<"\�=�f/��=V+.]�=" �m�h��="q�d��=|OI����=����������������t�E��\�=�{Ej���=��+��=�"> J���=���sH^�=b�P��#�=�3$���=��1����=�A�^#�=���x|�=j�~B��=�� ��=l? � ~�=\�����=,Hmz��=f�ōz��=6&�❪�=��7/L�=�L�0��=��d3�=���Ƀ!>L� (J�>�%�ML�= ��f��=��]�J�=�Ԓ��t�=2Q<��>�=�-�|���=&Y����=<Q丽�=2s���=~S�.�=����=�'O:G>���2L#>n8�� >�y�, >�?a��!>����{$>� �M6>jZ���>Č��V�>�6܄5>���6��=� �2`��=ZPҟ">j'hX��>ns�Cb>���D ��=��J��=�nv�T>�s���=xQ-�+~�=������=`� �=\GCǂ�=�bg͒�=zE2�'>�z��C�+>����%>���$>t2�3�*>"F0��'>�T"P�$>*��s�%>(I��Nw/>��Ș5/>��#�4(3>� V�'><�S� >Dۖ��>H��/� >��@V( >p&B3�>�%^���>�Ix 8 >�^V�P�>@�}�p>�Z���,>�"&�$>@W_q��>t�w�z�!>X&�q3m>�L萨W">���� >�G���>�'r� �>���]��>@A�6r�>z��#.>�U���=�j-�mZ>d��R�)>N�.+���=��i� �=|"ڢω�= �� �=�����i�=(��;���=�����=��%�8��=X��ڮ�=�A� IO.>D�P#�>���v��">���y�� >�Dc� %>�<�z��>�p\�">Ny�7>� >(��(�:'>��7�X�)>4�4��5$>�?`Tp�&>t�n��>���L��+>�T�)��+>؟��1(>��RXͰ(>��1�_�*>� o��*>�#��}(>^| ��)>�N�k��>��E��>@�8v@>�w��>�?�ʏn>���B`�>�����>�lI'�>v�ߪAI>Xj�1� >8 s�V>NVjP��>>�uGX% >`d㲜>f�J�<�>|��J��=�`"T?g>,�d8�>��sM{��=*��ת��=�*����=NФn��=. ;�]�=@1��`1>GHRԯ2>�-_�T->� ���Q(>TZ�k�,>�y��~W4>zm���'>j0��)>f+�MW">��q �#>L,[�_�>@<�!r >�$R��>prs!�$>�5b�%>(^�<�K!>���6Y#>���K�->J��c��1>��#�2>xY�nX�.>dd�Y�D5>n }�с4>���\"4>E��)4>��A촥 >�%����>�/-��3>~s�A>L>���=�H>�2�x�Q >����&>���)�m>�}�p�>ʒI��>����>@���5>F�sy��>ϋ�>>��u�>�`^�� >ߙX >h�w���=jAnX��>`��^{>�� �U�= �*�O8�=vS~�eZ�=8��$��= �t� ��=H����=> ����=:��Ge��=4J��t�=�Ƽ�*>�c�+M�)>ؒaj�(>��ؔ��(>�Һ2�g'>&�i��!>h���%>@�C��#>~��� M >R��H�5&>���[�#>�)E��">������>�I|ܖ>& =��d >8�z��A>V�Ba&>��� j'>�76)'>̍0י&>,^ ��#>�d�w�%>N( K�$>|�ҽf�>�hW��� >�� `K>��]�D >G��>py�7?�>peT��>�%u4�C�=�\IJ��=�S7��=���d�>�X�&E >H�#"^S >������=�H�Y��>�>}D�5>ސ��/�0>`�~N {2>�r��k ,>�?}�f�*>��q/7�%>�_��r0#>Ə1��&>��1�k">(h���>6�Hr�>Б/̞A>��%�$!>h�|}��>&'�Z >8�[~�~ >2���}�>h�q\p>���l9�> ��� > ���3>��S��(>�b�+B�->�?-�&[*>��`6M'>,����m(>$�ѳ�1>ܸ���,>�0�z*>:���\q)>L��?%>TXh�V� >pG�H�� >��0Dy�>f�Fڅ>pM����>�K�K� >,1�5ҥ>Z��>�� �z{>։%b>:��X>�Q(QZ�=�q1��>r $�"��=z�G �!�=��\J=��=dkc�?�=pkkY�=�.Qv8l�=>����=2[��=��4�=Hs ���=Rsu�Q{�= �X��*�=�m�j#�=*��Y���=��Cɹq=�c���(��''>��8n�n&>�T�{ &>p.�j%>��e�%>�dH�;�$>�;�S��$>Gef�#>��]⢶!>�!D���>4y�i�">&=�d�� >X|���>�ЇR .> ��<7>�)�[�[>l�� N#>�ixJa#>rgJ��e!>�t�w�!>��+ƭ!>x�g�U>pU�5�� >訆�~3>�h Sc>|���Pc�=*"n�@/�=�rv��3�=�{�AP>�]�/�c>�Խ��o >�t�U�k�=�� R'�>Pξ���>@ �� '>����z#>D(LH8�%>0�H��">0�q֟�>���w7>�'ʶ� >Z�����>NF�%�>�t/_M� >d�$���>t���� >T: !$���ܟ�(���d����=�����νvJC�M�=093*��=a$3���l�+K��=-71߽͝��b�r1$>< {['�$>R+�L��%>0q�V%>S�W |�9B">Fl���">�U?C5�">N��2Я#>(tC'�Q">�r��6�!>�@\��>j�g �� >�� >�s2?.�>��L�WA>`����=x5����=\��(}��=.^��D5�=�Ma�=*{��%�=(� 1҆�=l� *< ��#>��j�I">.� k��!>:���^">r쇽��!>� �v�"> O4�">� g�c�!>V���!>n�ު� >�Eͼ,">u�/�=�3�����=L�y�[&>*�:#��>1S�w> 7�5 >"����>v��y�>0�a?�>`Ֆ��� >F҇{!>p�W�!>P#��!>t�ds>T>Нaf;� >�Aj7  > ��l >8��b{� >f ��P�>����U>4�l�O�=P�ҵt�>4��w�>\�0�3�=p�A�M>B�i�ߗ>�ZRO��>2ךw">J:(�S#>B>쌀D$>���E±!>��4�ȯ >��3�b"> ��cCS!>̘Q��">ʇ� �#>PSm��#>;Y� $>��}@�6%>��Q�W�%>NQ#f��%>��?��&>JU�q K'>�����0��������{������C<��d1#� 0[� �>D����>�:l��>��F�j�>^w/>�_7ʭ' >0�f^���=Xc,Q1>�~"�[I>�����=d�[s �Bڪխ^�Lx�A����,Q]�����2Uo|� Z��~�=>M�Pwi��˱�T����m�l >�B�v� >�g=��� >ȥ���u>���>طy�#>@�m2��>�Ö�Ox>�3JTQk>�t�Р�> 6R$>���� >!�p-�>�W��`�>DA���Xޠ����hP�XI��=�� ���3s��SԽ��i�n�j��Z�� ΒϚj��Zm'�H"�NLѽLՇ� D߽�D5�����3���t=� '�Խ�&�ҥ>nSwH� >�D�3��!>~ ��!>pLu7��>�@c%l>��n��!>�kab>&�\��h >�~�fi�>�����>�bd�U�#> � ��{">�BN�>d > �����#>t�H�'">�KeS�N�=l�R�q�=�͈J��=~7+���=�vr�G��=��0Ha>.A�$�=r���>֓"&T>�cqn�z>` �m v>��اB�>2K:My& >��S�u>�eE��>�����g>@��*~�>dH;�/>�)�{�>j{'��>��]a4) >4wv�>��]QM#>2�����%>�����t$>���">n��F'>j,��!�$>�ڇ�#>�릦�� >�� y>B��FL ">�^���8 >x'!���%>�W�(?�%>�2v�('>^H��%>"��j�g'>���>�(>��}1*)>����)>�����,>����S�(>���z>�'>��>�,>Dktd#{*>أ/)hy���_|���@yf\�I � |I>!��"�W� ���%���d��"��7y��!�XP�r���J�������t1�8 �TH`���: �ǐ*�ܲ83� >B����=6�� z >\�BJH�˽Hj;k� >��cF�=>�~[���=e:���Բ�+2������R �pOw>�3��7��@����T���n�b��|�B�� ����d/v>9�Ƈ>�e'�$�>�Y���>����� >� '+\��=�uW, >^Nтi>��@�{c#���)��%�X��4��L���"�l�.h�F#�$�j� ��Às�M�\��|T�0� �q���� �_�Zժ(h����_SS���O�t�x���4�����{��������Є�2�a��r�`�*�y����������H� "v�ƤX2c���-��JZ�����~om��c�=����ʗ3� ����|���ֽ ���1s��0�E2ؽ(e�Q&�������n�����=4g�m��= S1�f�=��:v��=��J[[>���Pq> y!)p}>#Q��> �jׇ>L��γ�>�$?ą�>� ���>$�l#%>xz1�@J#>���W'>v��BQ�%>����e!>����P�>��V9oa#><��a!>l٣�1��=���DZ��=<2��c3>HO�����=$B�R���=�� Fx��=���$�(�=�0I�\�=�'Y�nS>��oe >.���[C>1܀Ɗ >h �� �>(�� ><.�>4�_��>^� ��>Ⱥ/�< >`#3A��>�օH�>*F��Ƕ#>������>�uUi!>� �2�%>D���>��6�#><�~6W� >b��*�T&>�GM%4�(>�W@��#>��yL�(>p����t&>�� _�c.>� ��&*>^�-g�->j����h(>N��6��2>�HTH�1>��stF)3>���,+J/>L}T�"�+>t�� �/>��Vtw~4>��-\Q8+>� R.���=x�r�`��=�DhF�>T �"�]�0�G�2��=�ؠ�3��=���ܴ8&�>�? *3�X�H<�@-�tM}�ý(�`/�A.��Np4��(��}���$�Be��j�!��G��?�%�b1T�/#�hy H-!�.E��%�(�:�����G� ���e!�!�,��4��꼊���tT������I7�� �F `d�&��\#f��8 �j ���ɴ���:�� �֓�q���,=��׽�����ֽ"cnp��@:����h�\��T��E����n��N��.�҃�5�d�wo�����70�Խ|}e�ҽ�Ozl���=Nj�iO��=��ud�9�=� =�=��n ��=���Y ��=�!��ќ�=�����=��S��3�=\�����=�����=��f@�=*>�Yn��=ԟ�]j >��¡>�u�!���=L�k)�J >�J��Z>H$9�J�>f_2��>��~�>T,iTG�%>��4uA!>�RlB|�#>^/cՑ*>��ݿ��>,�w��W%>0�/�fn">�㣽h)>�=CQ��>h�O��>���V� >1⏅>*�,���=0c2[�k�=D��El>88�M�`>��[���'>p�NV��)>���8p->�x���'>&�9%$7)>R�8E>�����>�(rt�h>Pf<�Na>��:%y>�(4">� ϕ�>���#>8���|>��Jk��> *R�޴!>:���&>�e�J��#>b*u� &>^�k�>= >v]f˩�#>Vg0�K�!>�.��� 1>j�b�:v2>8E�/_�+>�d�6�'4>� J�B5>N�]R3Z4>�:��4>�[�Rl1>�<���2>l�o�p]->����,,>2*�AK>1�.��o�2�HXr+G-�$�����'���:dž�,�:6�SM�4�&-�%�&�\���jv%����#��8�*�| /�x&� u��+"��?^'W��d�^C�n$��\��!� �kG#���I�3��������5�$c:���:\RP�ȩ�"�ݽ�+!v��B�+,�:�tg!����C#y\ ��xl���Y�%���4�C�*����f�q��o6́��\�߇$��̨�b�4� W����5����x��4�Lc��25���*'Ox'����R;,�L^؝=�%�"��b�E(�.'k̈�1�n��ǐ�3���;�M�/�ܬ�r]z,�<���|'"� �� �)��^A%e#�j?U8m@!��V�E Y��o�e0� �s��r�㽄�$ԵV��{�t{��f�+����>�?j ���kD^������X�:���hν�ң�����jB˽��_]R�H�nLlݽll3qռý�]��u��L�YT���=��X��=��~q!��=�0 9���=6��=>�\7F�=b��E9�=��{d�=.l�9N��=���)`�=��p���=Ʋ�\}l�=�R��-�=@R;kf�=4�RxjZ�=e�E���=XX�8��f��T���wR�>�>y�"RC��k�3��H� �����٦)`��=���?sV�8K�+f �x ��_ >��w��>h��./��=�az?� >z�r�L>��}�^�#>\�5���>�?u�U%>��>n��� >�m�B�>8��˺+>��rQ�F&>�C�e$�!>��<�$>v$Dz">��Q � >���f��>�[��>���=[�>l  8&>HҌ��>�:��� >��˱�>2C�8^�%>L*����&>h��4.H#>��F$>bwd �'>̜��q�(>,��t��$>΃Ѿ &>ٸ�4�>�-֢�>0=�<�`>�D'# >r�@��>f! �U>,d�� �>6���`!>�\��,">�9c�Л>� �%A >Lă/o�0>�t�A�,>��w�(>��@C1�(>XpkȔL(>����#&>X�+�kR&>�����P$>h=j=�#>@�M�����_����!�$�-�K^!��oZ >+!���B��5#��#�$��d�S�X������1����Tly3���H�"z.�`�[��<+���� �&�ĹES!�j�*u�#�"�Qa $!�������(���c"�%��dtq#��V�/��v������(�� �lkC-��� qAM�(��4��MM*�>��e`^%�H��+)'�P���5�+�p�oԆ+�B> �(����)�N�m�(1 �,�Kk%r�T���!��- �~��@��%��]��#��%m����������cY�ݻ���L���*�:^�����;����9k���h�9�~� ��cr��f��'��b<���J�@� [��:�����i=�-� �Bj0<��x�=ch��h�1���������y��"��yS��נ�gt��X�S^_���cn�b�콦gU>��t$� ������9���\���׽�b� �ͽص�1�0�׹��׽��� <ɨ���ocb㫾�j��沽�l�pfbʽħ�:�=�����������������ge7���=�ÿ���=�5f�_ �="�`#O��=Ȇ����=0d�$�4�=��S*^�=Dŝ��=�PK7��=h"�"> Z��!_��=FmI<>p��`9��.��)Ǒ���Ж���ě.����A5� �,a���l��2yQ���d�0��,�xT4Koa�=���pR�=��� �g��y�H���=��3�?x >(�0�5C>|�t�]|>�gzi}>���ݓ>��,>��� >�x���"><~\�J>��<![!>Pv�'� >����>���fuY>���2�F>���x(> �ڴ�>,=3�r >V�7/��>@*�#�>ܜ֑ � >�8�3 $>l�&��">NRw3$>�br���#>�!Z�҃ >{���">�E+j)!>]�V� >׽�|�>�~��>\��mQ�>~���z8>���0#>v�,�p�>t��0�>.�9��#>��I��">ti�+=4!>@��Q >> �'3!>|�e� >X��$)>d� ���>��#�x>�e���>��|>���FZ6>H���K�nA��:!��c��^#���.ѵ� �6�}C�D$�ж�b�@%�\0��EZ&����_�&��cӕ&�*�.���q�&��H�[�%�T"�Ӊ5+��E��))�p�t5�'�DIMv]� ����l�"��f��]!���S!�"������*�FL<�6n'�nx��3%���k�-+�"{�0�G$����p(�V�FR&��ש�,�*�x���*�,k���y(�&q�j)3)��Ѽ7]���q�.T �P�D+�c����~ˍ � �>\�!�v����"�f���&�!��0z|"��C��$��(��&!��J�8��"�ey�b&���]���!���@{�$�F�ջ�"��L��-#�p�!q��$��(�Q�� �pNY� �"��+Cåg*��5r=)���m)��)�(�'�v���%�h���,�'��/�|��&�t� �J�#��k�d��&�n��c�$����m�%�l���;��T�R����}_�} �h��J�-��KǦ��R>�x����꘶��@z�BK��P9������*�\��SوѨ�x�a��4 �F�/ד����T����L\���P�v�������,������ �����I� ���(g���jR6�s���N��)���!�M���㵁��꽰�NY\x�֩��J�B�ƕ��� *1nƽ����]ӽ��Uv�翽�Y����ڽ@��[��=<�_�5��=�����=~����=tD�?(�=J��.J7�=d�ɛ`c�=���H]��=0Ɯ��=��Q�>�ݒϲn>X��i�=Nq U��>ޟ��x�����A�,�t������k]v ����m8���{��>���9fCT�=@�h�o5�f��ʙ>�4I^�F ��.脐���"H\��`�=��l9�R>N�w0?�>�F�a��>���p��>b�*��=�tϦ� >)w��>8?�M�J>��0܍\>:TF�9m>��r?j� >x���>� �~�>N����6>pē�Vw>"�ݱ�><�u%p�>�-��G>�^m��+>B���>f(��>����>6�m��)>L=�W&&>��b�� >�?2K,�>D=�Ҟ>�yv'��>$dI�m�>�L!�2# >��h�/��k E�R#����ί�F8���!�PL�GE �6�K���2���·n�,�&Y ��'�4���8-��,X�&��#����(�R� 9�1�*���|3��P�~��.�prE޲�*�\��=�e/��1��4��+K��*�ҡI��R'�j� U%��V�tjw(�^��܆&����7'��a�#��x���%�$!��(#�&tO��$��j�s�&�2*+��'����ăp'�r�xd�&�j�����$�6��C�%��|��%�� ��!�d�GX�i"���_�"������"�@lM�0�"�D�RV�_#����_��"���b��"�<�� ��#��؊hr�$��#��b#�|�_d��#��Jh�b�!�0o�~��"��)zS�@�`�ͬ�� ����6��%�tϵ��#�~&�ݡ�$�Z�=�O%���x+�!��8L��"�(�� o�#���*g���䑝9z� H�f�#��'�8�Y��� ӽ^��`����;Ͻ��n�H归g6���=�F¡�=��yh��=�+�-��=: y���=�:�"�m�=`�f>�v�= �&�=JD�g���=��S��>�n�s> S4C�+�=��{Rq>xc"4��@�{M���6�Pa� ��V���2� �{��,1�U���k��Z��@;`F���9&NཚTwS�>��0���=���&��>`V �������N����Yʷ:0�=�D0� >��FV�>Xu׉�d>Th޴�x>T�ݹ�H>�N���Z>�pB"�� >6.�. 5>�vͫK�>��Ea�g>�4�� >��O[��>�V��F >Ά�7�>��o�>���Hd��=�� �>>����=f ��#��?K"��B����)��i�p5�$�����I �4;��q���=�2�"���M�)8��e{��5�Xf��4�\_~ž�4��$�.+�4�fӛ�:1�>�d��/3��<��Q.��D`3�3*�m�d|.�dI��wa)���r<�W-��9�X_&(���:���)�6�{x;2���Q�3�3�� m��/�,�;��-��uoPc+(���Ǝ�%���?�X&�z2����&���7;W$����p&�.���:�$��rj�:%�x�U���#�,>�7}�$��fcG*@$����d.#�����#�����#�� {4 #���h ��"���]5�"��wI~k�"�~I�X�/#��%Qc�"��\��l"�>�/��"�rr��jd#�0۔г#���E��"��ߘ�"� \�o ����9!��aփ 8��� ��� C "����)"��B��9 ��d�5� � ��?y��̵{h`L� @��Ϥ�$p�݆����W]�!�<����^�V"���Q]nD�b�A�J���k���#�X�ӆ�� � &砓0��;�q׏��R#qLL��3n����*��h���@I:.�ڽ��ss���B��׽� �O콤�"�:�=q� �a�=Q ����=���h�=��[��\���$���Gy�i�&t�u���9�� ���.�0��� ���ངs ��=��/܄���q#����^R ���U�a�>������>��{>Ό>�ٮOw��=�@Y��B�=֗����=�ʰ��$齾@�m+�=������=֒��r3�=� �q��$��)F}�!��Iz3�'�d���#� /P ��.�:��.�B9�� �L��j"���@';�1��Z�}�n/�H��2�-���}D�:-� drː�)�4� g*���Ĕ}%�>=�4!�&��+mа�)����_A�)��j�Ѩ&��|}���'�\ s�)�p dI�*�Ə���q'�T�_$�'�����L�+�l�t�*���_�h(�le�|�(��bԶ��%�0g����$�δg=&�����;$�L����#��2�n��"�t���wj#������"��06�"�bx��b"�N3����!���C�!��q׶�� �N��D� �B^��X� ���k��{!��`�m^!�n�wO�Q ��Zf1� ����L�p���,�Arj��[�I,(���/w��1�H��� '�ok�����XE�}D�N��]d�V��#�K�$�q� �0��J���9J�b��"���<�p�7ϯn�t' ����$�����ȕ��������"�y�4�Nk�シ2Ԓ�ݽ�@�U@��vy��=��_�1��=�:Z�l�=�/ �\��=������=�AU���=���u�=�c����=تST��=��%D5�=��]����=�qv`�=HL���e�=|��[ƃ� �� ��:;����Ж�2����b�ki�0 �:7y�=d}���(�"ԅ�սx�fS�y �BAa��1����>�*&>̫2"���ً������ŗ#�|�PS� �P!�����٪ |�\>������"^�2��,)��հ�E�'���[�'� ����.&�:��-W"$��#���%��� �TD%�({�֞b!�N� ʤ�$��� ��"��`�}v6"���ކ&��:��e&���{�#b&���Jh�"$��?1�5%�x�6�!$�B�54�$�vS�0��"��{֏��"��%J:-!��k�-�!�ܽ=��D �.ף�!��J�֥^ �h�u����E����vj����� ����,^0 H�LX��I!��.�L�(X���Z��Mx�!��vC� ����u|2��Ι�DV�H����D���� ���\������/w� �R���B��tJ����"�q���H;kA9-��v{?�F��>;ǾN��rhˡ����]�����Y���k�=_B�"}�=z �6X�=����R�=�Q��Lu=�$�Uؖ=�9:I=�ͽ�ր�����޽�+ؽ&s� ��h?�����٨^�I���v3�����7�M<0�Z] no����4���Bbl����h���.�B~�+b� ̈́�F&�x�*��(6� ,� zֈ��Hr�� �戁:���ߋ�����p�B����U 9����#�����P"��)4�2#�JΜ� �!�WM��h �S�d+�b�`sJS � u�v;}�����@"�l�Aџ� �ZS10!�lD_'���_� �W����.�F�|�C�T���VҦ��$q�Du�A'wOq��yg�7��t�9�J���{_{���wgv [�$gQa��#�&��i�����,�r �z ��$�����(�ޜ ���{�nc�(�̳d���ӝ�����A�����^����r��Ph��\�G佘K��:���r��7 Cڽ��+m���xG�E�ƽ���}���`���0dֽ���!�;� <ܟ�x�󽆁�e{g彤^_�g�(d��������#����q�% ���v`y��$e2h����="�" ���y��s����c="^��u��9�" �r �zu��ryȧ0�ܕ%,�b��mik��� $����a�ֆ\� ,���e�� n�1���k��s�|m���nt+��*�p?���n�z�.��j8�u��p��b���e��7�*m�0���~���h���6�q����|�> ����и����"/ �hu��q����_Ye��h���F�7 ���UE����Sգ�� ������>7��c�6���~P�!�*"���h���r&�T���G���@��%��N��@���s�V�%� 9�'��ʽ�����{�}0�ѽ����]���hk���hk"��������E$���dJ����[������B? ��^������W9q�p��C�'� dc���`����� ��B'��`4�S����M��`�J/25�B���\�ZE����`G����1�h���q)ɴ��������4�]��p�^�����`E���Pz� ���M�� ���/�K���U� ��8A* :���?�+��4܊W�����T�y�~低X��!����Z)g�<׺J������$�.��սjo�$=��|5w��׽h�7B��罞�j����������`ྠ�@�x4q���?�Q�����l�����=��c��i���&�S ���?N���@\�۪̒c ��D�d`D�h��� ��#��g& �ʫU�� �����Vu �<܉����X�5b�ۺ��}������� �0� v���J��~��0M֩�`��D�����`|o�]z^���։� l&�f8�#%��;#q�׽���С�z�W�q}׽:����"�J�CP4���s~����� o3E��8�� G��Ҝ�JU�^ ��d��~����D�d��꽜�d=z�����bO����N�,���z���d��S��,�p����f�ޜ&]�hڰ�[%���(�����52ؽ�{O8?꽴M���۽g�R���n�!�N�0���^ѽ���h�"ོp�4ͽ�t��ٽp�������/��|ィ������dM��齞�{iC὚��`f��[�vhp�n�ǩнL:���X�S�wԽ@� �U�Ľ���hKؽ�f��"̽�p�s5Iνp�2�)��H�c_�'��T�-��(���kn紳�x7�ξ�����EN�39�ξ��� �QξL�O��C澚�YI)Ͼ�ܽ�F���ծ�ܾ�V%�"=�ђa!����������;V���7}�`����� p;龆1 ~����D���t�2*?b@����T9��I�,T���w�����⾪�\��(�kr���� �����Ƕh־�#���u׾y�|�d���r g�E ������Yd�-J0�j�> ��#�����X��� ��:��_ �>�e�b�>:"DP�������&E �"9�l�a�>8J�(�>�!6��e��n[����T�7ls��<� 0������>Lh��J��j����� *��;���� ���:`�0U�>\��If�>b �]��>k�ޭL�>�t���y������K�"Ͼ$����ξX;���R�>�\c]��>r>a�>x�ku�,�>른��>�7.���ξ�ݬ���J�հ�L�> �.d�9�>������ܾn��G>��!����>�A|���>�g�K��rX�����¦Y�4��>>;����>�CIj�o���� ج��/# �U�>�Q!��?v���(���s�t�� �v�>0;���?&�� a־�O��{׾t�ɻ��>���3�?�� #��c��i�y�m�>��˵� �>O��w!0?����@ �>��Q��c�>^��) �>7�L��?Hr��^�>���`�>�����>w���o�?d��gr��>-z�o���>�_�u�>�� ����d�>��ӍBT�>!!�6��>�����>�^�@L�>�K��M��>�5�[���>F��3�V�>s ����>�Z ��>[9-��7�> p�� �=� �l�k�>��iR�K�>d�FG �>���),�>uq~8���������?=m ���:=��+��`P=�@��[=�ZU�Z=|�L�tQ=h=�C=�f=����i=x��Sa=�Q��.�b=@���Ch=��|�wp=���8t=��s$��u=��ef|}=_� Qq�=8�a]�kt=�5�Ch=L�L����=�8���z=�,W�m=<�h/[�=��j�3l=0PV�z=�o��=����h~=`���o=���q{U�=�\�/9�=�+�����=ps��d��=����Y�=���c4�=��@0$N�=�[?��=����U^�=\� H�(r=��$��Q�=0�,��=Ȃ����u=(#yV\�=u�;��=���kq�=Xu��F��=�1�G+�=/xl!��=ؕ=n#��=��!����=�I�p=�H���=8� ���=0n�#$�=x^V��op=@r�>��=��`�!��=�ܵ��=�Y]'��=Hs�X�=����=+�=x�0�B��=8:�4��=�=�w��=<��y ��=-�wok�=pߺ)�q�=(���se�=ƻ�K_�=��c�@ۢ=ȓ��R�=�~>��=�k�my`�=�D .���=X�m��=PJ�f1�y=`�/��a�= ]�Zz��=�D�~u}=P�t\![�=�@lh �=��(&Zp�=7�)��=<w�w�=�M�aѴ�=���_T�=����=�k���_�=�i�(�=�w���=t��=����G�=����p�=Xt�g��=�� dץ=*��\̪=������=@�s����= ���6�=,���A!�=��7ʬ=0 ^+�e�=X&~Ec�=�j+c�=�n�'W�=}�p��=�`��k�=����XK�= :��=@�&^>E�=�ȥ���=H�] l̜=H�� x��=�R�;(��=P�v��q�=d����(�=�Z����=������=��Iiܡ�=���S�n=H�1%']�=,�1A�=�d�b�}=8�Ɲ��j=@f �g�=�F�)Ҟ�=�"�Wֿ=( ���t�=$X� ��=@��go��=���l*�=�x�(��=0磱�x�=��s#Wx�=��"���=��F���=p�)� ź=��6� �= �� /�=@��vG�=�-��=XF��ƈ�= �ݙu�=p�� H��=8�a/��=���H��=��D���=��(��=��&��Ұ=(3)�M��=�%��г=@���r�=YBM@W�= x�oWס=���=��Vf5�=�-p(���=���ˌ�=�66Rߪ=�C���= �cƎ:�=�(,�Ǣ=Ĵ�å�=` WL�=0]���g�=���~��=P��o]Ә=<�h���=�:�p�!�=��q��S�=xk��Е�=�-yb�=0t�*��= �0 �=���'�W�=P|�%��=pVJɾ�=p"C� ��= �K��=�g2����=(��<�n�=�N6GՐ�=�o� �%�=hϤxk��=�I�-�=� �L���=�,��=�����=�� N��=9-���=�V��0�=�50����=�����=��{���=�cԴ>8�=Xt��֬=����ٱ=��1�Ճ�=�$M9���=� �Y�q=X ��XZ=���[Y�=��:"p��=h�����=P�B;H��=Ȣ�����=��{%��=\k+K��=8�o_Ȇ�=�����S�=��Y���=��~"Z�=@�NW�T�=�����=@�ޛ�ݵ=㬛_{�=��|>��=�rvm��=�+�,!��=����i�=�ن���=�@p����=L����=$<��n�=���>��=�C�0�M�=�z�lU��=@�g��-�=�����=�nP�~̫=H7?Lm�=� o��= ?}� �=�1p�5�=���ނ�=0A�#��=8ga�彧= .v+���=.k�l�=\���ϝ�=�l�S�!�=`kJ��=�}8ƀ�=P-���;�=�sv�=�&}�S�=�����=�D@��=0�H��=��$9 I�=����}�=��nǖ�=xPܴ h�=h�z �D��=����=h�e2V�=����_�=0��y�=Ȋ��?��=�7��X��=���M31�=� ��GS�=D�ԋZ��=a� p&�=(x$U$�=C�[$��=t]�R���=X�=Х�=�9�(���=0V��#�=�|� ��=<���=�s1=O�=0;�㴽�=��b� �=���w �=����=,S]�ې=����Q�a=�X�Z�Ֆ= C`����=�3B���=�h=��=T@� �,�=xo)w�u=�U��o��=��=P�t=p ^�ɈB=�1�!��b=P#^=��ݸ{+ =�MTI�A��w9'T�=�bTt���=X5�w{�=�!� M��=l�x�?�=�����R�=ĥ��x�=��yZ�l�=���=�G��m��=0i�ͮ��= �=��7U�=4A�06�=�����=�=����=�Ug�v�=�|n���=PF�W�q�=��S��e�=8�J�~�=x5%�=�� .��=���3�=�c�����=p~��f��=������=@��qҾ=�(� �=�eK�˿=X@��<�=`�Ul��=�w >f��=������=�9f��'�=�����=^�/o �=hM����=�%Q���Hg)�����8A_ Y��L�G?������S��}�w)����s�[�=�:�燴=�rTÍ�=8冐d�=�e�����=��'X�='��4��=�̧���=cR�|��=�i��X�=�~�[k֙=M0m�X���k��w��`��Cƻ����aU�����@i��X����6j=��|d1����T ���8jh��=��_�=�wbs�Ż=�T|�X��=�C��&�=�w���=�j1��=P���]X�=���$�=`i�睶=�"Jİ=p�ZI��=��z)���=�K׳K��=�HG[w벽HEL������=l�h=��-�{��<>���q�X�yM`���^�k�����e������S�����߇/I.����/��S���ܟe Ԭ�����oߤ��H1:e����x�����f3Fb���/1�C������BŦ�� ����D��d�H���Т�Ï�� X��Gm�(U�8z�(�*�>��@��r�o��ST���q��5��~�=p����0�=O2�Yi�=h�X�2��=��� �=H�X�� �=���Խ=�9��4�=�ld����=hg���=� D�7�=���r���=�������=it��y�=��p�j�=�J"��n�=8) 2�=PQ1�+෽8�U]������3P���*\���@c��K������n��M ��:��H}�?Ǘ��(��� ȵ��.��u%���V���3��@��_!&���Cv��}�W.�=`��@~|�=��x�gˠ=0iR��g�8UN`{Ԩ={�O�=�(zF���=l���쯽�r������X���h@O��!������䆽�`������l��s��yʻ�������h��=����]�=���k�!�=��嫬=�L �g�=غ�x�m�=X�̯��=�ht�O�=L5 �A��@���x�����a�(S����X�J����R��)��pQ�˘:��pH7����Ġ ��PX�+����p8�ho����m M������ �=��c�!�=�ݨ�=��B4�`�=xL�t(�=d�=ʡ�=8�[u�=���ԉ��=X�v�I��=ȵ D�������(@��h���ew=� xܸƲ���9rV̨��Bj����`G�r�= ��<��=SSg�=��� �=��r�X+��ݛ-��W=@�� �ݍ=L�=��½Nн��i���ȽkO�y�Ľ�.�4,ɽ`�P�Ľ�4��r����C�������'l�`½ �=�_������������h���%#A����P������������"�|�����=´��_�/�v��xN��¥������(�Y��-��h�9Zz����&�a\����hu����Z� ���ф{� t�lr�Ѹ4s�(>*������ԍDb��p�Bg�S���J�5E������탽D������`q{�*��\��*?�q�x��S�Mn�@�/���k=������d=h�~�\=qN�+�P=��z��x=��R�� �=PE�L3=���L�=p+T� ��=؂�5Ó�=��Td�=�fl�1�=0�i?�ѓ=0�-H��=XrH`�9�= *u��=�h�@�=�l��h�=z�^�1�=��-�mv�=H�Es{�= �e�l�=�%̓���=\v�d_�=�$]E�=X���=(Y����=���9�=�Qu� L�=�{pGv��=�_{��=������=H�^��$�=��K2k��=@ �w���=xM�1���=���Ϟ=��+��=���� ��=x�Uج�=�0%E��=hn�>�"�=8?��XF�=��\���=�W���D�=�3`#�E�=@��7���=��1�J�=�;�����=�)����=����Wd�=������=��=J�=h":����=`���}�=t0dA���= ��=0�b��= ���]�=������=��l�C��=���mO�=�2����=y��4�=(���S�=8Hr ��=��i�ݝ�=X���̽� ���Ͻ0P�8�Ƚ��ý�����GȽh�sI0ѽ�o9xFý$y�������1���@�õ}�ƽ� ��o�½�Y���w���m��Bع�|J���!���~OLZ̽���k�9���x�y��1nM���ȸZ��'����:�����p��s�y����s�ؕ�H1Y#���@ ���'��h��>/�c���d��/����Ru���z����� ۇl�婽�$��6�����~xѽ�=�=ҽ�H��6Qѽе}rj�ѽ��Qr��ý�(m���ǽ�n�\½@�գYĽ�R���ν�u��yн��!��ʽ��_t�ǽ5��aq��(Q��CJ��<�|C���;�E���U��@����9ı������d��� ґ݈������ⱽ��?j4ʭ��u�ޣ#��`X��ԯ����'��D 8sɡ����� T��Ш�@����T#������ �۔��.*�`���&������h����F�����ٕ��@F@�Л�8 x�P��`�럘���ޠ���`i��p!R�J|��b1A��f��˧4��������x�P�����`���.W�PP����@�tq=���BJpg=��lJ$=���לt=��Yj�Z=l��W�:=���H�P=<09��i=`�ر��=�<�nȇ=xo���I�= �B�=P(�� �=�5$��z�=`�#0��=���UN�=(P �X��X�٘� ��`���]��� C������{�Ã��8��E�K��l�܇�5�=���桽��%��w���=�+B�=����H�=�H=�78�=pki)��=�$^�A3�=̐QE���=(�8�5��=t����=�N�bα�=0!m��=����>�=0]UW>�=��`���=��6�p�=p�:���=P89��W�=@��j�@�=`Xn]��=��9e�=�+����= ͊�f�=��!��=�����=�ْ4�W�=H�.!��=�N(��#�=�m�j)�=P���X��=X���8�=��Ҩq��=[%0��=����J��=�(���K�=�b �a��=blE�=�F�:���= �,�=�e����=ȭb\V��=X�eXx �=�j�_Tw�=@�Ǯ���=�f�N�?�=ȆmG��=8��hu�=8?��O��=X�V����=��al�]�=h�ݭ��=�l�֣��=ԟ����=�ֿ}a��=�)��oҺ��61�i���p�n_| ���� b�ʼ��n�b���q����@i�Û��(�8 1lͽ���Q�SнX�u ��ɽѼ]"�ƽċb��½@b�� ���O�~���`�ʾ��P�D�^�Ľ����W½@���M���8�JVʽx�uĴ�t�!*ΰ��p��#�����̅(����h����������hr+^yj����vQy��P����@�����_Q����Cυ��`P���m��P;�� ���4e�T���7<�����p<��X����ޘ�L�� Y ���½`�/��T��hٽ]��������ν�)�B��ʽ�;���ɽX�_�OUɽ菒 �9Ľ8eSl ƽ��������Fy]�ký��1�`ǽ��6Mǽ����Ľ�����hŽH�G�'��@����ٷ�@������8�涬i���P�b����C#a����YްQ��8�� 4ִ�������(��i�Z����~�F����ϰ����cy|�h����N(��� �b���MV8R��D']���,X�<����^��i�����)����S�@����@('�M��P<>��������䅮rO4����6v����(7�Ġ��`?BDK��l �׿]���-�$�Ԑ�`�/u��������s���dEi���'����v��s�� �{��9�(#��Y�P��v�O����f>f��u��=0�`=v��e�s=�*>-�f=��� ��x=h�x���=����,Ƒ=\7>k4�=H��=�p�"z�=���c[�=�C�~��=�'*�7�=(�RS���$Ǯf���x�y�����Xf������&Go�������_�����d�u��(h��aG��x��{��9=����9��=�ȣxw;������}=X��?�ڧ=��� ٶ=���h�*�=��6���=��O�Q�=�Ot���=����,�=���ƿ=H�e����=(� ���=(�q.E�=������=�����=�@�`�=x ��=�,���;�=�2�G��=�n=]:t�=8�eF@�=О�8�d�=`�V*��=��p��=pFݓ��=��<\�=pV�E��=p6L����=�����ļ= ���=Hk��t�=���E�ظ=��)o R�=�|�=�9���B�= W����=���j��=��W�= O��"�=[^P�ּ=�K��Z�= ��Լ=(���q��=.9D��=�~>O�"�=���&��=�3�|�=���@�߷=0;��J�= dG����0�D�伽P�� >��h8�4�̻��c������� ��������½���"%ý��s�yƽ�bW��½HЄx�F½�@C�9�ƽ��B�Ž�/6 �ý����B�����I�����������S:��P/0�AAƽx7�?�ýx�xe�����V��ƽ0}����Ϣ�f}Ľ��7(��½(xN�qƽGv��ƽP!^5��Ľ`F�/� Ž�h�?k���(OO�9b����F�Q��8%b%�»�@�;b�����x�=4����n�����Y�+�� ��������4�ü��wx!�����3�G��½pv�3Ux��x�_ 4��@#�'�ɿ�|�՘������N�X�����o#o��`��ށ ������#ƽ�9.X�Žp$hQ Ž���9u�ýT�zYi½H��'�ý�����=ýP�8Jbp����`�ý�cژw�����:A#½H�]��X��(�������u��������v��(���\.���q�A����� �.޵�l�ð 9���ָg㪽t��7*<��`>� ���@� ��Ϧ�4j��@��0\��,���M�& ��T��9��(��p����HX�7������r١���V#���U�KO��� �<���o�nj��h�8�����}�K}�x擧Q������+�U��4����b�Tx?H=p� ��}��Z�����9iv��ۑ^�=�ê�e�i=X*O~��|=���JB�m=xu�8�=���E��=h�lk��=XW����=���~@�=@r��`��=(�����=��4�g�= �ѣz�=@��`�������$e%�����������������8�&i׳��]m�;؉Q��=x h�ڠ~���WNk�=�� � ��ȱ������O�Dk=H�ފYh�=����4߳=��qV��=�z�L�5�=а:lԨ�=X _^Lj�=�k��=�ɰc�=�'yǮ=��4'�x�=�[�Ȑߨ=`�M|��=�I@z0}�=d��{��= \ 99�=��)�`�=���y³=O��=�k���Ŷ=��bo��=�߅�̳=�݇=�=��#B@�=`�`���=����b��=Lp��q�=��*ZHq�=�������=��6s��=80��ړ�=(��q&���%{�3��(y r U��(�.�����H�+I���%���Ͻ�X�LȽsVC��ý��L͙Ƚ�6�½�����Ľ(�yg iͽ�L��&Vн��}s�ɽЅ�]>�ƽЁ�.SʽlhǓQѽ�?��ANƽ���e�ý��l ����`��݌�Ľ���>�½�Ǜ}�vý��Ё��H㖠����(f6Pb��D��+�����Q� �ý��Y��ý� c�ý�S|NX=ýpZ|���81��k½��g65C½����#���r���྽�w�Q�����������܅_����+�H`>����m�,�����ۿ�dAU ���\�%���0�q;�@����lXZ���`2�䢽���h�"�����'4����yZW��H��A�T½d��u���0 �Gƒ���}W�����(�>������L�տ�$3tS��������H����셴�H4#�AE��@xu����4辛^���.�����p�VY���������x# �Ʃ��]|T���� �fjR���$@��m������P+�ly��(ƃ0n����'Cut��$�7�oᑽP��pH\���$�/�����CB�� ��D���#p�0��”$}���\��/j�0�������B�U��=��D#tp=��O^�8�=���͋=q=�%P�p��=~N�?̒=`C�����=��b���= {���[�=��FlY�=@ w�Т=�&AQ���=�<��n<�=�Y։޸���%u��P�o-���4a��\���ǟ���hT�����3������Өƪ�@֕�n{��m�0~�=�]���=�}�� ��=�䙺����]o�f�|�0�]�%m�=��{^D�=xj�� �=� $ӂO�=�v�1�H�=LѾC���=xx��!i�=�l�0�i�=��׬=8���[��=��ґQ�=hp�1f��=� �ޤ=�3LV.�=0R��,Ԥ=��䵍F�=<��&͉=�E]�2��=�B7aK�=���Ӟ��� ���K��`@�n>�ŽH�_Ћ���J��zO��8�� ڷ����<���lT+^-����U�>ҽ�-S��0ѽ\'5��ѽx�:�zѽ86���̽����н`m)Gm,ɽ�C��Ž/��i�ɽ��GŽ���Ƚx`��?Ľ�x�Q�Ž���g��ν�_�B�wнx����ʽX ��n�Ƚ`�*�CĽ0z�a�$½��SG��½<� 9f3ý�9o ����~��½�ݍs���x�D-6���T��n�������]�C��|��;����LY�a,��(nXs^b��P������X/k�J�p���ؿ����﵃��h��Ɍ���p�r���/ǘ���8fx��徽p��D���e1�sB����������"�&��0&�����04�غ��D��⼽ �K������*��1(���ix�d���:ђu���<�Ժ��kY ) ��XՀ��˴��I2�۱��13�V����*����� sg����;0�@����ӛ]��@���ZG����k0�������: �����zr����T~Bġ�xk?���d�zzÐ�xԻqľ����쒽�f�6Mv�덼KԄ�p�$ŔOs���*@�1��T�=<G�q=��h��=p��Mp=8 A���~=����ΐ==�X�= ���$�=0��g;�=���/��=xd_��\�=�s.��= �`A�ƒ=�%���ɴ�D�c�k�� ����������� y��8�?o�F��貑������=�I_|�H��5��R=��2 b��t���}v��h3�X��ح�썠=8��yӝ=���a�=��8:c�}=(�`�{�=�n�� ��=�t5�?��@S���h�=�V���s�=@��N9t=d�J����p�� �f���b��ý|�\����0�@�gƸ�@}'IG��h�b�껽�L�5����x�ν1`�Zʽ�8�B��Ƚ�S��ƁȽ���u��Ž�����Ž�-|6�½��\�ý���kŽ�4�J��Ž��x��½PmW�}�ý�4ש{jŽhgm�΂ƽ�!I)�ý��8�Ľ��k��ǽ��,|#hƽ�dE%wĽ�X�%�Ľ�8Yxm@½�����j��$<���}½hs�%(���X�о ���p}@�� ��xd�yyG��X�� �������<��p��I=��@X�K����znƽ�H�5G�S�� (6�Vܻ�����:!��hj9g~Q�����: ���%�M]��p��h����pN�����x�w��Pb�d���x�A��[�� ̹�`bmˬƵ�Б��"���T��'6���2������CjNƲ�h���z���Л�䧽`�N�����w���h���@R���u�;��0wʖٔ�p> 0y�����&���Z�v��{��f� �p��x|�  y�H ^��팽4�}��g�=�Ѿ޴k=�<�}y=�.|@�e=�0� ^r=�����=@e���)�=� v¦�v=�kG�,Nv=�T����=|� ���=�aj�� q=����P=8尰E]��ͤ}�������=����0���������h;<�|Ej=�e>����� ɋ3�,r�x�cwd]��� 7.���{0�휽���>���h���ܹ��L8Y��اQ �л�������(V��I-���th[뷽`��:J��ମfŽ`�ϭ��ý���O��ýl8�mH�½�!������cmd½\�������Y�Q'��$��Η�� �� ����Cӟ}����(��½\ϰ@�½,K'&`�½�(������Nc��� UӠ�����������0� ��?���} ������*�ͼ�!������ �G�� ���6����J�rHs��hu�[����7��u���P �N?깽�H��%���˯m�߶���5C��X�]�㶽�T�hﶽ���� ��dv�V-����f&�Q&������3 ��h��� 쪽x+u�I���P���8˫����i��L/� ���v��@"����;P�j��� 6�:M���T�˓����r�g�����+r�}���Co����d<>`= sh��[=�#~�c=�6:yU�C=x+� \ =��r�μ2=H���� i�gA��\�hT�W Jt�0���H���FCl賐��m�t~`��\��~��0z�_o&���#�|���Ȑ�c����5g}Z��@�}:%�� ~qʚr���Lr<���H�n�5����-H��4�䲽��#zq����ւ�W(��x�ҟX���L�跳��@)�勺�HYuY&����B�)����I�I-�����g��`��m���I��$����ī"@`����I����@�w����ضк�Z����u�������@B夺��<1&�G�������b�����AZ긽�BM����`� �g��Я�л+��x("ya����\�4��E�Z��̜D�F��P$A�J��t��$�ڰ�0��L��p� � ��8h=�s��p�-��&����0����~8cR��c0��)���U2uњ�< !�A����#�V��tU��ŀ�����1���(\ߒ�v�XA��;wB�P�f�b��n��[��^�S��r�@�r8�S��<��-������6ف�p��š0��أ����(.�0qZ��p�5L�ؕ����2�������ԩ��XYH㳽� ߗO�����S�n������g��x"���Z��� %J��b�%r�������v�������5�� \!ܿ��l�p8���:�ۋ=���ۥ�-��X��k�帽h�m=�l��0�6�v����R�r[��XHA�,W���4rJ���X�4�.Ҷ���@4�����7E���h��7c����p��$����R�x6�����K����u�������ٮ�@���E�Ѧ���-;�ͪ�X6 ��G�� )�$�%���g�*����C�Gߡ���Hm���g>�������N}ב��\s3���t�]L>ё�8��3����@1��L�f��]"%&�z�xVP ��m����j����J9���ȸ�)(̙��� �Ӌ�p�L�^����I��o�������ئ�`�+䛽< #�����tM|&Ŭ��/ Ge��p���L������ߚ��\�_;� ��x�ݓҳ�8�3�˞����s���(D��}�ѭx��� P�ݮ�,b1�t\�� i�H:��xkA��O���,Y����@�<����(͸H�����9���!��x�p2[^��8��mJT��0JE��.��tk���������v&��|����.��0�UG܊���^����������ࢉ>@e���J}B��q�|i������� �&�_s�PX�����0pS8�{����"�4����&�Y=��غOeYU������Η���[��Ф���LMa<���"��AG���J�~\�����pP������j�������3��I���e RG��������(�t��æ�2�ͺ���>5�$/���t������>�/�����.π.��8�H�B����9Nݗ��Q��q��������0Ω��H��Ȣ��<���:�A����Z�o���f�v�m��Xu֗�s��-;�G0��8Q 2P�s���� f��`�Ü�K�����ᘽ��Kiݠ��4bm����@{�r"����1��� �ܰ+��� �AVD ���P;v�]�����D�[�� ?g����нNu�렽���"����}��O��`������ ��\J�����po��P��5O����i�Α��V���rz�˄5���0Z�m�*}�(m9�X��X�����0���{r��2g �X�L�p��s�vJ���܌���x����yz�锆����jʋ�@k施��w6h�������fz���\� 2ᑽhH`D� ��0�s�uˎ��yU� �����r���?��zIt����#����=�ygw���ȳa炽(Cqjx��X-��(!m���F�{� z�w�|h�pgG���u�(�C�8��(avF�f���d��戽� �� �����8x�|����I.W���:-��L����~�h�k��H���� ���:)q�حEI�9z� 9�7�t��{^�e�b�\���dZp��c��F0[������hf�ط&b�`��]�^t��}Q�g�(��l�di��I*��P��vLd�Z��"H\^ :��8��P�=�TSsױ��n��n[ν��z�>�ٽ �`K��ؽrEN�T�Ͻ�ZX�u��6�xx����6�b�߽u���m��&Z�|�F��Ϡ�����h�)F"��r >����hq�|�y�����������{�8!��B�}�ȹ��������p�������zE#��d�����q��+{���j�-��YCi]Y���BG���K��`�<���� � ���ʱm4��<[���Or����c�����B4���V��;ٹH��6v(%DQ �Q��b��n�_�Y��xO�B�5;�3���7��8� ��_�^���������� �x��\8������b����qI����mS��x)�������_x��q�#�/Z��R��w��ܽ6�)w��'�=���BD :��G#��9�>�����;��V",�?�-Ǧ�5��A�k�o3���@��4��f��?1��-�W+��n]�����4��S+�����W8��4�y!���"9��ށ7k��S�l�^����77��T`��!�l��t���n�#�X��iVGD<� �Z�1Y�L�������A�,Ğ�dnE��\]A�B��6?�ٙ�q5�D���f CB���S�<@�7>�\f@�:-P_�pH�W�bp�=H�&�6��M���OD�O���3X?�!�Ro�(#-�ԻӖ$�%��ڞ�=$�&��(���Eʺ4�({ы5�8.��(�1��N!6ۿ/�!P��*�N�t���1��O��0�n�A�;��`L i8����6�~<��i-8�_�c�e�5�t��n��2��tɐ5� �L4 3�� �]����X�K���g���\!� Dr7�Y��Iy���Ԍ� ��i�7�*�:0�ejW��� :���疧U����!J�z�T�f�nd��^&Ч��j?v��G����!�7�|�I��=�nuϒ�^:�ĉqGY@��֑Y�#7���5��<�����9�*��dO B�H�&k�C��)�ԓe?�8���)�A����w��8��x�_�nE���i�{E�̘h��B��g��-C��o�8��D����� �D�TN�� C�d �kC�&�A��2�:�gz�E6��q5�c4��x���./�,�/�o�6�?�y%]2�P?Z�q�3�xp�C*��)��� �Ʉ/�%�_+M�� �m����.���-(�#��L�u��(�=����ܿ`-���Z���f!�MW�T��:~*� ��y޵h���3�c!8�I�u����VL]�������J��F@V�M�[T��q�F�CQB��B�\���KF�L8���O���h=��A�}X��;D�l���~<�l3�+�>��_�$8��K���9�Ȼ�*�5���;QG@�q�_a�@�O8���:�px�@�=����<�F��C/8�K�$�{TO�M������G��S|0�P���$��O���rW}O�vp�L�QO��� Z@&�M�[��/��P��?�*�����0��n��"�*ї���&�: ���*���F�A�4��=O��0�'�[؝2� |0�U�1��=_n��*���^q<-�� 8Zs/��q�hˀ*�궞� `&��D�2����1�G`�!�S'�����Jb��ܡ ��F���x�s#��&d#+��-w;Zs0�T�ΚD�����S��u��@���@�^�A�mؽ�8���D�v"��D���L�w7C�&�ĠC�!��-B��+l �;��6}��@����U�>���,��R9� ���A@A����XXN>���=�<�-h���+7�t��͏C4�����w9��2�*��5���bA�Y����/B��S5$i�A�؊1�!�A�b��7��>�� �(b@��X�'@�x7o I�1�GK���&�m|-k,�^-?��#�ThX� Z3��R��)�6*UvT&0�o� �MK�.�����f4�n����U: �P��&����Uu&��d�c���!��� ����R�@!��7F;J���$��L��ۮ��E�>�$�g�D�΢,�R�@�:��[�=���E)A�A���5"ʝ<�뚢�M6�H���,����P2���'Ш~:���x8�Y0Eq�&���+=��9�}� {�P3���x�$�4��m �,�.�u�C�5�%����tl�X����C���쐢FG�� ><�xD�\�x�8�A�zc���B������qJ����{�*F�OR�ԐD����4�C�X�W�L�@��/��{t%�$ �8 M'���>+��ث��,!�pk|�F�'�&����$��]�7S� �b޿��!���b�Q� ��� ��� B�����>�� �.�{,���4��_�`Avg�C��@7�Ӹ�v��*���PI� ��6����~��xW�+m���s2�.���@V����������#^�4����K��0�%��P�۽yJom�(����f��`�= SS��A�`�D��lA� �۾� A��h,�*h@�fD�}��@��2F� @��M@eY0@���A�p>���\��;�+uX��7�Ɏ�GQg=�I ���9�s�O��4���Se:1�Wռ�v�6��CŻm�3���m_r�=���㉡�=�l��);�=XB8�{;����M�v;�f�N{,��� !1'���b��w0�Q_&�ǐ,���OV�*���-�l���1~�0y�!�}<8��Z�A{Y�&���$ 1����ZYi����(a"�� ��A��^��ф=����j��@�"� �d#=��%y�� 8��oc��o3���ʟ�-8����̀;3�m���k�.��x��a $�!�Xrj�.��9�ŧE'���Bng>1Eu#�� >���a �Nn���=�#l����o瑋���n�T >9�ɊЮ����o����=G ɟ�^?�K�j�M@�?wh"�@��e�ˡ�@��kZ�=>����D]<��w���u=�Z��2=����G3�>�W�<.pu<�pb��_?;��t=�^�8���r�S:��'�ajA:�P�4O.7���� �7� � ��O����F'��"R�a*�H�g �b�cc5D� �S���� �)�P-���$|.��&>�Z�j���� �N�>{M�i�>�n)�'����s%>������>�V�>I^��u���#Ҁ뽈s�?������������+ cx���k!4�=�� ���==`)�=�=� y��=Z|�N���=��s�u��=��wͺ��=l��'�j�=���L��>�W̐�v�=�L�m+�h<��ʹ���;�X�����<�GVB~;�����G<����ە<��WЙ�;�7=����;����h��9�9�&��:<�H#�Pq��&�*Y��FKM� 28�ꏣ��2��}�,�U5�+P��a.9�P��@0�;'8�@3�c�5��m%X�9��8Ʃ(;����߁t:�t��5c;;���T��6�p�g�� :��&�~�8��H\�,��|ؑ�@'��ڪ�0�0 |��{,��Z=|��D�U �"��Z�%�����)�}���J�'�> ���T��x��щ"�1���C�<��f�57>�7x#H|?����K�|;�n��o)�9�y���ԏ<����� �:���^w=�K(t;�=�����>��2;��"?�n�pz@�@�i'R�@������@���X�A�z���B�C�����->���3?23>V>IˇB*>��G���/>���"�3> ��2> .7��7��b;3�:�f�S�5��lYN 1��:���]-��^u������%�%��~��?b��19�us*� ����"��{�^�������#>5x��o> ��}e->âY*�(>c�K ��>M��:k�V�W�� >Y���h:>����%�9��:4���9�@f�{�9�|�#�ɨ7��ƹ�5O7��+~�5�6����/6����l�3�< ��/�4�I<`��4���m�/��tn0;q3��:q0�.�Ļ� 4=0�(��M�1>[%���4>���b�/��М>��ę�=���}'l>Cǎ�x+>ͯ.ƕ+#>�O��u�> ��b��0>�F��<>��\˴*>�%��U#>b1�~��=��w��>�0#w�X>��p��i> �R�]3>���=��=2���+>Tv�t >9$h��=QQհJ�=#�����>�;Q~t�=ItHW=<�=9���3�&`� :��S�ȳA;��/j[ �:�� �vEo5��c;�!8�N�!jc�;����/-�2���v��}9�\�y��h5�����7������>��_{ܶ<�٠��v9�PIG�n>��橀�3<���#�S�?�!����E>��� &4��� j1l�� �4��� �����E@�ӋC���(�3��q���s8���/ld6��d�nm�0��9 �9�$�1h��3��`���X6��S�,��H���L"�}�3�e'�8dP�!�u;Wp1�n�˟��&�^�+zj�+�0<��=��֙~,A���'��?�-�4�p�;�����lB���A@"A@�XE+���>���e�:��l���6��)��$ <���e9_39�����J�@��ăwD�@��ˆD�A��b)]��@�P�A�-B�h92�1C�B��4��C����AD��F�[E:F��t`G.8C�@�)�FjB�Q� FcOF��Tɱ�D�G~ؖ6>��_087>�5�/N9>�g��8�:>���B8>���XV6>#��@�<>� �~�j;>�B���-4>�fꯢ�1>�:�7�39>�w�v}L7>�]�4�S4>��@t1j&����Bf%�i-F�$�Vz���=� �s('�s�(�m���������4ΐ��->�A�P�>�Zq`�r$>T���ʓ3>��c�.>� ,&3>`ݗ�f�->��i��#>���Y92�4�]3�V.��SUI�0�h��`�*��>�'� D�I}�������#��^�h-�]�Pj>>?E��]@>��bv7>x�1�<>ONU��=>B�?':>W�����3>D#��/>D�J��66>I�V;��2> p,��>���S])>Ѥ��8">�z��;�>:�����.>� B #>M�f�)>����C>�w�|�>�69C�*!>P�*�Ҿ>�Cy�w�>����� >w�R��>���/�>�n�k���=.A�p> ������=�rO�� >�P�Xa�>Q������j/������9�������݇V�/�pv��%�2����%u(����bfd*��BP)6��z[�7��=x���0�1w�k֧4�"�9�Ek@��x�Ur�=���!!B�G=�C�@��Cb3�;���*��/7���ds>���bSr�:�rU��>��.�1[�J3 �*���ZP����[�y� �`̈́���&$�y���!�����CnW!�����~&��]��� ��&ei�d%�����3��Qy e+� 9�6�0�F�-���5��8q�a*�� n&/���n)O3��ph�4���fC#�>�;Nͪ�7� � n ;�����Q@�,���7�mz��Z�=�ӯ�-V�9��S��kXA��3�a*C��m� ��>�d'��,C���?!jqA����0�G�~s�“7D��n�1G� �����B�u�-�zM� G�!^K���e�M��ݧ�MH�Q�*�?�E�{N�9-�H��͓�v�O���Z��$E������?>v�z/.@>0���A>Y$1[~D>`e�?>'L�J�:>�����<>amr���9>�{v��D>�l�6A>���Ѵ_?>:a O�|8>�-煠8>��-�->>�1�� =>�%�u�<>&�WħQ8>}0s��$3>�i�.m:>���86>Z#���ӽG��L,>��j~>(C:�#����� �d1>1�T��&>i� �ψ>G�q@� �X���uB�������d J--�"�Ae�U=� > �4�ֽ�� H�� ��0�c CA>Y���M>��|6�F>���� 8C>��Tu�RG>��l^ C>��#�g �w�Gg;>��Hl�A>���n:�=>jcK��.8>�vz|j�1>��s�B�4>z��K%�->h=�.t:>��7�M�5>�7Ze7;3>��Boq�(>jG�($>�7��5�/>2�8'+>��"�Y >]����>l�e[^�%>�tA�K� >�� �6��=����=&�+�� >�q�X��> �}o� >QI���0>����nv>؆#ݭ� > �&�!�>#�q@�=ݪK+�=|���H�齮Ǔ7�㽘��Ux�ڽ�w#DϽo�r�JL���2F��n��� �����U����8���>��y-�����?.4� �Dj�[:F��).��a���%�J%�N��G�,�Ұ�>5����r�k$������2�gӔK4l6�Jb��~)-�.�O�CZ3���jt�A��h�I�:�M���X>�3�I�D��V��oE7���m��@�x��ߡ<�2����C�<gͺ�l?sk����<�N$�$�D�"���e�����@A�L�h<���� �G����2c��5�B�\��J D�n��\��F�Ф� &GB���أ�C����ĞF)�r;u ��1��J�P6'.�e�Q���3���R�}�'�]�m�m�-��x" ޖ1���Qk�5�l� $u8��V�]3��K��I�6�nh�mȁ;�2�x�"A�Ԋ��>���\��A�]��v?:9�*1��V>���“��;�`���.yJ�mn�h2�L�ͦh�"�E��(E_OO�贆J��P���~�O��ad'NO�i���K�n@��M�,C*�F��n���E�ڳ;y�J>���&rwM>�g�O�F>H�t vB>��M�~F>�r\���O>�~�(��A>����(�@>ӹL{ �>>p�E�D>���^�tA>�k�g4:<>�5<�u�7>��m �?>��� @�;> ���4>���Y7�,>�\��F�7> QO�$�3>��z��">c�t})�=h��Υ9>+��� >�-3-�,>Z�2��A%>�N��>8ּ=��!>`e�N��6>�$�k62>��g���'>�����?>�3�'�/P>mχ��P>�*��e P>g�Z� QP>�d�KO;B>8��;�E>c�r�A>�F�!��B>v%��K>8YO��N>b�RW�H>����4F>aQѲs4<>=.�An7>!�͕�!>>���w�:>jp5ݰ3>�׻��u0>~ �lz�6>��x��3>��!.�0>Gb,�c�+>�υ��o%>��â�|->x+�؀)>آi+�z >�6��>>A���m#>�8�qW >O�ϐ7>cF��$ >������=��bc3X>W���=>������> B6�:�> �� V�>�MY�l>>�b]Sc��=H�YvU6�=�v���,�=����>��M�8��=� �dA��=�5�1�;�=���i-�xĠ������v���̂�[=�ا�e�ؽ�=lO���LȬ��jϽ� II��d��N:��� ��Y ��2�����ZɝH�� �^Í!����!����=4x��r��� �A8���6>ZMf��2>C^}f�~'>��*�f4>���<��.>P\�&w�>�O������]��� >�E1�>+�L���#�y<��,�z,�/���!��%�P�5� �3�����>�yA���8�~� �'�@�3���|�.�(m[a�:��N���4�GK]W�E�����`MA�"&��H;��Y� O@��� =��뷆�%�R�W�"���ű�=+�USP�-�'����22M�C��g%��T`J��$�n�]��� ��b��B�@��CТ��A�� UrR�=�^O��@ �86���GL@9�@̟�J��f_��@F�%�W�;C�U�L�iC�e��\��B�����2A�։���VA��o�p�?� �g�>�.Q9�C�8>X���T;>�c�6��:>p��:��:>u��v�=>�E �?>t3��4�6>B9o�BK>9�ھiAN>��ĬG>_P��b(E>'��A�A>Pf���:>������>>��#��:>�����iC>��dF�@>5N#N,5>>����H>Z��L=3>n�U"/>�%u��(>�6Ԇ�->$A��-$7>���9�4>��TҀ�1>X�M�28>3F3�R>>�0<:>NL���5>Vα�a�1>@m���m4>xeot��=>7K[J{:>��(��6>b��b6�?>&�7�HA>��R�<>�V~B��>>�b��_L>�����H>^I�Fq�G>y%>�xG>R�{�M�B>�r�{nD>1���p�@>�y���A>yT�E>o/_�bE>�j�G�C>�;���C>^���(9>v6Y�6>����;>�*��x8>*�����3>e@�L�21>�R�6њ5>��� N3>��"���)>P��M.>^K��!�0>$ �1�+>q�g.>�-��?1&>"ވ��>�I�ۭ�">+ ��!>�)v��'>i�|�E!>,��$>-�@�>��.D��>!*���>] ^7� >2�09�>�gA�S8>J�,�>�y*�>��WS�=����/> D�'<>�[ެ�v�=w�z]-�=y�$5g��=Q>�=>r�=�^�oѷ=�'7z��=fC��]�=$z��~�=�9��km��0;�<�޽�QML|��i��Z\Y_j��>9�8����M��x�<��F����r$B�� ��kWH���ү��"����Ǻ��,�۫8�BUB�Q6>�Nu���0>y �*�8>y �P4%4>(���('>��g��>����q$->;�VY�">�߼�� ��~%�:Y��Yd\�\ >�?��D���'��I�&��,�,5�6�1ɚ�/� l����6��O�\������fr0�����RU'��� z�r=��_�oo8��6��<�:����#( :�u% �a�1�Z$�Q/>5��q��_�7��3W��)��V���!������Q%�lA�[.�N��v��&H����$���8 )�`:����<���?��a?��}+� R>����ާ9�F�66tY=�g�X}�:���2Z� :�X��R�r2��lP?�7��T�AM�4���*��-��]���h7�C�Ǜ-�3��k�CK2�� �J�>��el���<���@ٹ:�ՆN��Y9��ڻ< �:������8�r���48���X �]6�,���6��i 6Q�4��Q=��6�ʩyc�2�m��5>g&�%��:>$=��z>>T��Q@�9>tN�)�}?>��@>OPm�']A>Z�s ǼA>:u�j��D>z�p5�A>NH(G��@>1I)�"E>���(�C>b^=�GB>�D#fh:>9H}��?=>�D��T�:>k�h�<>_�8r�D>�q� 3B>� �o�U@>�4�}�E>z��ƶ�?>���r��B>�_�ʸVA>W?W��D>�,��D>8&TJaC>��T�C>P*;��6>%deh�^9>��z;b8>Zš� �9>��)�;>��WA��<>v��o!{;>�����<>��� �F@>`Fo� �:>m{Hż8=>���ԉcA>�̣,tM;>:�YRn�?>5���es=>oа��=>ǒ��@>�LI X:>LR�9�<>%xt?�D>�:���|C>5�w�~C>Mwp�B>�b@ �A>'��TB>�A>NV9�v>>j�?˰A>%�\�9@>'� ��@>�Y�{7>�8���4>�tC8�9>�gi�6>�·���2>(D�}T�0>��B4>�h+�W�1>�z?N�(>���4.>V����o+>Y׃�f"%>gh���/>N�\�#�(>�n�J��*>wŨ���!>�\�OWn>�҇O��$>�[�|{� >��] ��>��i��8>�}�D�>�9�,� >_��a��>F��g$�=���*�� >�����>'�lO�l�=�_��=ZA����= m�sc��=�<�hѧ��l \���3p~��b7�K��qq�X����$ �g��tF��E�����H���q1�G����*����@�e3"��\_����޴�h,�\�nݓ1>e�P�7(>���q�4>�1�xF />$b-�a2>�o��y�>N�>�� �[W�P�=��΍�q�b�3��i$>X&���>ꬭ2�e�D78��'���,�j2��omY�.��n�}�0�rDn��(�oE#1�#��L`�)�t�l��'���[0�,���%�"�\y�' '�N�P.3�6���L��3���AA1�� ��}U5��O�9+�`��t�O2�F�S�]0�����5���c�4�NM� �Y2�� ��0� I d��2���eCRm0��챤�W0��ϸ7{.����όz.�Y� �H�'�v菨�,�$7Uo��%��\d��98>�yh�>>@H�ӊ6>�{ ��;>ꫭ�aG9>?�;F�vM>�s=z�F>�Qn?�qB>�����F>܃�W�.A>z���;bC>���?K>�(� �EN>�����G>�NxN�D> .5j�cH>�$�� P>��Qo��D>���VB>���=�@>�܀�~C>��S{�A>�/ϙB>�{y�(�>>δ�mg@>$����=>�bl�?>J��A>MFm�zB>�9�D5B>0�J�A>&���&H@>��{m�A>��&��@>��,�X�;>y�q ��<>��-4R=>��P�7=>7r��\=>���@>>�.@�M=>`8";�=>q��b ?>~S�A@>p�_N>>� �i�?>�nV�.u;>f�"�%K=>�o,KG8> ėB:>��ߺ��@>pgi�Z�>>۞# H@>kZC;�@>���'�;>�#ޫp~=>Lڙ�R�>>����5>���C�3>�I���i7>N",x4>��a �0>S*Ig,>Ăa6<2>����m�.>V��~��'>�=#>��la=*>/JI�ʹ%>:��>��Ŭ>��ɡN!>d�8��\>����>)���Ñ>�Rѿo>/i�c�� >6v�g���=�DM� �="��3C�=m����f>�·1�������M�{L�R�����.Ͻ�キ#��K������k��5����A,�����o�������lk �����o!�]�� W��V2T���L��!� 7>�=��P\*> �g~2~4>�/�K�1>+�;D\�>3�(��4>o�.� �.>��N��(>��[bmZ�=֯��n7 �a��J`� ��V(��&��I�>eZsZ�a�=Y�����\奢$��'<��,���{Mb(��0`U�#+�d6�T{��գG��"���>�%�(�`Hܺ*���o~i�)��A��d(�s��+�$��#{OW#��>)�#�*W>gFN#�X���S����}:X����^�����D������,��>>�8 ̞<>�Z���C>Pb�J�A@>���9EM9>���6>�\�� �<>ڑ�}@8>Jf����P>T�:��O>�ي��OP>; ���1P>������J>RO�0��M>/� �RG>dw�i�ZD>��o��G>�#JTM�C>_���%�F>�����B> C ��D>R{�pSL>8i�e��N>/H�H>��u��F>�\��l�B>�H?=3�@>��6d[A>�޹��A>�>��?>�N1<nA>̽��C@>x_��E}@>�C�>F�>>*n_<��?>����Av?>Y�U���=>�/ω\>>3��4(�=>� ��?�=>Z1�Ew�=>��}h�2=>�CY�:=>��l�J�=>�ӯ3Z�<>����M�<>���|��<>͍�2� >>6A�2�>>�/��X�<>�V���<>����8>�~H�:>�,t���5>��Pe�N7>T ��(<>�L�U8<>Q����8>4�d�9>��XD3>�*9y�0>��|�4>\c���1>O�W=+,>]gFe'>����R.>�>.�E)>q���#>}�d�>>'�$>��L��u >��:��/>�ȱ��>C�\\g�>1��>�ۃw��=��� BL>$��_��=r+�m,�>I@�>z����O����p��� �kg���}�셅���e�u'�D����j��b��K��Ђ<�* �ʶ�`l:�F�\J7�x&����x��|g�\�9� B3>��� Sk.>t#u�K5>�]7-1>�P7�|&>;� �{�>d�i��;�='&�M��ѽ���: 8+>�1�D�!>�[=5�>Ŀ@���� �����<0{J^����2g��.lrq��TG//)�N1�J�>�;�9���1ڽ��O � 8 z��h�ɱ�E@>d��{=;>R�M��eB>dEF>��>>_ҍv��6>!~W�2>4���)�9>0��(��5>���l�K>�����jH>VSxJG>}�ݫ�F>^���C>e�>�=D>������@>�^�'�A>�|a1�C>���hD>���L"�A>��ζZB>�Me~�C>m��K:�D>����B6B>O�)t1�B>�o3�HfE>��[w��D>��n �B>&J���5C>�����@>jm�#@>��j��!A>��A18?>c35�)�>>���y�<>>S';*>>K�,��<>S� E�<>J�m%<>dX���;>�9�F��;> /%T�>:>Fd/��9>[�E��:>��_�);>�]���:>���JZ9>1d2Ry�9>� ���5>@,�+47>��,s*8>5@���2>�|Ή�7>8����,4>-Emc}L5>~$��7�/>P����*>>M���d1> ���m,>=����"&>�w�s�!>��3G��'>d"I���">Mso�X>N��O.Q>��>-�(> �0-��>�+�R���=�-j}(>��9_�2�=TD��U� >"iY"���L=�齌��;����D�\}�;p��G{߀'����(���Y�'I����ow����`��P���N�������Ȟ���Ef�v�ν?��/�Q.>���e��$>���O��1>`M-0<�+>Z�G�>�>Mz �k�s ��8>&`k`���=J!p�#>���* >�=ⴅ�>�T�q�E<>�#N��7>ֲxwK>>�?�9�9>Z~���4>n��y�/> �� )6>��Zzj�2>yx*=�C>����\B>ـˀ�B>jC��M;A>��J^�G?>zqS A>9�C�6�@>�5w �;>N^}�L@>����L=> �5v�K<>|U�� #A>�^[��eA>ܗ�&:cA>��a�H?>��A�y@>�@���E?>ĥA?>��x��<>y�r��<>�8\���:>�`��;>_�byF9>�ٰs��:><>�/�n9>} �\�8>�{��`�7>��-�8>��C�7>ȎzL15>�1-��g7>bl���45>]�v/�?5>��U��2>���\�.>�仂�2>Sj��/>�h�s�(> &z��$�)> ����$>�D�A{�>��< \>b��7�" >L� q>j���'��=QXU�� >�]�.Q��=˰���s>W�c'޽��V�9�ٽ���� ��q���½����X����U������>]�(�=��_���=C�-+F��=�J�{�>�� � �>��Bӿ�>TA�G4>4Lj#�&)>���fV�>��?�C">� ��L.>��d%>h�E4�"> �L)>z�|[7>|ؓ�T4>�ߓ#�1>��C���8>X=��,>b�f��4>,�j��D2>�ll���5>�GO��>>��0�3t<>�T�9��=>���(E>;>�2}�~9>��� ��5>�78� ]9>��.�W�6>9�B�\<>��n E:>��hX�:>@"��z�8>r�� Y8>�ɿb�7>v�y�v7>k�WU6>Т]�a�6>� E�{�4>�Y�Y �5>�L��3>� D<�2>I�s�"�/>Bx~�z�1>��[I0;/>D��c�7*>�А_�X%>�p z *>�j��/s%>����b� ><��c>l��^#� >��w��>�����=U ���>�{� �=��j��M>�M�g�=����X�=�ۦx��=Љ��D��=�xoe�=t�e7��>L�<��>y!ʢ�>�M��� >��3�aC>��9s�!>�� �<>_N:L˿>�0"�O�'>�E���l2>g}<��8.>�l�N��2>�w����#>� a�D*>��5>]/>�VusM�2> ��t��3>�����/> ����^1>�y5��J8>�F�PWu6>��O��4>p�z�<7>$�{ZE�1>~��:5>f�����3>"f*�5> �"�~4>�� �$5>$��$��2>n pc4>F,��A2>g7�.��2>7�����0>*�I��->4V.XT�0>��(���,>W0�~)>.��v$%>\�F�B�(>^� r�$>F׍e� >���N >FP3��� >l�̯��>�z�n>�y�3��>�)�m>&� ��>�w���>��� ���=v������=�d�I��=� &9��=��&�>�@�5�>���۹� >��`�>��x' >C��,�*%>>*0���>�N���� >�8e��*>OS�P7�->�X�`�$>��W��(>�x��T�/>Φ�9�]2>R�V@1>q��F0_1>�4qVi*>[H�W�.>f趴՘,>H���0>���e,>j:w�x->�ŵ��)>fʹ���'>��h��#>h���[&>��]�">g�N�& >��� �A>�#�]J�>/�M� M>�#�.'��=����@>�j�_>�G%��>I_C�( >��?^a�=���c��>��E���=C����>Ĵ��Q�>��H e!>:����� >��]��>o�{�L >�0�=H#>����;>(��)>�(�B&>�y�a�(>����^!>�2�� �#>�]J�E)>�FH�?'>Fr׉.%>�W�!$>>i���$>r�d�!>^�'�+*">(D A�>&���>�\�P�>ʵ�Q�Z>��qo�}>�;�g��=� c+>��#��=y�<��2 >=�!L�0 >y�@xs�= ���>N˙]f?�=�Nq���>N�no�>+k�2 >�3vd؅ >��%�NN>洞w��>:0�3S!>��`�> A_�� >���>��c��k>��G�Jo>�f!�\Z>�T��>��dž�:>&=��E>��'��>ϣ��J�>9��O�>�W���>� �xĀ�=�,&� >�1�K��=��_ @>q�W�� >ƶ�|��=�{.w�>ƒ �?P�=&VIG�t�=��8���>�xآ>�-d��>=�D� >֚g#7>� w��>n] �p�>�/���>����[�>� �؇ >/?K� >�=ޏ)>��]���=��=9�c>��,����=�݆Œ�>9|�\�>�k'���=\�;��=��!2���=����-�=�2xu�>��gՐu>�Q�iT>h��:d�>wȆE���=R��>�v�̓3�=&[�r��=��9�<�=*\(#q��=T,>L�=��Y�q��=�.�/b�=��M�= i(�y0�=Q �S���=W�al�=��e��==��p��=]j�҆�=�.V�ܨ�=/ N��3�=Tz�H�4�=�8����=x�y}�����<������F :������a@m��i��W����ߎE���G�B�ѧ���!������Q�˵L����0��r�zjϯ����1�����������R�eR��M�0�� ��-�K������D�������o�Y��%_d�Y�þ}���EᢾedsE�� A�����#dϛ(Ǿ����:{���a��z���&�?%{��M ٖ\ɾ`@��7#���BH��>ԪN�2�q�ʾ.0kï%�>�� �r�>�@:�����>7\ɾ:7�%Sv�>ȁP���>\f8�6|��2x���'Ǿ�h�����K|9���þ"��FH��>خE/�>�=B�JZ�����A� ���Q��Q����ȯ��U�/�%�>CQh�'|�> ���:.�>�����]�>k��'r.��H�u"rէ��`R>����:*����.[��`n�> @�X��>(��N �>����H�>u���=�&2(X����� ����^8i�>�%=>�a����I�]��aY�d��>�aldO�>��u����A��M����Q���>�����>��������ՅK����AdEҦ>b�ʼ��>Hq ؂���]l�3���ǯGs�>�'o��>`:�Ԩڢ�4n������`�]s��>~� ��>��uh�s��n�-C��������>�H���>��}���"�8~^ ��>��s#�>}wh��E�>C�+L�!�>+��vst�>v����"�>� :q��>���0s�>bS��5�>�8���>\�eE���>�xܥ��>�Z)x�߸>- Xy��>�sf����>�,+(�>n���y�>T�!=�q�>�E���>����i2�>R��V]�>�u�^Ҧ>�B�A��> c*Tnr�>�{���>NWD^��>�i)�M�>@���#�=��0-��>� ��nh�>�+_��&�>� �W�H�>uq~8���?=>���bT=XK���i=.e�'u=���[9at=���+j=We�O�h�=�������=�^v.z=�K�q\�|=�7�"�= h�9�2�=���_g�=f�#8��=����YC�=㾎�(�=�C>�>�=��Ώ�=�\GE?ٚ=}��w�=�h[wD�=��\�h�=�t�ē�=�I�[�S�=9I�|�=k���hC�=���ۥ:�=e!�.@�=n ��&L�=���$�=&��LJ�=z��t���=������=�=�\�=�-�A{�=w��� �=n<��_ɋ=C`���=h`��[��=�Y�h͐=����Wv�=�9m�&��=P�2�hʮ=�� �a�=k�q�p��=٭�k�=��y=԰=fH#](�=�ll�=����*Q�=�����=�ن��=]�LF'�=L���7��=Mu�6�v�=�d�"��=�J��'��=�}����=��n_ E�=��1��=' /V� �=<2�E�=<�W{�=0wu0��=����+�=')��IA�=U�N��x�=��w� <ڼ=|�n®=ql0�b�=�&���=��=(w�=nr�{ie�=ry]�g��=�nj�k��=ӗ�7�,�=����������������8w=> ���=NO1 ���=�B̐C��=`��zy6�=4�k�b��=���S0�=$�I�&�=�8WJ��=���`l�=;mj-�=K��F�=�DZ����=� �#6ٹ=\�D���=�`�� �=Ao|�]��=��$�ĵ�=^a�K���=�5Qس��=�D�=jW�=���e�e�=��r��5�=�yC���=\fR���= �����=a�,!���=xj��&�=��Qx ��=z��d��=���L��=F@v����=}�O���=�G��h��=��zaq�=�n�t�=��8�ͪ�=i��aK�=Sy��ɫ=�;q��=�=3��L�=i��p=��=�*Rᜇ=�yrAs �=\���Ŏ�=�8�z"��=���P�=�8-�o�=����ƙ�=d3��P[�=�=�)/��=�ý���=�K�z�=/�� ���=�����i�=��� ���=�Ϩ��l�=���b��= �t/���=�c_M�z�=a�(�z��=�.Ru��=tЛ�:�=S��=EغD=�=|��.�=�E��h�=4����=�E+����=2Mc�=�ޒ+��=��F��=3Ovt��=�ֿ�R�=�k��h�=�����=#��+�L�=����b�=�bE��̸=�IF ��=������=A�vƎ�=V����S�=R��_��=0o��N��=���86�=6����=� y�=.'L��ǚ=�� $��=(� �e�=�x!�&I�=�z�<3��=��I���=��C�0�=�y !vg�=������=:P��]��=��K.���=T�ζ���=D���J�=b��$��=�7����=sj�[��=C��ʠ��=��5���=OGf�.�=;�)nׄ�=*�� ���=T4���=��g��[�=�X�}��=����F�=)x���L�="��6��=��} ��= ���^�=j���/Y�=��Iw��=F*��MP�=� 6Wqܽ=>o�K���=��� ��=�Y�w��=̫:���=�bw�ݼ�=��ꃲ��=���I�=d��z"�=������=/��&2��=����x�=4E[�5�=���|Y�=l!���=^d)#�=���5�v�=4uT��+�=�C��=���k�X�=�V�9 �=�a�4^��=�$��%�= ~;��Ԋ=����*t= �Q_�=U��u���=J���|��=�$���=LJp.��=��� ���=�^��C��=����`I�=#q����=_���{�=-�����=�!�>4�=T���!�=��둺�=�L�_Q�=��T���==z�a��=���@@�= �MD��=X��[8��=ZE˭~�=d���� �=YW��L��=����7�=�.Fȗ�=ݹU��u�=3�o��3�= ��K���=?DExmD�=�x��(��=;c�⍜=�ʢK'�=��؝�۫=�h]q/˺=������=�8�w�)�=�S� �=�e����=���|�= |�gƅ�=�]>���=$y�k��=f�}C�=�Y����=>� ��=R=��=Ŝ��ɟ�=�?�wi�=�$�� ��=��O4��=M�=�h��=a���3�=�c�?.�=����'�=V�(���=7�M���=.��t{5�=t�jCt��=�{�oé�=�w�u��=J�0�7�=:�EI���= �5�ɤ�=�7��_T�=u�o_���=�ޗC�L�=��W"\��=�>���P�=IC� ^@�=��3Q��= ���<�=TC�*�g�=VG7�8[�=ʪzS���=���Y'Q�=��,��»=�k�%�1�=h sjq��=���$�=�BN:=ēS��?�=—�=���=<������=��h��ϩ=��,���{=����x�=76�_���=��O,�ݲ=���R��=VںQY�=x���)�=���ᢖ�=t�p��c�=)��՜i\=�@��b|=J�w=QZ���x&= W%�=��#��0�=JG� ��=��鏗��=���һ�= $q=y��=�TV����=F �=ׁqo��=��H2��=q�m�=����v�=pʧK2(�=�Ӡ��=UT嶺>½� �=\p�;CG����v궽�q�����=��W/eV�����������.�I�ǡ�t�;��=��rj��=�6ݺ7�=�z[໋X=���A=T,Hx��t�;�~p���$�Do��1J�l0{t��M?H�{����B�����V���P����ڀ�pwi��6�=K�2�}�=x��}t�=\��ؒ�=� �+��=�?��h��=��1. !�=�+�b�-�=�,E����=��7����=�U/�L�=��[kN�=j|ݲC��=�ax�n�=j��x��=@���Կ�=y�V� ��=�J����=g9V����=�DoX���=��k4���=E�R�HB�=i�5 �k�=�aP���=`� 4{�=5!h����=Z�|���=��AO��=��e�#�=�S�f2�=>,gA���=���ʃ�=R;ϵ��=��b�̝�=謁�S��=�6�����=����'n�=�$/���=��t�ț�=�{����=#uciS��=k��"��=���7M��=���2uf�=Ů7�@��=���V8�=nL�fS�=���G�c�=��� ���=�?� ��=ή� 5�=� ����==l����=x��{�#�=R�m�{��=M�:�ޜȽ,�8+��Ͻz . ��Ž��Y?aʽ&s�Oн6,��Q�ͽ�}��Vf�=(���j�=� �q�=��� �%�=*�jW!>�=��(=��=�|�.} �=��i���=TF�I8��=~k��$�=4.��Sdz=�m���R���7�����.�ZVDȽ�j��dĽ�#��Y�����UC*�=�.�w���A�ʪ�������=�t�h:p�=!���?�='?-��=����9>�=�x�[ �=�\ Q�=}$���T�=8�7y���=~�Uj�M�=�6�����=��5{� �=�D6�v�=������=�>9�k�̽BcpfROѽ�gIu��=�#4��<��DA�����En�.)��z�.��ƽ���F�����h��ꝴ��t!�˽�T�M����q:��� ƽ 5N)]쿽�p�q_��H�)Н�D"�m ��D������=�� ���f^*dh��ډ�_�稽�(�� <ץ�-\�� �����n4 ����f2�ơ�bx���#������������������)�� ί���b~"r�="�" ��\��="���l��=��d���=����=8�����="> c|���=�lGu���=���Ry �=��S���=�W���=�R��O��=�R{��=��F/��=�g��=ȦfUH�=�9�ܜ��=��*x��=�D�/�ʙ=�Z�G��=����2�=���J�=�����=�=��K����=��q�=�=�^�/�=s�G�@�=��}�=���\��= �&UnS�=�J$'�r�=*�ڶ���=�:��?7�=�{?�P�=�e��B��=B��{�-�=ޝ�����=���@��=��ϭ���=b����=y6��;�=�h�9�=�mF���=hl�Fi��=��ā;�=23�cy�==�z�,��=��]�&�=�� 1���=x��7a�=�hw��=♲j��=ܻ3ط��=���=��O��= b8D�"�=�&���= �BA�Y�=<��ש��=���g�=��.�k�=�:5\��= ��Bҽ=�=+ӽ��v���Խin����ս�A# l�#�=!����o�=��,Q�ؽə��s۽O;��w^ӽ��\��*׽�-a�E�ؽ8�9N&�սIH:н���Aʽ�����Vҽ.��KBϽ{� �))��5�p�n�Ľ!����rI�*Gz����3�ypɽ��"h�r��Oύl�Ž[�0e������} ���8c��OX��GuǏ캷�eR"�(c��Bї����%r�˳�:j���)�+X��*fd˜�� ���L���� ������ួ�'�Y��=� ƹ�=ǩSG�I�=�==˛�=@c2n"�=þ��X�=8Jr��0�=������='k��fK�=�I���=��p1���=܅CW` �=�EZ���=��`$��=�]����=s��?��=*;���O�=�nq$�=�U=����=����I�=�1�O�Ҫ=� ��d�=FZr��ƴ=�s�>��=��/#�=�Io b�=��M��=�f��QC�=�l{衼=���p5�=K����D�=�j��9��=5�1�uy�=���)SK�=����/��=Ms���=���ғ��=[E[B��=���+�l�=��G{@�=�)E dH�=���^��=%���nT�=Z\�6"��=��� �=�Y�kc�=���%>�=m_�؉��=&�]�l��=M�F�Xp�= �8e��=�'�����=z���|�=�Ƹ⬰�=u����%�=`�U�'N�=ly�"!V�=����O��=d�m����=�aͅw�=aB0� ��=���U�H�=�8 V�H�=ކl �Ͻ�����սFVVAҽ���M{p=����\ǽQ]A�$\���xf���==ƨ÷̽[���'�½��Q;����Oj�Ц�=f��v�&�=������=���ξ=4`�V=H���1���=r=E�/9��=M R�&�ܽ߾ơG���t�P���U��x�߽4m#�@����t߽32��M�ٽpO}�Y�ֽϞ��ܽG4T�֛ؽ��Dp��ӽL ��ͽ�'��7ѽ%;��oȽ~`sʛ�ս1� ��ҽ�Jȕ��Ͻ�� �e=Ľ���}���e=d='ʽw�!$�Pƽ�|V����vն�am��hWd����V���h����neۧ����j�`���PGp����뗳Z��Z��>o���G^�����D�ť�{��w ����X�r �G�NwԊ�� �F>-���gr1�M�=HWf�w= 6 �bv=3*\�i=-�)�vh�=,ٚշ��=����ޗ=:�j�뇝=��NJvy�=~GeL|�=h�+�me�=��G�" �=�� �kZ�= �p5 ��=M4I����=+.-)�=�)�ͯ��=P�̄;�=� ӂ�=��=�,�=�n~��=1��0�=md&Z���=0@�� �={(�M� �=��H�(6�=1u��f_�=��5�)��=�O�GK�=9�T+h^�=�+�J�=�x66��=�D�tҾ=�,��l`�=��T��=�.~�y�=������=������=�%bmv��=�2X���=�Ϸ�-�=��-LM+�=��0b���=b��9�=k���=S�zSF�=�&�c��=¶pT��=�4#�� �=֎�NF �=��k��0�=�������=�H_E��=�l� P��=�INK�=�u[�J�=��j(F�=Q~����=� �P-�=(Y�N��=�<8>���=�N�bP��=�3���=V�,J ��=��f?D�=���� �=毡��=� ���W�=ו<�p��=�Ev~��=��,B�=�� ��b���aS��~*$����\��{޽�U��)�⽃,kCK��yŻ!|ݽ�`�%�۽9���#WٽB|u�CH��s3B�ܽƑ�vM׽��e��ӽG�C5ڽ�ۮ=�ֽ#Id�P�н���ɐ�ǽ4 M��ӽ.]@"�-нު*�罽�lc&���nj�"���nu���꥽d�l��ǽ��A����]�I��:�m�zV��1`y���ҽ�K�9�ν�ɤ�j�ý��Uڽ��XI��꽿��Z6�뽦,5 �}�]�����꽔(� ޽������k��H`ܽ�倝?!߽��(���~A�D4���KkN�� ��,C��k[��H׽�L[[�Wӽ�3�;#�ؽ̴};` ֽ JɑfAн��7-˽p�ҽ'\9�pxн. �9\˽�O��ƽn ؠ������f�WȽ�I��Ľl)q�5���[�|����#�! ���g�#���(�El���M�|�;���|W��B��ْ����R�]Ӹ�����r~�E���#�苭��Lءcղ���]����e1�vQ���̸G����4�[�z�����'u靽P��`ޒ��2~�Py�E*M�A�h��x�ܵ�=6�;��=�L�=�.�}?��=>:h���t=�1�(ڙT=H�`g��i=�, �Z��=���I�u�=u`�2�=�Ro*��=�H�C���=�f����==h��W~�=o ��=Y[g�z�= ��:��ҽ�E�?�νn�6eý�4��нN:��Bɽ�9LK�ͱ�����5d�=��KH�^����;�����}N��D�=���].��=��� �=&���c�=�xt�8�=�u��,W�=2��%�m�=�Fh�2\�=hp�q��=I(|����=x���@�=6 �>��=�#`�Q��=^ IO��=�C�Xa��=�Sl���=q� �%��=zϮ鼾=�ё"}�=�w�W��=oT^D׹=Vf՟}�=���� ��=@33bI�=�7N����=����H�=�B�����=]P_�E��=�=N����=�ko ��=�0q�4��=xL��Y�=!�����=����X��=�|l�E�=�XD����=�.�l��=F��bP��=� � DI�=��J�|H�=|�6,�N�=ކ�OX�=��3���=d��}�=�_�=�ոZ��=��B��=��֞�)�=��X��d�=��{s���=���m� �=�F)OX�=l]��k�Խn�L}%�ֽC�j�FֽH���Iֽޔ+s�ؽR 9���ٽ,�@a��ҽК�S����Z��8'�d_��@��iw���ul�ܽODzG�8ֽ<��J�:ٽ^���ս��E��Kk��ܽf4���ؽև!\��㽜����Ͻ �=W��ɽ"f�tMĽ���o�ȽJX�ӽ�Jk�Iѽ��H�J�ͽ�Ď���ӽB��K�ؽB�J�Y�ս����X�ѽ�M]� �ͽT�\0�н�ƣ��ؽ�D4˄�ս�)a�-�ҽ�>�o&ڽ�W@W�ܽt�z�2׽WQE~ٽ�p��l罆R]�p�併�<.���H�4�X`㽾�;Z��޽�A2,��ཾ�Ƕh۽hdW���ݽZfƚ��AT����:!��x߽�$V`���2u�Խ��ͽ�=ҽT����ֽ(,j��3Խ�*|} н_5�j�e̽܉����ѽ��l��Ͻt�$�avŽ@�H�Eɽo� ���˽9���+�ƽ�鷥ɽ]R½x�� z*����ɛ�����9����ț�ý�G��*��9�s������R��A��G�-{1K�� �J��d�� Jg���C�ɸ� �����ʕ;ֲ��}������s ����� �������ó[���Ǭ |���%R�0"��RM)t���kݼt��U�f#U�S���mPR�s����4>h��j�Ro뀽\��|��=��V��iy=�Ğy��=\9*��V�=�>laT�=��=}ĉ�^2�=Ա�!��=�����=T!�h"��=pzR�9�=n3ڦt��= q��IҴ=�� Dlҽ�m�I^�˽�GԽe� ԶYʖ=�bA�=�Sv�6{�=�4��uE�=ѽh����= �jҷ=� T��'�=�j�VSC�=�}��O�=��S���=bJ)!B�=�O����=�k�� �=V[�D~��=�qxj�=N����=��un�=�mU�ҙ�=��!-�=���|e�=ލ4"�=��2�8��=��~�|��=�+��G��=�-g,��=�'i~.�=p,�x�:�=F���n�=�F[��=n��2v�=y/$�i�=�c�B��=��� ^��=A���AS�= �}�~�=���C4�=j ���=�=����=5�L�E�=}0u���=���=��nĠ�= �^<2��=w�� w�=�\�+���=Xn̑4�=�6N��C�=F�*' �=��b+G%ҽJ�Rr+ֽd؟�L�ؽ-Ϗ��Bսi�(�(�ٽ���gB۽�ق?�ܽ���� Iݽ�^�Ȗ0��\l�v�ܽ�>�;�۽��o��r�Ü0��"�b_�={.޽H���ս��UjM%ؽ��49Fֽ�)0\;�׽�A<��὞ԟ�$ ޽N�^�ڽ����mό�ר�ڽ�;Ћ�W߽mW����ܽ���~�*����07O�Ќe�`d߽4")�ߎ����ҽ����t�ԽHŅ\(!Խ��#:X;ս?�KXB�ֽ�>�2��׽��Sp��ֽ�,ZUǵ׽���8��ڽt,����ս��W��ؽr;ʵܽTB���ֽ{8M�Pڽ��Pؽx�� �ؽ'�R�ڽ\v�o�սШRk�׽ '�2�����ɶx�cr�f��d�_($�޽�"�� *ܽ�+4D޽��CI�nݽaop��%ٽn���Y5ݽ��'Ga�ڽ\���˓۽h����bӽ�?��Dѽ?2�J�&ս��r��ҽ -���͍̽'=��T�h�M��4e��������� 5�����D8Co��d�+=��j��#h��Xd�֝-���v'!�������|�Y����ֈ��N��vt��b��$��>���=xZ���Ƀ=<�ja:ߕ='����=8XTcP��=0�|i�=ah�[菱=�*���=��R��=꟫���=�8� �=������=6�'���=��@�ͽӸ;(�ý�́�Pѽ�D���ɽ�3q� Yν[��bᶽ w?67�=�\4�^����ɗ]"�=I"�<�����u=�������-��=�ף�Xq�=��]�h�=�I�zgN�=H#Ǔ��=�������=�i��z�=β�^OZ�=~��D�l�=+�kRM��=�$�S�=:9'��=$sҸ���=�1$ϼp�=Y� zN}�=���Z���=ңs�z�=����7<�=�X ��=�p�\)l�=L��p��=��G CL�=s���p��=�$�����=��$e�=���Q���=߮��)�=jcGi)�=A��"��=�ӋY!��=�� � �=�K[���ӽy�"�O�ؽ-{����ҽ��s��ֽ�%�0U�Խh��O�R轊�^i���h*Vt޽���Fݼ⽝��^�^ܽ5y~���<��~���滋��7��(��|4C��O�6� �"�x|G~�_���}�Bf�6�ݽ�jɢ9\۽���Ca߽r� h�ܽN��R�ݽV��>@ٽ �s��۽�����ؽn�d��ٽ��bݽ��pȂ޽�4%�޽X�v�Mnݽ��o��ڽv��jK-ܽat��۽�ץv1 ׽�t�ޝ׽�M�J�4ؽ���<ؽ��4Z=ؽf(���ؽ~�P�0ؽ��t�P]ؽ6��!ڣٽP�%Q�ڽ�4��I�ؽ�\�٪�ٽWT��Ԫֽ22E�.ؽ7ޑ�� Խ�î�?�ս6o�\J ܽ ��*Xٽl� ���ڽ��:�U۽��D˽ֽ:N��%Yؽ�/�. bٽ^*��&�ѽ��M�dϽ�Tt��SӽwJ���н�i7>}�˽�D��rǽ���x��ͽ�QL�{ɽ�T��ý��pne����l�ŽPʡ�T�����y����W����P�R1��o� qõ�X����Y��5����'C � �����rXG�� �Z�0������wJ�� ���p����aȬ��۩)雤=��DUO-�=I�G��Y�=�.�6�a�=)vۓ'�=k�H!�ì=!�Iܻ�=�=��=(��~��=יG����=��%]ʼ=�٦�0�=BB嶀^�=��n5�ӽ-M���Ž�V=��нC�$� ̽�^����t�L%�нB�Q즑ɽ���4�yĽr�NQ픽�Θɉƺ=~��,��=[�qX��=�f�_������ƕ��u�е�=|�d �=������=U$,T!�=.�|��g�=-�rK�=��h�;�=��!����=҉�|#�=q�ps�<�=o��*#�= �}�N�=���"#�=7�ҹ,5�=�Y��<�=By���=��(�£=4s�{̸�=��p�;�=���}z~ٽ����+׽d"M�Vz���b��ڽ\%R$2�ԽΟ��=ҽ_U�p��׽Y*|OԽ��D8���'n��L�w����꽳��m@��X�**�潪�9*P�轩���A��B���;�=�Ό�|I٠�F��������R�O�޽-�|Ù�F�+Qb�[S*y�0�u~|�g�k�y�����ص_��޽�f���۽��QW�ܽ�>�&_ݽ����ڽ��NG,�ܽ�K.W��ڽY�|7�9۽��*��gٽ~�� iڽ&c��ٽ�����ؽ���$ٽ�\ $�ؽ ���lؽ�w�z�[ؽ�3��|ؽ�FR�j!ؽ�R�E�ؽ �1+,�׽\ �á׽P���׽� !9�ؽ�~� Eٽo ;"T�׽ ��׽6ҭ �Խ��i��ֽ�%���ҽ����=ӽN2^�A?׽��U�K׽,gs��Խ% 2�rսV�B��Ͻ�{Q˽g< ѽ8z��ͽq �Aǽ���2YPý��"�ɽ�X)-�Ľ�3�c#���h@6I�����'+�����g-��q��k�P��S������2fͱt��^�����K�i$���HN�ܟ��(܎���u6R�'���w��a�=�@_gW#�=����(�=R���-��=����ˋ�=_q�K(��=�~[��=�q���=|g�Jd��=����-�=�Sc8�w�=� �����=�J�$���=29s��Ͻ:}/�ɽ�kÚ�ѽ}c��VA̽����B�½��!g����j-0�����X��9�l=EaxƽZ��*<����Z�8���[,�$�U�=Q���MӶ=���p�=_���=x�� �ӭ=&��|T��=�\^J!���J����=y0��B��=�#XF�=޳��I�ڽ����|ֽ�W��w`޽#��ƿ>ٽ @����ҽ�r��Ͻ*K��Yս��3oI�ѽ"�F>�潚�T(佴��F �J`�B��� �"Ez�M8x���-��)�۽�d-G�ݽ�j���a������ཤz �ݽzr���M޽�R3La������7����޽�����޽ǚot��ὍΙ(T#Ὄҗ*^N߽Rli��߽d��i�۽W⏰�ڽ���qIܽʙ�2��ٽxiޚT|ٽ0�y�̾׽Р4��ؽq��Ə�׽�¬�n ׽+lI� ׽�P�1D׽���ȟ�ֽ�=R���ս�TxOսh�V΃ս�i�lֽŧ�(�Fֽ}�����Խ?$-B�-ս�2'�;ҽ����3ӽ�/����ӽ�ɠ��ν�<_��ӽ���çн&��C7�ѽ7�k�Sʽ��5�%ƽ\� )�̽~�ppuwǽك��9F½���9�%�����=S�ý�f�����}j�[�����*�䯽�e�1}���7ĻH��pv�Ps!���=Ƨ 9��r.�c�&��+��C ���< ����=�=�e3�=� ����=���9f��=��'y�=rP,J��=v%z����=I�Zo�A�=����=f���_)�=�s�h��=�ʁxh�=�}�W �h=�T���ɽ�Y`2���{�ժnͽ���8�ƽ�S-V- �� ���)�=�n��Sn���O*c������oyV��'���oƤ�t~����K-�/W׽��9+�ӽ��/hٽ���:Fս��~�Éн��(��Eʽ����IKҽ$�+ � Ͻ �4��$��"�&Q޽h�0�+�޽|�9�]sܽ���M��ٽ���?�"ܽ��dʸF۽o�M>Lֽ 0�}�ڽ� x�>0ؽx˖J�[׽S(�ATKܽG�o`��ܽ�H�ܽ�V�=��ٽ8����3۽%���3�ٽ���'�ٽ?s����׽=^����׽��;G�ֽk⾦#�ֽ�#x���Խ�3 �ս��_���Խ�J�D�aԽ4��pn�ӽ;�s�*�ӽ�a��ӽ�Q���~ѽW+�BjRӽL� "ȁѽ��%��ѽ4 �ν=�j��ɽ�4���ν��xzgʽ�?h�Ľ\Lu����>$� BŽߴ�М$���)��w��� �fu����7�����iTZ���j�Z6\��j�ANX§��1��얽�'ˣ�#���|/lQ�x=�d�#�$u=v�1�u�}=Z7�* �]=pwp/' +=j�9�(M==<�����xia pu�J"g������Vk���/�����^�3�'����E����3U�o�Ľ��[�P����P'�'����ɽh��^����ꬮ�NF���[+���ĽG3��Gӽ�v��н,uv��̽��(��Խ�q��L�ǽ\�%Lѽ�{�z)ν��nSҽ���Y�tٽ�q�[}׽��A£�ؽ��}ֽ[�%d� ս�BK�Sҽ xD=;�Խ~ 5�6�ҽYĢ�oi׽ĵ����ս��'O��ս.�}b�`Խ�O�Խ�9@��jӽ��u�vӽ`�衡oҽ\����ҽ��'��нp��3��ѽ�`��(8н����Ŷνf,�Ȣʽ�c@�m�ͽ��L�ɽ�����Ži�%�����K?gŽ-+�`)����>��n���?)b�!��d�]vɻ�B����� KU�e��*#8��,���56� ���:9k�몽n��7ؐ����l�0\�F��P��|����_u�nD�q¸������H��� ���c��a�XVK�� HT�9R����j�R4���K9mU���DyI����XӺq������Wu�ý��K��kνe` "�Ƚ�ל�AϽ��L_��P�v��Žد�(g�ɽ����FϽ��†�jн���Sʽ�6�̽b#�� Խ�'"�F�ҽ=8�^��н��� ӽ�;�ͽ����dѽ4�G,?&н�d���ѽ���@�н��m_tѽ�N�;�ν�� ʐ�н�s9�Y$νaL��ν:0��"�˽% ��{kȽ�/׻��˽[f�5�ǽ!�h� Ž� R�s���Zl�"�Ľ�TD} �� �>�»��������_�I�VV���®��v��P�Vi ��%��^�J��i3F����<�0HA���G�$ ��$�y��P���p��V���{�#�͆�� D���'���觫�XV c����]��oG�����)>'��S{8�W���;��0y������T��q�d ����2 �ƽʕ�K�{Ƚ��JM��M��X#YĽ�`���ʽ�X��Rν8V�ì{̽n F��̽��>���Ž #C-2ɽ'*b��ǽ�&���ʽ#M��ǽSx5���ǽ��'x�kŽc��ý�B�wR{������t½�j�T(��{���#�����.dr��z�kUR��5zj<�� ��a�3Q| ����)�L �� ק���>�:�B�����&Xn��h��N���*�9V[䧽aQ� �P��U���*麽p���ֿ�M��m�Դ��?��k渽�Y�q*½q:���ý��)̭���7��(H������Ľ^��i1ýF�=�4i��[�R����Gm������Q���F�0�����b�qOH��(vQ�����=�7�n@��+\�Џ���V ��갽wQ�}헽v+�f֨�:���%j�����]G��\���E��n�ɜ�v��XLn�jួ����� ������L����,��J ����,�����$�� <好3������1�w-;�����zк��~l"��d4o���.�oe]��z����(��y��;�����\�⹽<��� ��'� �w�����ь�ܳ��,ɍ(�����n�ѻ��{�a'���z���="�������������������x��a:�������i���" �n��[킙1����;(�ۣ������������������c��f����ʠm��8e␬ى�?�0,q���ʖ�u��^jmz�į�m�+de������na��z�a�}���%e${���e� �4��_vx��y���b�$��ps�����`f,�[���#)�c�������������������="X��EcD��Ԡ�����摽��cC�ꜽ���@�������������������B°iG����h汔����Z���o�O����dbD�����N�!1��5ԩ� ���s��{�����#����&�w�����,b�����������������" }{._���3ܻk"��� �85@��������,ң�����������������������|��\����� an�t���a�#�������������������b5��y�0���p(��@r�r� ���%�o l�������������������������������������������h7�(|h��q����s�gf�y�s�`�8yfi�="��������������������������F����)�=�����������������A��=:g�o�=,��N�'�=�'F��&�=��l�" }�="��#��#�=����������������Lh��" �="r�"> I��= ����=��N�=ñ`���=qn�9��=h�'$�z�=�N�=��O�H�=p�V�S��=E����=]�,�SC�=�2�~I|�=!5IޱU�=�(X�2��=��/��=VQS����=&�P����=�C�+��=S�gXL�=�����=��+�W�=���HZ��=$����n�=��8���=lG�QI>����s�=��^�*��=�C<%&�=���k��=v�4����=�����=ƿ(qع+>4b�,R(>�%�>E6 �( >�J����=h��$�P�=������>`���>�i��-a�=��L��?�=��﹊�=� �>���=�� �� �=��Y�z,'>pa�3I2.>��l�*>�D�ĕ�)>z�>#h,>�Vf�w60>jQI �0��F�#>��o*�Q%>n�Oiœ!>��:w�>�rX�2>���[� >\�qV�� >4�M7��>W��f��>J/��-�='}K�T� >Zr��G�>l�?�V��=�cp�D�=ZH���M> C��"�=Lo�X���=Gu�%G2>�?���5>�oNxi1>�]%�t�/> ��w75>����ݛ2>�ҍY]0>��l�ص0>���9��8>L�i <ҳ8> $ �rS>>_j; ��>j�\+5>��v7�>�%1i2>��ь4�>]�V%�N>�ᷨf$>�|��g%>�}�H�$">8�%&- >&bڱ�/>�K@Q">>�\|Gk >�d6 }T,>R�f���(>�6�: ->x�l���(>�Q�h�%>CɛZ��">~̕q��%>7m�) v#>���52 >�Q5ie8>ڔdrG�>w��b� >�!� _&>��+r��=�9wQz�>>P�>���dx%�=��u����=�҉P��=94����=�{�}��=���7��7>kݮۜ1(>�a� u.>���I+�*>����0>���,{�'>��ѩn->?=��&n*>Ԉ�c2>|�=-F4>�1.F�/>cCgړ�1>`Jy�lG)>��5$��5>j3�n�5>w�V�J&3>Cò��3>���!pG5>�o�X55>t0��b3>����Y�3>Y��.�">x���"�&>������$>��]N�>�ً�K'>�Sww�">B��#A$>P|g�Y�>�%n��>�F "�t>�P�{ʜ>�-u^�>���)�>N��`>*��7S >�����>W�^t�>�N>��� >�v����=������=l�����=&S6ρq>�~.�>��} �;>�r*�ޔ=>4��v>77>��1��?3>��A��6>`�G��@>De�@�C2>�1Z�z4>��_֧->c�.7/>���}>�(>�y�0 *>5�� &>��('��0>�o�/#1>~2�N[a+>�u���C.>�V�`7>J0ֲ-<>�.��>>��sTb8>DنA��@> e�I;@>�8i��?>'��6�?>��ӝ��>cڶd�B >�ټA;>V�'n� >�� D�m>�s�4> ޽��&>�5c "�$>,�Me!>�o-k�">��\�I">��" >>����X�>�m `3 >� k��>�3M�>3-|r� >dkИQj>�4b V�>�ܒQ! >1�2�=0�c����=^!���{>��5�=�9�,���=r�\o �=�|uV �=�*�@��=�u� ��=p��5>c���4>J��3>T�$�u3>ǍOMM�2> ��A,>���^11>�@��M6/>}�����)>��\'�1>N�����.>��s�<�,>H�|���'>�R���$>���)>'�|�]&>�� ��1>���7P�2>�K��T2>$�70��1>�wD:x/>��1�ױ0>~���2v0>��:�[">�gٻ)�>�u�e;�>7~'��>f�?�@�#>�>�>@>��A�t >^ ���nC�>\�:hg >��L�xk>�|��S�>�~)$�� >���q�>��>��:>/فOA=>:�鰼16>\mM���4>���1>�1a`.>�!����1> �S)->F���&>:6�D�>��(69h">�����*>辭(��(>�km��p>08��*>ʨ���#>�����$>�O���>��oB� >�ۂ"�� >ب ޻q3>�5P�շ7>��L�d�4>\/�K2>~1|M�U3>`$O�_�:>>��'^�6>�.��4>g�uQU#4>�k�d��0>N��b��>������>N� �[>vSM�1�>�]�8>A��`>���3">h���>��쒝>4hO0">��� >p,P��v�=���_ >u����>�%=t���=���� �=U6�D�>�1��$ �=�V �I>(�+�҈�=�2��=�9����=�"L���=�J�p�_�=�tä��=h+$��=Nx���v�=�Z���{=�'l����8IR�@2>�gx0��1>�\�� t1>"ѡ���0>�~� ]1>����\0>I�>�0>p�=�/>v(��\ ,>���O@(>�b�R�->٦�֒[*>5�Ɂ:%>�1��0�!>����'>����:$>���O�.>��v�i.>�*�{��+>H��͘,>�S�O�+>����>�vy)�>��=�� >T��>���2���=�~�9�Y�=\ �@]>��ϦC>v3�Lk� >�(�L>ZH\Y��>�jZ��� >|S)��>L( Y�=2>Y��dn.>S�*�r#1>6�X(�->�JA�ځ(>��`n�#>��W�2�(>N�r��#>�+�ڕ8>R��k>�In$T>'o���>+' K��vb�� o��Un>�"0N;oؽ"z�|�=Bu�$�I >�T��8l�6l��$�=��n� �.���:�/>���� h`�ƚF1>a��?�0>q�?İ.>�QC�,>� ݥM.>y�w�->�O��)/>��[��,>t4nR��+>+� X�?)>� �-�*>s{�t*�*>�4yy�'>:��\�'>�f�i��>�~։!@>����>�F�y;��=���1�=��� ���=ƣ�l}(�=Ќ �����{S��`�=�6QFM���H �n���w�=<��Gf��� ��������5�iM�=�В���=阜+m�=@�: @T�=�/�tF�=�i �جɽ�R�Z��׽Yg�#����`XuGɽ��?@�!ѽE��}�佒�<� ����(u�Խ�6s74/>�|U!�:.>b�+��,>��wy,>�� {-> ��,>7�N���,>��n@*�,>��(,>�B-,>�y,XJ*>����2�,>f��� Z�=�r�� *�=橻��(>v=��;�"> 4&���%>J߭�ۨ)>%�sU� >�,Bu�#>��:��(&>��1ט=*>�8��Ĭ+>���/�*>,��ؿ+>F�]�6'>�כ��*>�� �Z)>�T����>9֩�>c��ɕ2!>��'n>����s>��_&;�>�* >ʇ��\>�Z���>�묦� >�y����>�����;->� ��@�.>n��� 0>��V�,>>3e�?j*>�ԓ��->h�|� m+>�?�M�.>�"�M�.>pC�p��/>������/>��0^��0>���'%1>oZ�i1>�����1>���p�o2>»X�*a���g�#�-��$�����\�G ��rþ"$��s�q;k"��'�'>�����c#>�؇�>&>f�I�_!>�bpڈ�>�'^>�X�K�H>��C����=�;lN�>�,��8>����j>=�g~%���s��� ��nv��>�� �+����.��jn*|��=P(-����?����J��QL*>���!Uv*>|be�B:*>��0^�(>$g����'>Ѯ��E&>di;�&>؀�($>�c{p�$>�Q�\%>G3���>��jf��#>)��dn>h�*dF� >^C�C�!���_b�]%��slQ=��=�4�m�1���X�&6����eQ����L뇈�Ps��mr �r�I�)!�9!��� ���x�\6������l����P�g�Z�e�V�}�����V��#�v��q��� X|� L�/��P���4��9����X�$bb۽E g޿���������-f���������T�7�L$> G�9�*>(��\L�+>���+ +> w"��%>�{ C�(>D�Kh�+,>��zV#>Ԣ����)>�'�=�%>u�K�p(>��� T5�C�B->��\c��)>�y�K/>g�|3�,>fc'e��=l�L%��=�E�<��=O�Fc��= ,��;� >&�t��m>�f�5J� >�]�7 $>�E�ў�(>�Y�&>���r�G!>{z5�)>��T�&$>n�%>��&>��">2z��>��k�>:MN?_I>yz#d!>�h�ݹ>�A@H�>f�.���.>����X1>H��G�00>�O���,>��V[l2>k�QC0�0>H)j�/%/>�W�p��*>��t�S'>�TZY��,>l ��)>F�(Y�Q1>&&��1> }�]�T2>�s�,� 1>V��:P�2>�ݷ�t�3>�C�b�3>� D�c4>�'�j^�6>������3>�բ���2>9�~f�6>JLV���4> SiC�&�����'��c���)��鹁�+��꬈I�(�f�'i��&�L2�ʑ�,�8�����+�hW�(��$�V\��"��\�ڭ)�j�G��'����tQ�$��ʉm�>�LPy>�ê|��>zB��!ֽ� )sQt>R�إ��>@�����=�)�<`"�}�j��(�(^����Q����#�kZ������Q���t#����88�[�t7W�?˯Bȑ">z��t]�> !>l�Կ�>�9��0�>ιG22�>�0���>>�߰� >.�!���.����І�0�ր �G�'��S�4�,�hʣ�I�.�5M�6�*���a$�&m�\� �F��L�&�l�ه�J#�ouZ �@MFd����{����N"�F �Ȕvaf��Z���h����%j �AE���r��)���b���<~����;JJ ���2B����1x����(�o� � �!�p���%�؁h�B��uXy�'�ڨ������HK&��Nt����=2�I#s��=�/�*�=bEt�l�=�+×� >�;S3�X#>�oKRO�>��Z���>4(��&>D�q�r(>� ��fF!>l���^ %>��� $�0>�:�.>z�Py2>@%�F=,1>4M�*)�+>SGР'>��v�.> 2��͂+>�[ۍ>�F�}���=����U� >�]N\n4>V���C�=ą�L�(�=��6��I> ����>�y��ƫ>a�rr�y>|k}�m�>�����>����U$>����>�]1BP!> `6��=&>����>��E�>����d#>��[ %>ip5/>��b�`(>�B���+>����K�0>���1 �'>W�s�.>R��|8*>F�wZǬ1>T�N�3>����gf/>��‰3>,�q�>�1>Y��5� 8>K���4>8��듢7>@\��R3>jX�� >>�)|<>�F^:#U>>Nm�S�8>�Χ�!�5>���� 9>�r���8@>�(�v�5>o��/gB0����./_0�4��ћ42��uM*4��$4Ce�/�de0��+�{�4���-�.)�'�C*���C��b4��.)Y5�1�� ��/���UG��(����T )�:h�& �.��< ���-�@�Ш�-���(��{M��#�oq�*����uP�&��w %�]�=���b5��l�G�� ��L6�P,�=���L"�!���g�jg���X�B��ylM�>Q�'�o��=�����>�&�&>T���+�����ډ�=��Z=�=�=�g�ܖ1��mz��V>�ke�'7�k�}�r�3��A�i��7�ߘ2�i3�5�� �/��u�S�+��\3ьY1��1���_.� �N�q��n���r ��x�v�$�B����GD��T��Uy‘w!�12.g�-�h�/�Jܐv�����<� �� ��c� ��^��͋i�����=����������5[�s�ܽjasF�K�=N�>n�k�=����D�=Ig�uz��=�� wø�=" +�0��=(@�/�v�=�/�5�9�=9vV�ђ>@�Ўn�=�����=F��&O��=�����>?�����>���{=~>w�W{��=P�K �>>9���F#>�6�S�&>� ����>=nx�#>�{��e1>�w+>g;���.>V/ZC�5>L�8���'>(�L���0>���-.--><����4>�H�DP>�!)��l >lx>w��>����& >����&�>[M�\��>Է> >L�B�2>�0��j4>��u��L7>~-o �2>"��qF�3>b���>M��i� ">��K<߹>�ր�$>0�)��>t=���A>6��k�!>�A�׹E&>L9��(>�Ăeݻ#>��)���&>!���,>��T�Rv1>����7/>f o s1>�� �)>�e��/>��l��m,>>`c,��:>x#��9=>Z��s6>��о��?>h1���@> ���@>���x�?>�?_�H�;>wۏ�*�=>�ڑ>7>��"M6>��,L;�XeO�>�����,7�:dQ��2��*R�6��y�Z>:@����^22�+����0���c!G/�+�m�T5���-��1�����6�,�w�P*�e(��nk~,0� 0.h>!,�\�Lt$�� �ݏH����c�2(�V��9�#��"<�t�j�؍���9=O���맼� ��i�*h��鷨�� qv�h ����[���'��;�Ď"���.q��J�A@0����3c~@������7A�g�HIOY@�� L�G�@����Փ2�O�I�X6�x3�K�U1�_��=E63��wSX<�����?�'r%�y9��.5Ԡ�6����d�,������'�f�E�C�.�-�S��O+�p�$�t$�0�)�� ���2'���dT$�F���� �!d]� �� ����3� �._a�����e�����,�� �₳�:��j�Ŧ�������JD+8����Y ��.�0|�`����]Ƥ������A ����<�c>�?�v��8�������ؽ�&>����Vp�ս� %��u���-J�8R�W?Ͻ!��Qξ��D";|�=%� Y"�=��ɍFI�=�r�g+w�=�"8��q�=���^�m�=������=o�7&�#�=�"�1Cm�=�Or�u�=��[�6>�P��0*�=�y��>��ty��=��ad��>jy�ڇW>�g�NU�&���t��"��y!���"�̅��$�]����,� ����+��_J�=]w�+��������C�% >�qxcT�>�r���>����)v>���_�$>@B�H\G/>����7)>�����0>\��=1�>�'/{�*>�>�sX%>8�ۅ��5>��r���1>�4lWU�+>l^�_�0>7�Fl�->��yHW�>�A~ko�>�lС:�>\�@�.>P+�"u�>��f >�oi:Je>�V��R>NJ��1>���l�2>H�t�.>/п+�/>�e(��2> c�3}3>�4���0> 4�-&1>��G!>��O4z`'>R��3$>we�3z)>���^sA>���Ox">�Z�AV%>}�g=�+> ����,>�*zФ&>�e��)>6d�4�:>��Y��6>4:���3>�n��-�3>-#�ƛ;3>$晄$�1>������1>uw�K0> 84_�H/>�ԛ!�Q)��)�8��+�籂]�~+���7"$.+����Ui.�_Wɇ�/��\ ��:'��n6��;��&��U�>��ӛS�8��hۢ�5����?d�1�:5L�m+�R�lQ$/�F!���"+�>�� B�3�����P1������.�E���Ȑ8�H�,�k�#����Q����x�(�o�����^�fz�'���H�U%���(��S"�G�>��(�z}(���.�@�aVm�*�I�T�d4&�2Ԑ�V"�����$�^��)V.�EV���*���eI,'�iG�#0�>�*��1�r�5��,����\sw/�Y@~2��<�6��e9�N���V8�Z�o���7���&�K3���ʱ�4���J �0�]�p�sU2��I�16�8BKz��5��q�ckl3���d�A64�N �)�)�/N��&�&� <��,����,i�(�y�V���#�^��Qx�!�ڛU�&����ë#����f�}�G2q��������S@!���)H��� >��'����Խ��%�H���/��D�� �h�~�(�y� b��;�Z{�JNk,�,���#^�����z{�+ ���;M��i],�T��ԁu�Ɛ�T�)�?�v��7���M3�����Gm}�H�����d�����iy�N��� ���׽޻S�-c�(�P2����^��D���]%%GȽ�tv^a콽���T�Խ �.(�=�"~��]�=0�e�:��=D�T�g�=�������=J4>��<�=��<��>@��n��=&��>V�=�X �+>�k �ܪ >}�o�s>�ʂC_� >��M�&�� ��!�&�'F_)�����$��~N�ʘ�|�v�eK��y����֩�.#���Ա��=��� ?>�G$�����J*8i�"�=w�A�O�>��BG�%>��� �6 >P)�NFW'>���g >���Vz� >�����>�� .>C���(>Y1axky+>�{u\�*>��.�!>�ٷ���%>����'>l�< �>�D���)>���Ȳ�>,"�r>xl*�J> ���%>��c�>����Y->*Ť`s�/>���Y��.>�{���$*>���7�->ֳ�2�*+>D(C6]�*>��N��">V6��v'>P� �%>�2�qm>Q�i���'>���_\$>(n�">Q�T�(/>�Bd�f->�����;+>�<��)>��":+>�d=v)>V���(>ӝ<���&>Ua|�tS'>Rx�۽<%>~u2���&>,�8�)#>���Ӯe&���p��F+��S�_��.�kkYP@>*�D�}�B 0�ޝ���0�yϺs�1�����2��=/j�75�fI�n��1�̾��A1��`8��5�v4����3��s�(p�2��E�H��*������-�����K~+���P��z-��� �5�Lb��܋2�"1�[�0����T�5��ހ8U 0��:W��W3��ڌ��1�v�i�05�-�+��]5�F��_3�x�|`�3��YO>'�F�E���)���%��(���ި�4*��Q<�� ,��I��u-�x�m8�,�G����C-�� ��0�H��f'+�/�P��-��O���1��Ca��+�Rn�+�=0�Z==\.�Zk~�\.�X����`0��i� ��*��[!��O-���_��4�Bլz�3�$�c6�3�8@W U�2�����a1�B�8�٭2��Vj[*2� ?� /��7а2� šIx�>Lc%�"C�=����<>��XP5R >z�"�>3� >V��[� >��U!�!�Z�q'I��SY7_%� �!�ա�Qp�̬�"��ِ= ��5a�l�={�3����zRk>DS�5�������f��I\���=F2Z���>� ŀ�">���b�<> a�v�2!>��zs�>���S{W>�ܹ�X[>�UD��>Ɨ�>�MwdU>�Ϯ�O}>|g��_'>���J$>��62�!>y�o�G�%>�2�b�>� QP�">���-�� >HQZ�%>�iЃ$r$>��-��">Z"��9!>�8�E�#>��3*A� >�i� >M�[�>��ۻ�>�v�0>P�ǓI>�r\E>@��?��(��hw(֖.��Q9�&��j��?G,��H��)�����>������6�0�F���2�P�b�� 7���I�b�1��7�}X�3��b�) �;�s�~��>�[F�Ih8��Zֶ^5����F�8�(�G��Y@�g�3�5����\Nv2��j�Z��0�>� �]3�d�g��1�d��(`2�Gؑ��*/�: �?�0�Qe�^zT.�u;��/��;�N}�1�ĥYAx�2�`�ݬ�2�� <��)2�[Q�X3�0��a���c1��>l��=1��8v��s,�aprix&-�@Uk[��-��q���-����R�-���W_�.����� �-�[#�`�.��x�Hӥ/�b"X��0�$k`���.�o���A�/�~D���+��dc�a�-��]�p�(�����*�S��N1�C��vkH/��� "�0�V/t`��0�L2�,�b�� .�ǚ1�T/��3i�%��s���_#�T�>^�'����a�$���a!�n"n����^�H�8w"����Mt����wU�ԼΑW`� �dǼ��C�0���^�<�/^n���K+Vh5f�n�I�� �m�O���P �U��������4�N����#���w޽o����.;��ٸؽ�����&�Dp�=� 2��=+�RC�=��D H�=�/�*��=B�m���>�[-R>֮#mm�=����wV> 87̚ >�����>t���K>}V�Ox� >��3�y'���� ���?m;��$���:@cU!�h�`�WB �D�Q�g$����K������E��{�e�齘�>>� n�=2+t�*�>�zK�L ��� 5�꽏X����=���~>Z}"��I> �0a��>G>D��>�a��� >8��"�F>VD��>\˫��<>U��G�6>��nA�>��:�E\>���]{�>�>�2�>MM)gL�>T�Wٳ� >�H�d�=� { H >��rI>ŗ,G�w/��Z��ߙ,�� p��V4���.5{�0�� ��)����e�&��@�l�|-���ڕ5�(�����8A�`*���:@�hY��@�F��M��@��K��~F;��>;�S_>�J�d� �7���;v�4��a̳!8�T��74����V�97��uT�3��D�}4��/�E��<��:��?��~���/9�fu��ph7�����!3��I�� 1��5䩯1�`�p 2��yC�0��� r��1�w˗p�0��V�U�0�5M�[/�$��L0�����0�G#�Z�].���+v�.�0 :iF.���j:�%.��B��.�PDe�K�-��⒰��-�$r�`.�4b�� R-����nH+-��c�6�-�*I�:!�.��u�0/�����vh-����$bY-��@0�W)�,�+l9E+��� U(V&�v����'��곱,�<���Y�,�$��,�T)�t}-J�y*� 3��#���~]�� ���n�%�b�P��!��X�%��X�.����Ŗ��T��|@M���AT�;�|��},��L�$x� �0�Lt�����r5�٨���yd,�����M�"�? �b'����X��� ��T����Lxݚ�:�P<��h����DF���=^�K�!�=u�����=�<��B�=j�`4e�=��k� ��=L���}�> �8�>��=@��Cs��= n76��>�8'�� >��Q�{��=yc�1L�>�� #�(49P���ʪ۔�%��%.�p!�!�-����zo]s ��'�n��� ��E��=���&�������l�����?�(#Ц�E>�� ��, >Q���<�>�F����=�ȿh>�QфT�>�1 (d�,.PV>���A��=i ��? �f?D� V�FH�m�!����s���S��b���A�v*��d9��'��?��6/�삣�֘ �"�������3�Cm� � �`U�6��:��# �~����D��u��$|0vO�������p�=(�ҞO+�= �� �=2��%g�=��3$+Z�=и1���=��fJf��=�ָARM�=HOl��=X'���=!� |�=�&��=vS����=�3�����j�p!�9���i� *"���WQ�.7�I�� � Fu����=�z@.x��2�qfὔ�6�g*�77�J���$H�\M �C �&�,����(?I(��� e%�.�^UٴUB*�����i$������6 �i%�h��&����s�'#�`�52�3����׵2�P�2���2��O8,��1����-��/��k��]1���\m�0��o��+�P�x��0�F �Z(�-�ϔj]�,�~��iCv1�ra��^�1��Wn��1��ȹ��/������0������/��՛7��/��(`Rx�-�q%��wZ-�ߙ?�41+����E )P�����l"q��I���,2�l�i��S����@�%L�l ���ܲ��Ż�=̲��F�= (��Py�=l(SX�s�='�`'л�=��H��=�~�̻�׽`%��tʽO���"��M��M�� YՅ���U:���Wxɂ�Z'E�ؠ�L���O ��d�}.��{ !2���j6��� �JWQ|M�t��� ��$�e�'�����|�$�Ӆ��!��2H�0u)��_�J�i�tj�!x%���@�W�"���7��V&�?D&8�k/� �[�,�p6�kc.��} ܋�+�N�R�)�����K&�ؔb1�)�bʪ�W'�������,���v���*�V]���+�K] V')����EA�(�Ʒ�C9�'��k����'��(�_~�&��&��) '��=��6�$�8&�¢TV$��_;���"��l�� �JnV�A6"�M,����L�K+Ͷ��Y�(��j0�'�����T��㋖ ��sp��i��t��>�%�D��`Q �\��J��\H'�#���0�}'��L�7��ʹ�7e�����0�ѽ���Vzaʽ�~����r���.��KN��V����c5/��/x�������?2���w}b S���� �����FK �y^�qb��SWT�"����Q���.v��I#���[5��:h���W�f~�����CM#�PqIVC$��lb? �J4e(H�!� ���(�ԡ�ua�&��WS*E�$�@��^<�'�� �k�V"��À��w%�t�q���#�$߉��&��ٿ��$��M�K\�%���wz�"��9#�u$�>̙00�"�B��l2#�0 �1!���>F$�.6��4� �?e�\S���a����:��+���B ��M������i|@"����=݂ �#��r)M,=B ��~iȽ�~/w������5B����I���<+�G��ܮԆ6_ս���؈p�^8�(:%ܽ��8a������\��� Z�o#�@�C������9������u��'�I��\)�9T ��ڵ����G���(�f�=e08��g�[����m���/�V� �������"�z�7V�!���W ��!�������Nm$��*�wë#�8�,��c ���eH^��z��P��s£T�p���9M=�D��|�W����n��kW ��:����u\�^3]���9� t6A���B��J�A:�8�~~������{S��趧J��D�H�H����_D�Ӱ�6A��� gx�I���P�����g��G�$��/8� ��-��s}���Hޗ�#��b笛�� �ץ�#��P � ���t����l�~������)���]F��_��6���b�Y����l���}��A:w����A.�h��i�y�o���G\���Vkwi8�����xQ �vm��;��q�/��� ����6��;$�����j-ۊ>����S7��^�dF�ٵ���|t������v~��Nk��������u��&P�ڏ��(� ��C}��Z#������P�������p ����jO�� �k�d��YU������|�B�-������z� �?�n���R� s ��o6�3� ��{*��ґn���������S���[�0����5 ����?Gn��� �P���I@����!�Ă����ISs��}�����?�߽�!j̵��B w�D��? �P�� f ��O� ��׽�.�z���bYg����4�O�����c�P���.��RX��6(W��S뽠(n �^�b�0�!���wf�!aڽp�����Ǖy�h3�� z�3��F�>���2��c��ѽ�}_8�޽خ/�ªɽnQ�W�'ս�<�a�Ͻ� Բ:��2�Eֽ�kL �׽���"�8�����G\�Ƚ�{b���E��2��x�KI�}��~^��ͽ s����[��HG���i<��zd���짾���~39¾ � `_þG��t��־u�;�Qy������Ͼl��ʾTU����ݾ� �{伾~w�[��Ǿ|L�"bwо�uc����ėG�4��&�@r����c=��Ҿ��g�$Fͩ�?�J\����>�4E��Ӿ2��G���LA�k��>�� e�'�>���f �Ӿɡ2c�f���:��K�>C�4���>6�� t�Ҿ 8����Te�H'xо������ݾ��ً��>�v̰'�>2� s#�ʾ��?ɹ�־�eP_þ�/͈$�Ͼ���j�w�>ddUh2�>�:��~޾>�����>rzn¸�����;¾j�֊8秾�q�浧������>�D�����>��Hk�F�>�$� �e�>� �p�=H�k4����#нO-���~�>�e�>���W��u���sPa��>S��ZD�>jDo�&���]n�Yzʾ��Y���>���|��>fl=���¬o��о /��ct�>e��zk�>��Tu��Z�4܆�Ͼ0ZQO�I�>Ө�n��> �t&bڼ������Ǿ����Y�>E߇A�Z�>���[�.��޳q����L�[��>�i$=$��>��~�?� �dK���>(Bk��>�ZN���><5=A��>$*�p9*�>H����>�ٮ�e��>_�� �F�>�G�~��>�6� ���>wp�[�>�Kg� ��>�{1a�>��CX�>$:`����>�B�y�>��̇�0�>�;kI�H�>�'�#�k�>C�����>JjJt��>1]�vt�>�)W����>%��b���>�3Mc)��>re���> 9��>Lg�w�=��D��>�U:�}�>��a��K�>8)|�e�>uq~8��433333�?=�.=��=�L>��gR�����D�^��� ���]�`� �w7S�Hm2� �i����~�l�"��y�c���5!e�D�߯�Bk������r�(2j>��v��}��ix�l��HY���]�>ny�����ՙ�v��[��pBk�p���������C�~��.��Yp��Ļ㟄�P�}B0�o�l.U���}��5�f�Ԉ��� ��(R����q��c������ :� W��\��V& ���ZE�/���|ܰ�/B��?<���=O&���v]�����܂)( d��b'��Jgt�feɱ��n��!����� �f�x�b8j~����c��]� �J���DѩA ���*��T�1J����m�����F3����49iq�r��!r!���H<�y3����'̄�� �\�:xr�,�P���`%�]�����`Eb@����;�b�W��J�WN���pY�Jý�{�+����_>�|���t��d]���g�鴽�*� ��½E<�/>ɽ����#ƽ*�+�_xý�r����ýxD ��ͽ�0 ��cͽ��|ZS ҽtkf;����*��q©��p뭩���O��nh���Qf�G���p˔1����Ư!E�����w���;��<���t<�� ?��@�QA\,��� �K*˵�ZBF����>��i������-:����{7��E������O������,��>$+��n��@��W%��~�a�'��@����-��H\�o�����$� ���xx5�����@�g��ԋ{j�9���L���ߚ���1S Г���p�Vq��'Dc��0��2A��~�M����h�Pl�m�`����̽�ɜ�ȼ���l����� w�����"����ý �� ��$u\����`4,m,r���/��P�Ž�X�Ƚu�Dý�#I KŽHk����>���ɽ�r5� ʽlS{���ƽj��X@ǽ@���.Qɽ,��x�;ɽPM�9Lǽ ���ȋǽ��y�t��̌�����@��X���r<.%�沽�8|vZ���Dy?y�C���r5��|�a͑ׯ� wcE� ��8�N)[�����˄6��������n�������Z/�0���5Ԝ%R��xk���������<�U�Iǡ��?&�ߔ��(Q]Y�n������ ��o䛽�y�k�-��rN,1]н"�a���ѽP^p{�˽Z�d��ƽ�A�^˽0BR�'ӽDJ��=�Žt5���]ȽrhϙE���(� ܑ½� Xi�.�����c���0vS��S���)sb�ýx���cĽ܃�\�I��P� ½̛���˽��y��нn��P��ѽ,�f:�ͽH���DԽ�@)��OӽtdQ�ҽ���<�ҽHIq5���8W�X���sK2"3��D���k������N��- 6����N��&�����r㸽���AL��2����Dq�3µ��j���4����!ḱ���F���������د�� ��|�� ��p�z���qy�>�����%� �����v�������������;?�����D���፽¸�c]Dg��1d�Uk{�(��tw����_,�s�����s�]�T���ɽe���cȽ6p�9LǽbK��&ǽ��Ց@ ƽ]��W���L[��j[ĽB��PO�½F�������o�$$�Ľrº�_½ƴ��� ����:���ܕOG���Ї;3T྽�i"g'���T�%JŽ�3��� ƽ��x�Žl��őHŽԇ��r�½�K���ý^��7�ýZ��jt�����jN��D&DZ:��bڔ^�˧�D�Dv����<�;��~`"^������������uY�h��^n;��t��b��~����T����9����l��$rU��ļ!A[����y���ꤽ�7e���Ͻ���?Dgѽ�$��gʽ�׬��Ƚb��PPĽ��J½�0T�)\Ž$�m��X��,��1 �����4瓱�6�s��浽������ �����$=P����T�dAI����w�`k��TI��帽��`ゲ�(L}��8��V�~Y����]"ǽP��8̽D�r���Ƚx�)^�Ž����Eǽ�N�н��Ȳ�ʽJ���Ƚ>�Ԯ�ǽ��ݜ�ĽxJE#����v�5@���O)n٧����S��Ҥ���t�Ѭ�4| y�n���/%�b���-V�Ip��4�Y\�:���c�O2���HU8 G��jݟ�dW���L�Rᠽ"o�^�}��̙�l(�������Qd�D�������"ghLG��?6�(�������’�n�:�����^���w�Y�\�v��ȍ¹w�T^�J��D�����d���Z4s�`�T����J�r��C=b\^�Ž*��h) Ž�;����Ľ�4�ýP.�ONSĽ8�Rg�výu7���ý�4+_�s½>@[M������wڼ�G,5����D��\�����n��z��㴽$��\@���`�Q᷽B��M�-½ q�Wj���橏�Ob���֖1���Dn ����������C��x�n���"������afA�P���2�L�����EՅ��5$�kٕ�F�1����(y�i`��x���w����/($��2Kn֝��R���lH��*�#�ٳŽb���������dĽl�vݩ���J�Ӑ(��2W�ɐ����w>P��,���]Q���vCӒ������UK��h���5���,�!�7����.��=�rI+A�=DÏT�O��`N�� m=(:����|N��Z�����m.K�=�lc �|��+���}=�� ý|=�\lý4#j�Ľvr���Ľܩg��A½�����1���GH������������.���½�� Qk@���5a_x���0nV� ��52ɋ뿽� � տ��G'����૔V�}��p��-D���o�Ӻڜ���j�������Vqrغ����e�����M�^Q����h�Rʪ=p�I�G�z��3`� ��=�����Ҡ=r�/d��s�x�EBu�=$�,K��=���; �=r����� �0����v��F�t�BD���iH*���@4{����$�����ЫR�ؕ�����투�v�N�T����ֵO�y�����zd��|y�N3½R��6 ýh�^Q����̌`x�m���wZP��̦Ӎ�P��r�:F�����-0��������½"8�Ψ�½d��MW�ý��9xfĽ�C� KĽ\��eŽLDj�q�Ž�߈D'�=��`�=E�=A� կ=�b�7L^�=� ���=(�H��=؆nI�}��V]�W��8�~+`w��r���-���(�7FRͱ�x;F8.����'������o���r< l ��p���ަ��m~G+ ���Y و��=4��̽Ԟ=��vm9ѱ=�Wn;�=l2%�=zX�C�m���u��)�=�bq���=���k�ᄑ<�22|����P߈4��� ГK����,qҭB����� �������b溽|��^;���Z�ḽ\!��i����f�ײ��aŠ����N��߲�����Ya���ோ�b?�=�[�A)k�=��f�� l���cn��=��P?$s=l�E"���=���S}��=�����<�=Dڿ��E�=�Ml�j�==�0Ο=x���/�=��p�=�tw4%��=��W���=�^kd�=0� � �=��Q���=��V\Mc�=�m��H�=�e2D �=�w�m�Ip=�dP>rq}=����C�=���0u�=�4ȝC�s=��2�'��� 8�����c �ׅ���;���� ~�����*��A���פcF����� ����Ȇ]辽��4����`��#���Q-]��½:op� h��l�C}F߾�V�_Lr½��~����T���� ڦ��1����c�w���4U �������p��T��#�]���VN��������$zן��@�,ڷ�x|q�����{Z�Rͺ��n�r�����6�j��2�7�����`S�7����V�U������/��Pj���]���������Ȕ2�����i v����^~������� -½NB!��Ľ��YdCý��u�6�����sL`�Ž���ٴýh9N"�½���LV���l��:���bwR9����d�.o}������c�Ľ;�vDĽ�pT�ŽL�*�EĽ��˃F ƽ����Dǽlq�Q��ǽ@H&BȽ��(=��ʽ�S�wMǽ 2�sSƽ�Ht/N ˽�r����Ƚ�^-yк=���%�=� �A��=�nW��=,�T:�=�E�S�=Pǣw���=��aD3��=tj�ev�=�c��@��=y$ߌ�=0_�tj>�=�����=�H���-��ǼBF˔���,Oᢽtwm�>Kj=�q<4諽�o���V��@;���{���RR��=�W o~�=`J�>Hɨ=D ��l��=`���S��= BT��%�=�$K���=�y��2�=��L������Td���>ivB`��8i fr��X�ӊw����d&O}����� �a���dq�xPz��xRP�#B�=��{RJ��=\7B Iq�=,�]�n�=z4/('�=��b�f��=���Է=��|�%�=��)��=Z�=R�=�!��e�=q�b��=�b�P��=�؋x��=��q����=��To��=`  ���=��`�d�=�F$-�@�=�8���Ϥ=�N�Gl�=L3D��=|�~֎��=��<��=0�C=���&��u=hQ})$�=*��-�v=h �6 ��=�{����=P�?֚��x�~��{��D��w�ҩ�%؉s�t^i|�+��JF9[����ҥ$����C� ������F޺���m���^�mgэ���_�~ ����r"��ý� 8Xd*½0I��Žր��nĽ��b���މ��������8@½�hUt�]���[�������f��0���A���l�7�X̜�К��А�tT��/������t��*◽B$��C����x������~{ ��t����墳���h�1��|�D�^��d��6@��(EQ9�v���)�����)ⲽ&Q &���u5s��O"��½$ǜ�/��� ʀe��jN��3�ý(�I_�����B�3����� ǽh��Y�%Ž�=�C�̽�P�w��Ƚ|k ��̽�ߕ!��ƽކ���ѽT��%$�н ��NU ҽ�NJ �=�NX�*���&�=��w@0j�=�ۓ�Xfz�t��;��=�d�ޗ׫=�+"�Av�=���ވN�������&�����^Q���M��D����р�Z�=(�׷��Z��o�͐��dH`��=��1 �=�s6��=l����L�=Ho6�F�=f�Ƶ�=� `9���=�/C�1��=,�zE%��= ?����=�,�<�P�=�[�̵=8w��H�=���6J�=�GQ���=L� �=ơ"5P�=�y9ؐ��=�@XDp�=e}Z�3�=�� _|b�=�$��[ѣ=�F�Q�v�=�ýQ2X�=�OF��[�=��M �v=� ��u=���w8�=�LP8��=B�fmK��=p&���=�*�֟a�='5�5�=L� >��=�S��s=p@[�Yq=���]Io�L �(g���,�8`����Ц�R��Ų{�h֥�B���\?�2��� ��/������g�蔽v|Ҟ��?��鑽h �} n�����P1K��h���Bѩ���8S�������L�&����R}�¨�:���8ﶽ��OZ/��t��nͭ��8�L�v��l a@�Ľ%�����"^��d½���Vɽ6�$�6�����}Ľ�ce1[[����Z��ǽp㱁Š������蠽j�6lZ���Z|Vࡦ�H ��읽D�9Y�ҙ�`�OCT,�� ;.w�N�������rƽz�g�JȽ���:�˽`���(ƽ^�C�ھǽh���դ��l�\��u���;�rLG���u�y�淽��L�e��� A�������j6,S�����D���0Ӧ�٦��a�L�z���U�J���($����������Ľ�S%�>�½T�"��Ľ��ZHѕ��d�yd�|½f O���|F��; нd�ɹbѽ�Ѷ`@ʽ �����ҽ��mԽp��{*ӽ�Y�}-�ҽ�K�� hн�q�(%�ѽ�J��:�˽pq㐂�ʽ^��<�=(�td��=P�N4>��=�� � �j1�=T�����=Z���m��=�~��O��=�m�`W��=���P��=H 9����=��a��=<\�Ր�=pHw�zg�=x����C�=�v�X�>�=�V���޷=\��{/��=�5��e�= ��M�/�=�L&���=�A�����=�-Q���=��^��߱=1�M�W�=ܫ�y���=��*�П=�$����=2Sblhϣ=�[�mބ=�<�<�=��.@$��=4���=H�����=(L� !=�=��F����=ԂKP���=�_b����=�\! �l=����=t��<�i=�P�KS��=��%�4�{=��H�b=,�+�.SR=����s��%Ӗ�Uj���N l���(�(w�d���E^��g�A>�bο3z S���G�l�̟�� ���d2�۷���f�r��������Y����$��A��hN�à�����&ј���izq���:��NW�=:��C,��=4@��z�=l]`b��=���PR��=\ ��#�=� ��-d��d�B��=�oS��m�=L�{�#姽�e(�������-;�����GA����)Ξ�ҷ�T�m���½���3���!�h$Ľ!���²��&�V����, �d'����l��ʽ���h�Ľ U�� ���Җ[���ý�������, ��F������Z��f����5�HnŬ�&��ň�����Pj���r�e*D�����������eQĽ����րŽ6H-*p(½� �f:�½8�[x�ƽ�K-!0ǽ��/Ԯý�j>�)�Ľ�X��t����P92)л�>&�� 淽@����O��z�1����t�����́o�b���{�|�\��X��W��$|���@e+����2�ȎϽ��e���ʽF]���Pǽ:{��9�ǽ������ƽ?p�|�Ľx2�PŽ��K�v!ýVptJS�½�q�Td�=������=�N��[�=�Ò�+�=��a��=�Q�P)��=l���ܢ�=�O�� ��=�W�V�=`���P��=��Y�!��=����)B�=��O��P�=~���R��=�6E�@$�=��G���=��,���=`���KO�=H���9�=ȕ�KKR�=0v7H�޲=���ϭ=h��z�$�=�؝4� �=�����a�=��=�͵=xBT@MU�=�YL��@�=�K���Ϳ=�V�j�=n��<"ѵ=,f� wø=4O� � �=��f �=\�7S���=\�"�I3�=�O���= �&��=x3��з�=I;��2�= s�7�=�~K��=����#t�=RG�����=��/g���=��*|�=��y]���=L���B�=��W ��=d��˻�=����� �=<��� �=��g[�ɺ=�ӽ��=h�?�a��=�3؂���=�_R�ٴ=����0�=�k lg�=�P��G��=�L�F7^�=�G�M��=V{��Y��=����m�=Xĵ�(�=8F��56�=��@�Ҧ=\n�� �=4R {Ὤ=���F��=\�b�^�=P���[��=$��7�=D؊�S�=�/�=�K2�3�=�4��a�=,�y���=,d��H�=,c��a�=H6�G�=�dɞa�=�<�av=U�l=���r�=$j3��\v=�y��>�<=ЧR�*�\=r��e��Q=�c1։�h=�-)� ���?����b�!e>eiv��蹹�vi�����{�sh��֌�����n����M�����d��R|ې�X�-�`���-��� ��n�)=�$���>����*�� �=t�$2�O�=�3�@�ƽ=��t�k�=00�4V�=��8����=��Ἡ�=D �bĦ=��1���>���G�x���5��c�=���8���Ha�iϪ�T�Ja���Pn�\�J�����WŻ�P;� �~��&�#�����)}�J���[N�����D��p5��Ģ4!X��>��������� T���*�T���|��!���xV}�n����m�A������g.٩�R�+��|���@b��a������Q)���q�Zf�����+�u���:ý:�`IPa½Lq�O���Xg�L������N�O)����&$���vs� ^������껽0#Г�����u\���p�Z�sa���8��9���%��-��@`�و½���-�}��Zj��3��D C')������d2��0�AK���d��#X��T�����h������<���D��8�M�Ӻ�t��# Ͷ���:E��=H����9�=��� �=�=4���8�=z�^pg�=d!n��= x�<� �=0&|I���=Xh�_ >�=��'-8�=�L�� ��=�B�|��=��;��=����)�=��n"��=��@�y��=:��.�Z�=��;�;��=�K�k���=�C0>��=�9�bd��=pY7��=�� A��=v��n`�=؜�O��=D{ק�5�=@�4�k�=d�.0� �=��A���=� k���=������=�*R&��=(���-�=f��@��=f0��ԅ�=,��/��=̹(��h�= ��c��=LGx'�= ��uH��=��ir�=���~��=`�NJR�=z������=Εg���=�@$��{�=�m����=�dO��o�=dT:Y���=bG�Dܟ�=��g@��=-��~q�=��n߭�=@��E9�=™��8��=��!�v�=��@�"r�=�_E���=��+[�?�=�ςq�w�=��5k{[�=��d��=���z�=�X���=�� �sS�=8U�D���=g_�%��=\ZŜ�2�=�I�;�=�Ɠ�G��= \w�՞�=T���`�=���֭=LM� U�����1�@�p�TXU= ��hYCs� ���<�R�ʙ�<�1��݌�d������R�٠��ysp���; K����=H ��=F|�����=H�#�� �=�����=(=�W�=��9��f�=p����=x ���=N!p��=�;"�>��=¬���=������=� � W�=<zK���=x���M��=�˶&��=����e>�=�!���=�U�`���=`���`��=h�yF#��=xA#�@�=��I���=�6w룤�=���F���=(3JALn�=|����Կ=�M����=^ؽ֛�=Wg�ؼ�=\�Bw��=�m�揲�=�l���=�z����=�$�&�=(� �=�R{�a�=�;�|Kи=��d�vO�=�*<7�=x?y���=�_�=|��9�=B]?V �=�C�Cϯ=`/UP�=V>���=�[��|�=R�/�0��=Hي�u��=�i$��=PL��-\�=$�9^=��h�[�=r�r=l���]�= �� sim=�O��/�=|�U�;D����a�|r�� :TyY�����3_s�,��Kƒ� 5ݥ+��@�4�C����G�@�����}ࠔ���f����P�"$�� �ȡ,����?�m���̋���=hT�6��= ��׸=ށ^1 ��=� j@4g�=,Z���F�=��?�Ų=��7V��=��%eQ�~= �4������ ��ꐽ�&��}Ϣ�I�`ՠ=��i�'�=�gp��|��/����tIL&?l����i8������n�s��h �����0��m尿��B��N�� �_�B4���G�z\0��T�3���p�.Mj����K.s��jx %�ͧ��u�|Lh���ō�擡�� r����r�k���{( ����߹H��=3i�=,>mހ2�=�;���=l����=��}ɺ=D�xR=��=��|Cf�=|ټ�N}�=`���N�=8�_�@��=䓊� ��=���d�9�=X���4�=���@F�=̫�z���=���p��=�������=�o�͡�=f L����=P���`�=���eb+�=��E�=�]��1��=Hk��C��=tw�۲��=� ���`�=��L�� �=���pÐ�=�_G׭'�=X�+�;!�=\�Ѷ�=ԫt�R��=�s!H��=��f�0d�=$�V#��=��� %�=��g��f�=��2�Y�=�[S���=Zݕge��=^�����=2EpE���=X����=��<��p�=i�.�Y�= T�Uӎ�=���C�=��kɍ�=�QR~�=:�zZu�=��!Y&�=����8�=0���풺=4��ESA�= ;�[��=t�/x��=�c���"�=,�}G�=ꞃ�U[�=��!���=80�|2�=:2��'Z�=p'@���=��&�\�=n� �`�=ht�0V��=²�.�.�=FUA2 �=Č��"6�=�\�Z��=��3��=<t�Ӓ=\�� �=NG�@�@�=��X^> y=��=B�d�=��0R�u=r��E��=D�|��v��x7��1s�(1Z����f�r����VJ��8���Ⓗ��U��������∽ cH�������)���,�;����}��֒�*�2�=���4WeX�=&����o�=����й=���Ҿ�=�ڿ�B�=��1��F�=�2.��=x8ş]U����i�=� (=�m��G��=��S������� à�X��bi��溬�!����z��畽l�[Kum��Rrb裭�=T�&ðѕ�tm$][������g�v�z��/B��=����Ղ�=��QH�M�=�ۙ'��=| ��ӻ=��*�ƶ=��B��Z�=�g`� �=���ɥ��=� љ�= ����=�����=�+ �!2�=^�|���=`����<�=��y�W�=6� �v�=�A�X�C�=+�V�=< ^[!@�=��� �=�9G�H�=�� ���=�8���z�=�b��0��=��+;�*�=�c2�o��=�(���I�=�4J���=�������=V��D���=d���Z��=N2]�a��=X���Ao�=�H�=t�r��l�=�Z����=�;G�F��=������=��#�L��=HZ� ѿ=���x�J�= �^���=& ��v�=���9[�=̌�����=\�-��=�<*��q�=��;a��=x�;�1K�=8�0����=cb�O��=|�|02u�=�(��ѹ=�A���T�=��I�B�= l�3�=�q�T�:�=p���ժ=�V��f�= �����=�����Ҧ=��9��j�=���2�j�=��೬�=ߙ��a�=h ��=̤�>R��=��L�r|=˄S�>�= �h9���t����"o���9,"�|�N����Fh��]� ��t�ܠJ�9���Ah�Cꈽ�?���Xy�_�y�^�Y-������ڻ��� �#o0s�úY�DR�D_���`�=T)>za@�=�����=l���ذ=H�^��=�_Ͻ��m�a�� ބ=�1R�\t=��O���=<��r��=s��a=�=�\��#�=0<�S��=�:x�\�=45�=�=�=f]dUI�=�A�HWJ�=T��2ݺ=X���ɶ=�6+���=�����B�=�ӕ�n�=���3���=�-�.���=n2ּT��=�1��=4;̞,_�=������=� ɨ���=P���&�=rƧ�N��=�LۖV�=@�+�=���m��=�쳝��=\P%2���=T tȼ��=l�U!���=tY��v�=B����,�=��y���=�3.����=�o Y'�=����Ծ=�Ԃ�%�=Ks�ļ=tJ}�>�=<�'��=|�y�밹=�����_�=(��oX��=H6w¹=.���>��=��vB+��=J����=Z����&�=X����<�=�囐N�=�1p�s7�=�Q>��,�=&OI_ﲢ=��oV�=z�BϠ��=�)1�j�=X�/��=�ݝ�q�=�Ne3Հ=���$au�=Ҩ +Jb�tk��/_�b� ���e��>~ ��E�t j���ę�E!�5�t�"�l=�,$ Jv_=jY4,�v=X�wA�d�=>�1\=����*߆=r��J��=�s'4K}�=D:-�L�=���@�#�=.��]�=d����z�=P�i@H��=�����j�=� J�!P�=�� ���=��|B8�=���k�I�=���~�= �dN��="1�P%�=�$*`ܓ�=4\�(հ�=��9~6?�=*PP8��="�oZ��=�z����=H�ħ��=�w��R��=��'Ż=&�ݖ0�=L_��ؿ=T�JO}�=P����=�4!��=�؆��=�����=e�3��=K��i�=؁����=|%[�B�=�� Oѷ=�/ ��=:�X+�=�Ήȶ��=���(�=����(ȯ=@@=,x�=�T,���=XD]���=�ay?$�=؋F5��=~ _F�f�=�{u��=&�2�a�=BK���7�=���y{ւ=���'ē=����x=��4���D=rC��Ge=D$E��a_=��Au=�ّh�ц=�����=��d�� �=����Rc�=|��A3�=��M E��=PQ�/O��=5���l�=t��c��=�=�V�=xb鮊Q�=��ɣ��=�PݒA �=�WODد=¬/��=URm���=J.�Xd�=���kT�=�:ת��=x��s�=8ʡ8�9�=�]@#�=������=(@� <ѵ=x`�u^��=j&�o���=t"� 7�="4�TLMظ=" 4�_���="lq����=ˈW�=ĄY3�!�=������=��|Ʀt�=��� �=��׃1�=n���R�=�&�Of�=�N6D䠩=�}���=l� +�=��b�=@�W��Y�=Za�i�= �=Z� `$L�=N4\�p�=��vN͚=��͎��=��5:ט=��X͈��= �>�<�=�F���=��aՏ�=>n�YZ�=Z����]v=��!S��=�����v=lrdbɅ=�Ј˖=��A���=< 1ԁ�=���ݪ��=�}h�R�=�C����=*���Ƣ=�X���B�=�A�d��=`�l����=���� ��=Ŀ�6 �=��z�\�=`u�/̟=<��v�*�=�N1ŭ��=T�6�ΐ�=`���x�=�<`P�=���D�}=d�O&�q�=�O�+a�=�?a�q/�=�ҿ6)�=vK�e�t=b���#�=Μ����r=��ս�ځ=,��~��=l�b"���=L_.�\�=�g1T6�=ܟ�ӷ�=��J�3�=>K� Ɂ�=,&5��=V�hhre�=fAr�K�=�/����=��ύ�J�=������v=���=�F�BIz=��G;�=�@�7���=b�=)�[p=���һc~=x3�L�k=\h���ux=X�o=,��=��4o���=��d����=����Z4�=܀�{mA�= 9 �y�=��ˡON�=\��_7bo=����K��=Ets/Fs=p�k��t}=�^x�-�v=X�j�e=�a���]r=���<�^=��n2+i=x� ��b=�dк��v=��nU�~j=�/^=�l=���D�Q= H��W]=����W==z�hЎR==��� ⥽���G�溽��cd(�ƽ���~*�Ž(s[�U��=�ͯҽ6� B��ԽZ�9��˽(�;w �ν)=���ӽSA��� ۽��lj��{C�hl��s����罄 �(�뽦��� ��T�3��ӽh�>�����$2����MwW��׽�dz�/&�D8)׽�1!�w�彴C��3&�w��p�����43�ڽ�i��QW�\�Hy����� _dV���*�#�g��o��ݼ���S �<�8��a���٠�� Z��,�>�J��q��n|�ݽH�cPo��1/���|� 20n��t��g(�Ь�b&%�N�r}�� �����7B R����@kXF���:��w�V.�Kw���Hk'��I۽��Q3�,뽦 ?r�W���|�c��a��f��ڽ�ݬ�&$��t�bB*�4S�. '��#�]-&��ܣH�(���ھ�2,�C~���j#���݂29!�%7*�"�T��&���T�Í;�J�c+�n�*)�FA���Mp\��^<��`������3����W;��7:�Ti{���(����N}b���-���彖�D����:�������+� 1轼�_=!�/�����2�̜�Z�H.�L���+��j�:Ks2���f��.0����Av,��!x,-�:\���5�@�h�L{5��Fd8_:�6�v�� �:��sܪ�D���������?M��_�*����Qk�����Y�:�!�o:��B�"�n|��V�����l"�d|�m���B���~�M�{��%�n�(�@�} ��%�J��@)���jl%�����*!#�\��He ��\13#����!v� �4��bt��V��{�R���7y��l�^Q� ���j�����lћ܉\����2������C���^��Xٽ�?���tcL���RH�F�k|�?��ս��^c��4��� %���J��$*�Et�U=^'�D/S�,�2��l�$� &$JǗ)�}|�M��&�� ~���/�Z7�v�1��rG�e�+��A#on /��P Z��%�z����2�,�}� 3��BNS�0���~���0���[�.�2�t�sq2�؇���0�9�o�51�$o��Fi �w0��#�p�+s"���S�����ʯB$��lo��E �H�"^�!� �2S F���-_vM �z�vU���B�i�� ��%��j��<��N����J �O�����Z-o�A�\~�+���dj;(� �����u�����/���꽸̺͠�� ��c���ֵ) ����t��7�ߧ~�9���5�W04��q��Y�0�W;#�C�3���<���~�s�/���c�1�d� ��?)��~��C%+��Y6�T%�<0$)�&��W�8>#��ˆ���,�j��W�-��t�'�:��ΎQ*���}T4�(�18i8�uz�0@%:��$��845��ZYI=G=��b;<���sR��;�i��6��;��CE�Ƿ�N`HH�*� B����)4�[��^F���������6�h�Hѽv�V�? �����E��O�o��ܽ����%�Ž�fIZ2���q���1�r�I�R1�P�3���0���0�,@����(���--�-���:�$+�d�˦p&��^�ђ.�B����*�1��G<�(�����t�$�F�����!��ܩ�\�&�B�(�s#�����.�RI,ƻ0���� �/��E.�/�T�埶]+����35 -���9y�,�`7�d�\���#��P�p�.��zhhmd�3��5 &!��g����&{�-��_<�Ti������J�т{�;���Vf�ߡ� �V9�x���#�#� w�����C��AE �g�@�p�t6ho{��G���PZ�/�� �|���V���48� ��|7A^ ���*g.A ���������!����M�;�+�T/L�S����fO�8�ͽ�{~A;���U_��A���ﰆ<@�rE8qDl��g�G����q~Q�X����@�j�a\���~a����YQexν&�ꋼ�Ƚ\�y�P2x�tJ�Z��=�jY$˾/�t����.��<>�Z.�d;��-��h��L�-�+x�s,�8�[k�,���B��*���Elb(��N�#�%���=�=*����H��&�\{ �G"�qL��q��6w���$� ��+Jt!��"mG�*�28�1*� ���U�'�TS���Z(���u4V(�R,�=�<�4���beᯇ/���{�"P��� �����'AcY���� ��i �� �{���l�f3�B� �j4��"'�RXJ�[E��kI��\���/���Drl(*��]����-�$?��)��{^y�O%��<U9!���f�l%�� � !�&�>�|&� HKƁ���I�k>��+6x��H?L��=��5K�� >;��0e��݀�?�=��ւ���pu�����`���>�?�T�佖<4���=Ba��E�+�����d,����� .��O'�#_-��y`�*�����")���D*��|��)�i�$_�+������7)�>FX1%(�ϣ�(�%��a�ϗT'��:&D'�~h�)��$�>�R�$���ܣ����޲�D�!'��T��������G�A��ٗ ��������%��JC�O�>���r�u�"�6n���=��j}��>�(�y5�ܽP�P��>�6�A6�>&|J�=���/��#�[`ؽ��`$�����9`���i%:����l �S�=�]�1H|�=�5�L)�=f D���=�n��=�:�x�s�=A'�Z���=�p](�=�@��i+�BB��I*�B�B�,)�ԟ\Z �(��p�,�I)���I�\(�F�x��(��2qG7�(�A+�4|(�t%�Ā(�������&��� {)�����`N�%���+ L�p%� g�̀ �D��w�"��t+xcP&���W.���(k���!���J>E#�����&����m(�>�}�bq'������!(�pe��/$���[u�'��F�A &�w�yk���ho5͚�R�1G���s�!�=�}�r� �l-�R�n�xR�k�s�E���������>��vG8� i�Ttm�Lo� l)���l��*� �I3��+�(o��[(�xnEM��&�� �zLO)�>y㟜�'��:�{*�Jk��.*�ԤO�u+����W�+�����>4-�0^���-��,M6�-�d��0RG/����-d0��>J%k>c�d�!>����D>y���P>����!>�E��p >�m����$�@}�ɦ� �j���X#�:h��6�&iS��0'5�h �& �S�`��qyQ).���p��g �� ͠4;��� ��>���gՉ>NVj�E >p9�V��>�Sܵw��=0c�4t�ս��Z �z >�����=4��m�&��g�'��e���&�!m4�$�L�%�ҧ$��1/p^#��`>�=�#��w;ه!�;=Xr/"�$OY�"�"�R. /���^4�:!�0�xHU�2�ʱ���ri�>e�.�u�">�KҜ�}Խv��N�=�O����=�gIG���=ҋ�W>�;ԉ�>��� !>��a?g�>�B��?>,/y��>.�Z�!>?�?��;�=(ͭ���=�F�����=�ḱ���=ѭ� � �=�s��JX�=�o��F��=4��9iq�=R�)VV��=�bHką�=>l����=�� ���=ۅ^���=zfШ.�!��H�J�&'�I�z�;'(��l`�'��#ʦ��"�|E[�Mb%��%�Q�(�jW��^� �H�Ib�&����Y��"� ї�@%�P͑-�n+��:���q)�f�����&��,��*���1Y��(�3��%��`��8�����씯뽐�U2��B���?W����������t�G!P��#+��E�O��o!���H��%��� �#�N�/�6���^��;&��!��0�!���K(o�#�|�S�$V��qV7���آ���{%j����h!C?�J�%�S�R������ZplPّ*��l���+.��lY��(,��I�u�(��Kľk0�a��-��,� ��f�+�1��(� '���,�HI$��>q��(��z8�T&�����.��wr�-�d�C�{�/�г��y�-�Zr���0��W�l�1�z��P2R1�b����1��j�[�3����;�1�d�/�~Q0��=�U�3�MX1�:2��Dģ�#>8]�*�$>,8�>4l&>f�-['>;�KmC]%>�����#>4�� �(>��yBK(>^\�KX�!>��E�n>�A�T&>~5v%�$>�5���">�\`���;&f(d���`_Y�� ��K��>�=$���ue�������� ��Om�*�+U�4>���}x>졃c>�}���X!>j��s|��=�Yv�]� >�&��G> CQ:9�% �2��w��wW���� ����u7u��D�������S�t������$�*>2�. ��,>����J�$>�N���(>�T悰�*>j _��,'>�?�|�j!>�1�:�>�j����#>�w�� >����> 7���y>���mZ%>2��^��>�b[MN>�{����>Hf�7�>2�h0d>BieyR�>�RͰl>D�I�x >2���e�=;Ǩ���=��ws�?>��M��>�j�U�=LN"�7��= ��ӧ�=�G����=Y�,���=~�cu$��%�0�v���f��{����ďܽdP/��8�IR�� �,(��m��D� nHc�����-�#�rˆ�#B%�T�<�� ��{�-�M"� `e�a-��Y$��*��{�c�0�*�/��-�\A��'�ҎC�&�$�+g�R�*��@�g��'�C��~�����^�D���V�dSM�®��� ��%�g�����9� ���L[��a�(���t��y���d�����\E �B�"���42t�!��D�:�����ab����ۗ�W#��xAF�`�P4xs��lϔ�� �*�/Y �1{�0��8��TN+�/�5���0�p��:��.�,U����4��]��F�1���Ů�4�� �0�0��^�:c:��(��]8��{"�`:�_O�Lu�5�����3���}���5�&:�>e6<����V�2��a�1bG,>�ՙ�py,>��&��/>����1>��B�{+>�S�x|'>|y�"�)>ܬ��>�&>�wA��1>�oP��.>ϵI���+>hNZ�%>4|7Lr�%>*^���*>�CNѾ)>� �L�J)>�vn'��%>Al��o� >A�/�j'>�ڌh7�#>$�������X� ��>ݍ�/��>��DH㽰#���><� :Z>~UY�k>IF'�� �F�B/��R��;�D��x����D8��=P�#řý��Sx ���0�p��.>�v�&b:>�C苲"4>X!j�1>�)��4>�00���0>�*�c��+><¶�KH(>�18��,.>��Xj*>KW�m%>x�t�5�> k��%{">��p;>�^D�p'>�1�qj#>���[} !>W4�7��>���m�>��"�}>,›���>k��3�� >lg'���>��(��A>���<� >�B� �s�= ����=u�2�e��=6w���>��Yct��=����05>��l"\�=�]�or�=4���\2>�d�n��=-[/���=*t��ֽ���(m�нM:z�|�ǽ����D���u��Z��VԺ1��xPz�A��C� ϲ��ڏ�~��� }�Y���m�>�/���G w�������J��Mʙt��p�uѥ���8����������+�q9� �������#��Y����0�F�;&!��r��B.��U�2�'�F��f��*��|�I2�r.��+�$������a-��@�R_)��=�X:}1�:��; ��.����Nݭ���[>�W̊�4��M�������z�N} �]�O��L ���2^yh0��S�A�1���-;C4���6^20�Ps<[1�V��7�e����_��;�J�����Mx!�L�sF���oT��O��РdT,�����P^#����F<�%�b �|/)!�`�/�#��ѭ�_(�`� ��^.�sYd��%+�6__Y.�I�;�Z&����a`+�z�J��(��?%̓u7��6q(0j9�����/3�r��z��;�x���D=����Tw<�/|��!�;�<��c��7���!I��9��(knL64�"���d3�x1b�7>� 5W:>�~�5'4>����[0>�lS��3>��'o19<>�����/>���->�Z� 3+>0��2>�y���.>�d��*)>}��aQ7%>V �#G!,>��Pv(>���ؐ�!>��P w>���n� %>(Ú�]!>bd� >��ǁ ��=�$�F{�>�f�؅�=��a��>^'aA��>��xmb�>Ղ�wT}>����$>)?�W# >.���HA>�d0��C,>p�6 ��<>����I�=>`b�f9o<>,zK��<>�_(�'0>��٪�n3>_i�%.>�^��0>�[\��8>��D]r ;>��b��5>�Y�:�3>�ۦ�(>�f�$>��Di�*>Q����'>���E�r!>ӛ��+>F� ֎$>ȹ��ҭ!>���� ^>K�Vy�t>~��u��>���!!>쓱}�->���I)4 >����sA>)kZ�i7>� ���� >��(��=:T� V��=���Z�=�� c��=Z����>XV���>���K��=��'7>9E�a��=p�`����=�+&:�=��E��=��,� �=���!�@�=Q$��),�=Zmͦʺ=m���ܽac��?ӽ��~�w��Յr���IdsK ƽ$?�y���� �׻��p���Խ»aKT�*� ��L��f����Bs�5�\���:j{.b��P�����!ᇏ#��7�"l��`~�=�#> 2k+v >6�%]o�>ZY�"> ��a>F�jN%>j��=MU�S�B�` >�6;_&�=eY��v��G?�����C��[�)ҩ�����bi!��Qu�U3+�*)t�%�A�L�M^-�K�5�l��z 4'��E"�o�si3�IAZ;�.�^�0/Z-(��i�Y�,����#t�)����Wi�vn�<��{dޱ#��*u��2ZѼ �d}�}���{��F�������� ��a ��-��I! o/�B���0�*���ȭ+�kg-er0��Ұ�0��o���,�Td��Hn.�k%�� �/Jyg3T$��!ľw!���W��'&���p��O��jV� �b����"����-�'�͸�)�f���#��3��C`&��B<�7����l4�3�rC/�z 1���� �31�u��Ц�0��D�rz.��㡀�.�N��2�+�4-��4+���@M�&>N�'��7(>��HL1�'>�V���'>f�?r*>��V)��+>HO}v3$>8[��'8>I3N�L�:>ZB��4>���Ȃ�2>R%XL�/>��ٱ�'>���=�+>~`���'>�9��31>���=�.>��&�g�*>��z��\5>P��� !>��l�>�{��>te���>^�΅j�$>l�p��">��i� �>��nq%>����D�*>��|�&?'>hI/� mT�$�>!���">���,�a*>���&w'>� �>�&$>&��ۦ,>޲�dP�.> �56��(>�u�%]+>?��]�$9>>w��6>�D����4>��QS�4>3fZ��0>F/���2>̮M��j->X��/>a|�13>7�~���2>� �_�0>|�e���1>�Z�z�J&>DU<%��#>�W�n(>����%>q���kO!>R��{>J�w�$#>�i e.!>7@B� >� �0�>�<"m>���:g>~�P\"�>8:3M1�>�K� >�c��>���W�>f�bC>N�z¼;>$T�M��>&v?4�=����@}>A�u9��>~���=�-�q� >D4'%>��*1�7>~�_���=��dK&��=* I`���=%��ڳ�=�utV\�=v��S���=Nv��l�=���~iX�=0�[��=\,����=�d呖�=�.�&A)�=xQ�d��AF�G˽�@�}a�&nyɨ�ҽ��$Hyu�Ĥy\�����g1���2�H������i����魟�G���������BW��%A;%�Y�Hל�K�#>�\:���>:o;���%>�|%��!>���)�>D$^��A>� ș�>�M O�>k�loU�� ����X��\G����=x�w�w�Y��(9���g����"��T�B.3�6:G3L$�8��E� �D�-+%&�4�v`�����n*�ڶ��@Y%����+a�'��L5��'�F��2a-�ϔ7� �"�x�����$�K��G>�x�W"��X�Q�����0q0��J9�|U ���Tz�c�<�Rl-8��J��J�)�x�<��+��oR�*��v�' �&��L���*�`����'��&0;'�<�=�6Y �T =��g$�Z�sl`T"��]\l�u�Lz�`�$�&�dĴ!����5 �$�O�+�@P�O��)��Ǖ�ۮ'��z}�v&�.R�?�'���ٱ^$&�L�2?�r%�L։�#�i����H$���<��w"�p�Eh�#���M,D� ��� �z#>~3s@�'>S�-V��*>�� L�&>%>Jz�+>����pB->�D�A��.>/��;o/>�Q�s}s2><���S/>H7�ne.>v�˼��2> ]���Q1>| w��20>��f'>��"��)>N���'>��dۢ)>( V�GE2>d��0� 0>�D�4��,>h��$C�2>�vX��+>��:�M�0>�1�j_�.>d�OlNm2>���]�2>l����0>W�-�X1>�P�{6$>#�>�z&>U6ס@�%>�(&�&>���K*e(>��{��)>ڷש�Y(>J��$s)>��w8��,>۟m� �'>��V��)>� N��.>� "qb1(>Z�?`?,>*%��*>��ּg*>Tܷ��{,>�x���W'>��@�})>�`���,2>�ު�D1>F$݄.F1>���g0>p�]U;.>���_>0>�� ��/>O����*>�J!WZ/>��m��,>;�Pә->|�l^#�$>k��">�LA�/�&>����$>�˭�e� >�s�&�>�9����!> �>%�>��څ�>V� ��>�Ӧ�O>GA�o2�>V4��S>��$}�> Q!cT�>����>4X��N>�>�,��>�u�N >J0H��,>���q��=�h�:�@>4�����>�b�����=��:� �=V�*�6��=�̓Ч��=ę��/��=ߤ�q��=�3�\`��=Љ`f�=�6��0�����=ս RJ7z罸�4��ؽ�Z��^�j���E���\�sA����4��N��t��������vg�����'�� ������ �"�%� ��ҙ&>��ל�u>���ڕ">�����>H0i,�I >q��`�> �l�1���ֵ>0��=~*$��� �Lms>(l�ܲ�=���Е�ֽ���`����K�R ���NV�)���I;��@�>����*�O���r-����lӿ���H����F�׆J���*9�Fm�P���S$��/����!�ֈ.b���Hl���"�^%��Z �F�V-: ����f����u��"�Z���!�KI'��B �i��U���b^iʋ� ���������r��y��,��.C�G���v �bpO8x����y�]���L��w%>�PϽљ*>����#>��.M]�(>���Pf&>^���:>f�t��3>�&( 3X0>�B���4>�FJ�s.>� �-1>n읉E%8>"3����:>��̛95>��| �2>R'Ӽ�5>u\�o<>j��O2>�֊$0>LG�*^->lSV�[�0>��M� />��hk��/>ώ��Z+>c�-J->�&��`*>VN�X��+>���Tg3/>Cx �_0>��d"0>�>�0&�/>�]ٸ��,>���>.>ڔ��_�->f�y�/�(>2%x{Y)>���J�)>D;�jE�)>a%�X�*>��2���*>j�td�)>�N���&*>����y�+>�i�I��,>���D�*>�X���z+>�)Q7�T(>�a�O�)>��!�1�%>3뉯oD'>{ �.>Lϙ�?4+>N����,> '?xW->�Lx��h(> ���"*>�K��>+>$~���#>��mK� >uD?K�$>� ]6#">��K�>U]�O�*>'��� >웞iZ>:�E�>)>ʋ ���>�N@�S@>��'�;>N�o�K >�m���>�x׬�B>>�u6@\>ޘ��[�=��oZ���=�%:� 9>Z %���=N�GA�~�=�H����=X@�A��=�BT]�=@��s-��*[��h۽xhç�H��XQܽ ��������TF0�������G��,W���ϘSb�'����:�� �8�:�_���XL�c�T�+`��B�H�j$>���[>�$fX�(">ӓa��%>��3�q >ftϨ�!>����q>���C:�>^*��Tu�= �gٽ ��4���u3���~ �/ �8�>�����^�=�/�����f"�4I�!�:B�w��j2�����!�� �\�9� � �W�Aa����k�:�� կ��"���L!�I����h��M��D s�#��(I�e��HY����Ve�� �4W��s6��] :ưv ��p�������[�[]+>�=�7�(>�vx,ޯ1>����-�,>ՋǞ�k&>��k��#>v�nGP�)>�.�_}%>@��n�=>�=:<>n��)|�<>�� "��<>����7>;C��i:>����Ǫ4>��LM1 2>�A2 �4>0��ivx1>�� ��24>p�M��0>#b�z��1> ��C�9>A���1 ;>��o:=�5>T�"[4>���H�0>F{�W4�->� a��.>HG�̆/> �'_�,>������.>���N��,>��4P9->4y8E+>@8�'Y,>.\����+>��%h*>l����*>Hum�S*>�: ��7*>z��G.%*>���A@�)>R2����)>k^^e%j*>���]b)>�h�])>4�\��)>�B��l�*>���+>`�Iߒ)>"b����)>Z�ȼ� &>�����'>�əl#>byF3�$>��Р��(>���)>���0&>`��O�'>߄Θ!>(��-.R>��܍ W">��2�6>IJ��>�m�]%�>E��C�>5m8�e>Y�n��>�!�fY >�i ��m>v�+��+ > r�h �>�;E��=��[X��>H��<��=�/K� O�=�Q���=Ι8���=���G�|�=� z=�����T`�ܽ,�.4�뽣����Pڽ��?aKF齖q}���u6� 5�\���$0�F��e0����+w���3l���W�8�����थ�����<S�!>}�$JM�>��j���">��� T>d����>�QD�!>5"�a`=�=�cn%������f>j2� ���kN��=2Zѿ1 ���Y�U��f��WP� ����F�I�y���J�� 1d�S.��O�=n��8�������@4���NRI�ཬY����,>"�>#(>��F;�M0>�xT�+>K]l2�V$>���v�� >��@� �&>��A� #>��>�8>�V9���5>�hⰾp4>��?A�4>IveP��1>��$�}�1>�‰��->2�z��3/>������1>�/9�s�1>���1/>����C0>������1>n 6?%{2>"qbF#0>=�(�n0>��1�]�2>�F�Be2>�y5�8�0>g%R�1>���'��->�+`j+�,>8�\.>�t����+>�wu([+>aA �|)>c�MV��*>F�rx]y)>�t���(>���K�(>:��wx�(>� aq(>��g�A'>z��e�&>S^���'>���_�(>��A�O�'>�1�iw&>`Ws�~�&>����T#>�颾�y$>.���i%>\��nР >�*���-%>��Ƕ��!>�t��">�ſ�bB>"� њ�>�=O���>>�8�C0>�T).�>�AOisI>f�U,�>Q �ޮ>��Fh��>+n.\�>���k�� >��]g�>G=`��=�݂���=���r��=x����=���d���P���ֽoѹ�R���W��ѽX���-޽SF�Ba��ZǶ5�L�;yN��<�n@U��G}�?Y���$-a�f'�W� ܽ��z�^����¯��>�ASeVu>���~�>�n'�>��zt�>�����ս��G���=7Kг��=�V��N�>��R�fL�=w,�� �>���� )>0z���%>Z�����*>RZ�R��&>�{ ch�!>�*��z3>�����#>Y�_L� >^̷T1>��RE0>Js���e0>�>�̉.>�J�I�+> I�3.>���G->6n:�'>&���,>2�φ��)>d׋��)>^2��^.>8��bG�.>{��͍�.>|��⮸+>�.+��2->�|*�+>v�#�ұ+>T�み�)>���x��)>��7���'>���"�(>f? >�e&>�(A|�'>�y .�&>�?<5��%>�:!�q%>���}F%>z�[-%>uu��g�">N]�]�$>���y��">��X:�">�&v >0Yx�d>��S&Ί >���9^�>)��>4>� �2c�>vY_"[�>��]�f>���V >�؈!�>f*+\�� >N2P��>�}cm�%�=��� ���=&2�T���=n�v� ��=�SrE��ʽzA�(�ƽO ��нI�Ɏ ���š�c}�X�E��V����v7��=*Q�L��=t��!+��=�=CG0[�=��1�i�=7���J��=���Z��=��CjI>׾��J�>�b�/>��؞i�>��-�G>��K���>��}��;>b,m �$> �5�">���;�>4c�s#&>N��[�>#��eUX">�E0 >�-�[Lm#>����R+>�?S3�6)>�R�m*>)��9�#(>M-�&:�&>"��c#>Pl��y&>bo�qL$>��7!)>"�m G'>��}Y�~'>�u@п�%>����&�%>��I�$>����mt$>��( ��#>>"� # $><�K��3">b0�7�1#>L^Ѕ�h!>fMp��{ >��j�>�L���>�j�C��>��c!;>V<��(�>�8� 9>� ��>�-�@�q >�v1��>�q2�� >����N>L�4�U�=��� 7�=�c�N���=���8��=J-�aF�=Q��@�={N!��=�T�����=S�� ��=�j �v��= <눥@�=�գ��k�=�o�wk��=n=�a��> ����!>�o���>g�i�|y >��ކ4>�����S >ʝWM��>�ix� � >(7�φ�>�R��F>�����>�n��� >��b]��!> `&"B>YD|���><�jr��%>���{��#>g�EF`5">���p$>� ���>*���9�">v���U!>���Wm)#>(Sd)">�ș�>�">�U�n�� >�Hv��!>B;KF- >�pP"v� >R �;w�>m$V�16>�VۿQ�>H�ES>��#�ז>�3U ��>w$�9>y�~ƗJ>Z��S� >I x�W/>I����W >P!#�$�>0�u���=�C䏁K�=�N���=x��?A�=f�g0)`�=�T9iٕ�=��TDf�=�N���y�=���ܬt�=��@�T��=R8)u7->x�ET��=̽|0�>f���D� >���f�>��1�g�>�(�䬄 >��ZX�>f�@6�G>���H�>v'|([�>&��ӕ�>���� F >�yN��>iʡNb�>*"Z�Dg>J[�v >p�Y W>*@�g}�>z'�E��>9�o��>����>3��>g�\��>�~(3��>�3�H͸>��t >CO�~>��OP�- >י:R��>"�ʒ�6�=�G���=�Ѽ�=��:|��=J�����=�2�do�=N��c�+�=�)�����=��.Q|�=�P���>H���}'>��f��=�f�X�>�$��� >�j��>��Z�[>�ߨ�#� >����>����DX>؈���>;ۜq�y>�Pk_e>p٦�>��ZA�>��^��>�� �]6>�I 5>����>FD��6 >�GL��~ >'��2G�>��;Z>��5�H(>>�,���=��E;���=r��Y�G�=j����=��_����=�$n�xY�=��wӹ��=,��W+�=n�@C���=�.��4�>�?�m>������=t�8�o��=��%���>ZW� �>�����q >V�Ujʞ >�Jg��\>�}���>�e�ecO>��8� >A|~�>~�]s>>����Q>u���>�kJ��~>��}�P>���Bg=�=��ǶY��=k4\c���=�ʭD��=ʻ�#��=q^��P�=hλ0Y�=B�FNBp�=Vy��<��=V�7��=j!�]�0�=�Qz�>� 5�Ή�=��rݏ��=]C2�w�> O ��>�+�3�==�v�S[�=NXi΀G�=�І��G�=h�*�[�=��i�=�c�!���=J���=4����6�=b�=i� �=��~W�S�=F%�h���=�"Y`�6�=(�i2#�=�R�\4��=QW�)0>�=g��j��=2R���p�=ϔ�=��=�D5ޞ��=H7�x�=̣���=�Q�V���=컳����=�v�N-�=���,͇�=�.k4��= �����=�{oS���="堋 R�=���e�=��oBɍ�=�;�O۸�=~H(��]�=P��1���=0ٝ�H�=��2r�=|%���r�=�3��>!�=x��!�?�>~���Z�=^ _G-h�>(�����>�P�0��>�Ovq]��>p�o�@ê>$%v�F�>�� p�>�o� 0�>?�Y>�>>��yP�>8�-���>���m@s�>)�`���>�lΛ1�>��8M�>�`�L~�>fB%+��>���f7�>gs؜�u�>�4[�.�>�8�>��>̞��{E�>��Wv�>t���#��>~�Lj�~�><�맿'>�2���c���g�� �>Y�͢�J�>{���������ά�w���{ـ!�>6 2�(~�>����E���6��}�(��~��>mf���>$+6�/�>�[ �~��>2承�)b_�ԼJ�>-n����>��x�r�>"�>�>�D����A����@��wl�9���o �UԀ���mD.�>�{וUǪ>1S��N��>�t�=i�>Sˉz����Q����fh-[��d����q���oE�½X���@�>&����=�N�^!�������~�>pL�!�>̗��d���v�������R��C�>x�4Tq�>�g�e�ՠ�4A,Ҫ9��\z��Y��>ꌏ�ʗ�>�-������s�[���N`C��+�>)���%P�>c/χz�� _�� þ `��/�>~z>�x�>"�"��д��: ��Iƾ��6�<�>}�:�g}�>U���]~�����SȾ ^� QY'>���#�f������ܸ�Z��ɾ}`n�W��������y��*�<*Xܸ�G��YTȾ���c����ͥr���@��F}����N�?JƾH���4���x��{﻾*�Fh�ϴ���^� þ҇C�T!���j/5>���J���̊� �����tA뮦�ʖ� Y���8�@�š���q^�9���@���zb1N����'�֠��Nڪ� �������h�^����� 7�殃����SW�^����m��q��uq~8��gfffff�?=r;�O ?=2��ҔS=�݆�� `=�}�)�_=�q|��S=�G+�̀j=�G����m=~>����c=�I9<�e=61J*PBl=�b�x.s=<�YI��w=�+!�My=;�JP�=��o�&�= op���w=�GT0Bl=��f�o�=Z��+�(=�p�&�p=�&��Ma�=���y�lp=�-�9��~=6�\����=�4�R=��=��`yqqr=���O�=Z�R��`�=Ծ`���=�?�n�=��~t�]�=�"U߭܉=T% R�=,��se�=�#���=r�0��&u=섮��я=�E�VIb�=h�^͓y='�k0�=���� ��=�  p�=Z4�]��=�B�J�Ԓ=��j��=���'Ԟ�=d��3x�=�����Ys=ʧ�tE�=(ϖ �D�=x�����=�F��g%s=��w�唼=�_����='ʱ]�=4��t�=ה*�΄�=ެ����=� 0��=�eA}m�=\)t�HK�= ��٭�=� �G�=@ �B$�=M��l���=�}��=���Y��=6e��i�=b�"gQ:�=lQ����=���4��=>� �Ћ=t�u���}=��T0��=��&6�=-q��'�=Γ�J��=���L;��=B�V�y�=�m|����=nuO��*�=|�3����=m��.�=j(s<"��=��k筷�=�I��w�=^,,N���=n�z����=`���t�=H_>yTO�=�0t`�=��]�kp�=�7��Z6�=V���(�=\��S~f�=,���`�=�f�܊�=n4�T İ=�r����=]�,@�=}g�4yx�=&���ǭ�=�[=b���=�ͻpwb�=�ߑ��!�=���@�=����=�����=nF&�zŠ=T����g�=���Bҥ=:��~��=b�Y��&�=� ��L�=8�^�ۛ=���1Љ�=M���i�q=�u]��=�Ts�@�=�D�]�6�=z�����n=l��J���=��c�ֽ=!�@��=͑o�?��=B�氋�=2B<)�=[�]#!&�={`ʇ�L�=v�����=xJ�Y�=�ϴ�ƺ�=�>��=(S�d�-�=������=�>G�E�=R��H��=]�n�=��¤>�=j�EU(�=�����=��R�h�=��F�=��V����=���'1��=��@F��=*X �M��=r[�`�=nG� ��=����=�)-��Ǥ=�:�v�=*�����=�v�uq�=̋��.��=����K�=b܄�;�=�EId��=�� ��ޥ=�b�'n�=͘zL�9�=R���s�=D��`b�=�S���=H8���=h��A���=� �>�=�g��&��=4��rԽ�=�n&��=-k���=���(��=l)�B�=�g���=�=C�@�=��J5�@�=KkO�=".I�J�=Q;?zu�=޷���"�=��Ɍ��=�?u��=��<�i��=ڋ���O�=&��}p��=�����=<�C%��=c���=�M��0��=� @�Q��=��X�3��=:�pe�=K�˰=A���ʴ=�G��="�t ��=T�%^��=p2s��̹=D���� �=B�pݿe�=�ғ;��=E��̰=���_�=zU�щó=P;1V���=t,LYG�=�'b�Ǫ�=Vt���i�=Ь�V(�=yK(���=��D���=�Ȕ����=vH�̖=�u�^���=2���ch=j�r�Rl|=�8E�$�=���lt=Nj��Ѵ^=���9|�=b��H�=J��Y�&�=bKfd���=l�����=�a~xm�=�l��Y�=��s�u?�=R9�(�ӿ=0�q@N��=�{�O �=}DH⤩�=����!�=&���w�=�T����=�/E����=��-���=�y�q��=T����=0U�P0�=���h�= /T�/��=�꒟M�=~P<�=�=�C�3N�=�*�$�۱=���i̪�=X4!QR�=�&@�>0�=��PzL�=~t�6��=��¡�0�=�ʥȣ4�= �!%e�=��` U�=�:�צ�=��gK��=K+�T�^�=�\�����=��T �a�=�t%W� �=�Z)�_�=�d�D���=\Okq��=����=�z�F|$�=�.x���=�3Ӏ��=+�♴8�=��p�=`��X?��=�K�����=H�j˭�=��qO�=�F���F�=ȩ�(GϹ=J��zp0�=�-C.�=��M��u�=�p�W��=JJ1<�@�=U�ɠ��=0|aу��=�����=w^uJ��=�-���=�z����=�~¸d��=&�S]��=��� ��=����I�=��?2�V�=�V }Ǖ�=��6(�=Ə�P&]�=���M�!�=&�{/>9�=��|���=p���0�=J=d��=� R�9�=E����=�����Y�=�Tw{���=�R�" e=n�1x���=��GL<�=�k�>߸�=��*�r�=� \oW�=\ҟ�Ԛx=��%�I�=.�b~��w=F���E=��t �e=������a=���k�<=N���ؒD���� ��=h�L��=�#"���=�������=4����=�@�X-�=��B�X�=�)C !�=(���J�=4(V�= L׷"z�=�e�WA�=hy����=RǠ@���=�& K��=�wN�J��=�*��z��=�jc�z��=�=k���=�L��YE�=���hB�=̻����=s��%�=n�#�]��=��a9T�=|i���Ԇ=��& ��=jy+�W��=:���Ć�=1�����=�TG�t��=�Y��ܖ=�����9�=�!��i�=�̴b�=j=�&���=�.�R#�=B�I�O�=4���9�=B�D�m�=�Bc�=ڥ�#�+�=�����@�=�s/�=@%o%�Q�=�#i�?�=l8�����n�6�t����Z`3�=.ʞ~n��ʰ�:у=���o"1�=���/���0�\��}=jt��I�~�ҿFs��=����"�=\�s9�N�=�G��#��=\b�"��=C�v����=d#"�e��=�鳹X�=�����7�=F��2��=��W�\�=��Toq$�=ڈo�o��=z�&��=lv �Y"�=�JT��=� E]�L�=�/R��=��GW��=v�=<⹓=8����=���접=,*`�Y̍=^I� �ū��[�V��{=n���Q͇�(l3c�p���3��Qt=��Yd���Z�c���H��ۿ���PuXyW�=�Jq=�+S�L�=ʎ|ݻB=Jo��,'+=:�T���_�nG� / m�6ʿ�#�v��]8A�,_�<��� e�� Ȁ�x�J�M��u�Rʠ8̧i�V_�:1�=�v˱Z��=؅B�7��=YW�dI��=Ӷ�e���=�V��F�= *3� ��=�ͨ����=�4X� ]�= �TAI`�=�>�~6�=��D^��=�,��`��=���0g�=���h�=�����g�=���=}к=�Q�mƥ�=���Ml�=��oՀ2�=,��T�=��f��.�=��� �=��t�ԟ�=q�w��=X������=_�^�=X��N&E�=���,���=���m'9�=~H�A�5�=�x>�3�=J�����=6��� N�=;��!kQ�=�HRd̥�=�[�=6^德,�=��΄L�=� ؄�=�X�y��=�{����=rJ�E�=ULY&J�=�e����=sKON���=|�k�>��=HL����=�Fαy�=*�����=�E����=��ubi%�=D�\�] �=��;�P.�=��'w-��=NՀӻ��DM4E���$x�����*��0&���c6߆Ը��N�Y���O�ˆ�=��{DN�=�&o��o�=�m��l�=:�7�2t�=�RB%i��=�K?K|�=hͥ�^�=/���c��=4��<��=h��7)�=T��1�ب�@�D�����$�+��x��ޟ8F ��l��P∽b�J���n=�6��a礽Z��a�c���|��=�� �Q�=7�k�,�=���D��=�L蓭K�=�4M�x�=�ɍߝ�=�։�ݸ=d�Wʹ=�i�2X�=l��s1��=���ۆo�=�7Z�'b�=4�B �h�=^]�����$���Y��(ʇ�m=��|0}��t��k��s�ؼ�����/!0�B�����:#���� b��<��~�*��ͅ��`|��R�F�ǰ�<�f�7L���*۫XO��T�Q����8B�$?��J�ټ����A��ކ� �8m��,��������������\�!��p�L�]���~�� `Fc��hw���"���k�gt�ڴj܋ �=��z%�j�=���� �=�gH���=�ME+��=*/�%'T�=���p_�=>���v��=��U���=�U�x�=�<�Z�$�=<���s�=�SZUJ �=�y�c�=ĥHK�=~]Jf���=����ƅ=����"�=�a^��=W�M�F�=R��(�9�=?A��l��=�����=�����=l�� Ṹ=b�w%��=�̾��Ȼ=��@HP�=N7s6��=x�r�ڸ=+}���=(wl����=�@����=6�� �g�=��i�ҍ�=+K}s�=�X�w�=p��ה�=`O$�w��=<&�Qe�=R�sv��=��(�^��=.c�u���=l�;�m�=��U,�4�=��Š�X�=:rc�ż=����Y��=R� ��=` Em�\�=��C +�=LHˣ��=����=��Ԋ���=T���=ƒ���=FupW�%�=���w��=��Bա'�=����$�=~ݻ� �=������=�9q�/̻��0 �.��b�c�̿�ʓ&Nh����X�T�L��8��:��z�4"���oa��0:��b|[�[��F��;!J���d���.�C�G���MQj���t=b9,�=�R�Ǎ�=؏��%��=���Fk�F�� ��=�� a�V�=:�8��M�=���R����ڣ(����t�h"����̤�=��� +��N����}�D�������������������Dt�*7�=.��L��=ho�H�=ͩs�s��=�"b���=��'�͞= ���y��=������=*�쯄�½�� {�ĽE��D|���])����,�~��½���T�n���0�ΰ���n��=�س�Je<�y껽*��$�ʷ�_�a����|௽�_���妽�1|h,����JH�\�����u�什m�������X&Z뜽܇�T$��"������:�O���L�Epؔ� �� ��6�gq~"��ܯb�Ӎ��ZGA��Uv��+�ꅽ� �U�w�=pWx����������P��\Gi�=����T}=��2�x=F�e�At=~���I߳=P !�_ܷ=B���s��=٭�q=t٩eڻ=��WJ�&�=�+Id�N�=>:-���=dr���=������=J�h���=���W).�= �q���=�W!p$�=�ky�`��=��D�/��=�����j�=\��U�=J��^n��=�R�pڝ=��O4n�=�����=~2�e}�=��c)˜=�/4�s˥=�iw�{��=���w���=�f�+�=��6��=��[��=�J#1$��=r'rD�n�=������=(ϔ���=xC}�=����=ҲU�>�=���.�=p��NI��=&k�Gǂ�=���1��=���&��=�,)u+�=7����=9����=��uf]�=�f6D��=��jf��=”4����=l_���h�=����&�=Tg�jL��=�|�OH��=Ac��|G�=T�����=�_&ᜋ�=҅ �=��Ėg��=����=�E���=T��u� Ľ<�+1Ľ*ce tƽ$�oxGɽ��}ýW������ 0��!5½� ��`2��^��a�$ɽn��u�Ž�I�r¶ý���)ƾ�D�W�� �f�m�½hx�M�A½�aX_���l�������w������������#ʻ�2����(Y=����DZ��k���ҳU-�[{=6y8�۵�����!ݬ�ħ*ٟI����� � �=>�Jq���=J).2�G�=vhX5s�=�p������A�e �[=�%��j�=DrL�Ž���j�ҽ`s���̽P�U8'Ƚ:ΜI^Oͽ�Cg|�ǽ�:���ý��P�8���H�-�eŽ ���$�½�-���c���� �����v:�5���yw�����?dN���r��E����Z�6 +���p���Ϯ� ��Q�U��J4\賽�8(}J����7��g���p �^*O��,��O����߽���H���]Uw��lxpi\v�^W�X�퇽�p�S^嘽��ιn<��{dv�t��<&�ϸ3����L����$�X�Ι�����kt�E�b��q��XR"d7p=���6��g=f�V���`=�Gu�[�S=Lz�|0|=V2�Q��=�zr+�=<`sT�z�=�i����=�/�?q��=0{V���=F�Ӆ ��=��H��=t�4+.ê=���00�=8(�ei-�=Ҿ/ ���=$<��>Ʒ=�B[fg.�=@+�S�=�T�a�R�=��W�bu�=.�9����=��֢�=�k<��=j�Жj?�=��O����=#�!^��=X����=ֳ"�zO�=6ģ�p��=����>�=��#v�=�Em�d�=�����Ě=�z͆�=i��E �=D:�qE�=՗p.�=�Gҽ��=�u ���=�5-���=�Y�=į=�u*�0?�=ԓ(��=Zx1,�Ƹ=F}E���=B��x���=� xJ-�=b��Hx�=λ����=�����V�=H�J�=�Xl!I�=�]� ���=��{wm@�=$�v?���=(,:���=��*�=��1��=��2����=ߏ��=tC8v�6�=� �ʬ�=x��<��=x�-BC��=��el��=ao �=���S���=Dv�"`��=B�y�\�н��� �ҽV�C+�̽���K3ǽ�Xj]PE̽��넌Խ�� MFqƽh|�\��Ľ���Iý�J�Oʽ�����Ž=������������g�I��ý�V;ζX����{q�9����OǾ���!py�׽�f}n����6�*��¦�r E3}����{�i���������O{�23"��N�8�2������{���`�#4T���Z?�y����ʦ'㶽R���$���T��� Ľz��ޖWԽ���lT <ս���m�)խ�c c�խ����ƽ0��˽ʪ�`ž[4 ֱǽ����zѽ^��e�.ӽ�אt��ν�[��˽�9�i����ñr��^�["�½�)�pu����t�辸�r�d#|���$|�~�f���,\���"6 �1ӵ�?�[��w��|a¯����׀d���~�z^t��l [z����\��}��> ����j�����\����b��R�����l(?���X�H>:���c3 ���ll�s�o�����P.1���=tC}��" �t�����I������ˤίm��--�wx��k* .�j���9�yĆ�P�I�|��@��Dc�,q�A0�R�Be��Tt=�D{�Lk=f�&p�=��h�x=��V�a_=z��V�\?=��y��S=����m=(o��_a�=��QQ��=�Z���v�=2�)D��=0~���S�=�E=��=�n��乙=��\��'�=X^p�W��BD�,�X��� ��2����I�▣���Rwx9���T!���GK'��=�b��Ԥ� �o�=p��V��Ũ=�N3\�8�=�`�O�=��Rd�x�=Њw�豸=d�D1J�=J�}��=���h���=aÆ�r�=��z�_�=�K庅�=�)&.��=Lٮ�ؾ�=��=�%%�=�yS{2�=��b�@�=�ud&�=>� ��e�=P!��F�=��Dӭ=l�?�|��=���x��=p�R2�'�=����b]�=�>�m��=v�~n�J�=��#D���=lk�Р�=��݄S�=��˪z �=h�Qlog�=f�r�g��=�l*[@O�=f�ռ=6�}�1Ƹ=�n�:l�=��{�x��=l��Ƕ=����P�=+aʥ1��=�� ܽ�=�U�^��=TZ�3K��=�%qlb[�=(\#����=Z;�;+�=6�A2�e�=�������=LvM���=  Cv��=�<@���=tD2��J�=��|5-:���~�Y~,����樣���"� �����VQ���½��x ��ý���P���H�%�!ѽ�(��ӽ����ͽ*��Fޖʽlv� ƽ� �������}B64ý�Tnkǻ��J����eȽ^S�" [Ž̺Vf*�½�&%!Lν��jlC-����K������\�箽�=.l9ϲ��'������;!P����g�^���`����h��pC-�½�-52|��n����b��T��������l������}��½]d�ģ��0�Ú_����R/�ý��/��ŽW��s���̷��gý3k�5H�ѽ���RϽ�#ーͽ���@1ͽ`�qcތǽ�� B�ɽ�Z�Ľ$�J��ƽ%@�8˽�X�OU�ʽ��r���ǽNxC]��Ƚ���gG����^��Ż�QK ;�R��N_N�����h �ь���Y/E���0퐄�&�� [`�B��F�=� V��Z5鮟 ��f� s�F��+��N��Z��>����"��㫽䂧k�ꣽ�� n﨧�o�1&!����|�˭�T!|Tep��ٳ�B��4'R�m9���e���͘��ypl ���f-�X�����(�ݢ�@e��喽:(����( =�I���&B�"��XEL��hP�cGЖ4w�$���� m���Z���ƙF�~.w��>�s@�=�4�ȗG�]�Ȟ�a�sR��0���i�����¿�=�#3�Wc=�%�t�;w=P�קej=p�5K>}=���u��=B�7���=�JY���=�5�y�=���k$X�=�FJ���=�ªҪ��=v�Ʋ�= :��} ���w@���8�`P޾���m�P���,C1��d|�u=����x�w�O��>�W�癧�DK�j��?=ܣ��p�=G���R����0į [�=L�k��ʫ=j���=�mr����=�&Y��ɼ=�j7K}"�=> D5ͫ�=l�M��S�=fj��b��=����SG�=���e��={'Z�^�=���7�=0���Ҳ�=�P| ~��=�E4���=�Ǹ[�f�=QP�˪=�����)�=����=�'�vI�=���qt��=������=�@7m��=�zs� �=�ƅ<�=2���qq�=�����=D�0_�=ʺ�_�/�=0�by��=Dy1���=��7vgò=*n�k�=��w��=�E����=~��M�6�=�6���!�=ͮS/p��=��+0cܿ=�a�J��=�ss�\g�=�֜CSk�=�w�;g�=p��Tż=�4�[�1�=(�q�λ=��2Ԣ�=��mm����_�����D��!�½�b�d�.���l����ý�A[Ľ�Qb�F�Žx�zsJƽ�� +ʽ�?�Y�Ž���B�GŽL-��ʽ�"i�w�ȽHWW��ƽ�~�����r���`½#���;���� J�-½h��ă�ɽ������ƽ�`,D�Ľ$ߞ�U�ʽ����!�ý��H�`�ǽ�=A�3�ŽєI"ʽ"�6�Yʽ�c�p��ǽ��ԙȽý������3U�´ v�Ș���(�u�)���?ص�L��fWP*½��ފD���Q�n ½����tĽ�: ������+�K�\½h�Z�N�Ž���_�'���/y��Ľ̀�h�½�v���½^�8��2Ľ��G������7,P`½��y���ɽ�U�^�}Ƚ����Ƚ^E�$Dǽ����oŽ��w� ǽ�)gN gƽ�yJ��#ý��Czk;ƽP���IdĽ�HӘ�Ľ6 �*����";�|I�����ي��h4��{�����R��x{�;�����v����4��a��t���pN��X�i�粽PX��_=���t@sQ�����<�a��8�*�S� �H簽J�΍Tb���s�*�<���5k�)>��r)RIEȤ����ƙ���0T������-������/헽��G.>��.�#����-�džᐽ�:�:ł��@�豸�e��_� �r��LK�%_��ձ}�z��Brσ7�=c�&8 n=D��1��={�� $tq=�1��h��=�U�[#��=DQ戼�=>�,���=�QXB�=% �w�= ��ߦ=�: Bm�=���f0U�=tW&����� � o�� ] �[��X螊���`�� ����=�b�kا=B^s���=tp /Լ=:)�R�=lٸ=��*к=�)����=,����=��EU둴=��ܳ"��=�w㣡7�=r�x��=*�ԏ!?�=� p��=v��N��=�/;a��=C�'�=��G�A'�=���[H֭=�?J��=8��w�=ZV���q��Ȏ���½TC,T���:�'p���f��Ŀ������ҽ���K̽(�D3.ǽޫm�P�̽�lk_;�ŽnZQ\Ƚ-���Gѽ���Јӽ� ��-ν���qZʽBx@Ŧν n>y/�½��!'V|ý�>��@���v(h½J�j^������Ѐ�����tp�WŽR�K#JýVz��vĽ��/B�Ľ�pIHO��dOe�b�½`ۚ�Rý�[�m���`I�J巽��8_l�� ^I�1����1������C��ر���}3ƶ��Fy�e��t�%���j�"s�姽y���|����&QG���51�����Ec�~��Z���{u��e[1����2;7M�є�ƕ�4�\��t�#fm��.Y�����L����r�"Ѻ�9���� ��}n����ќ����>� `�=P�p�(*s=�D���=��P9�t=88�3F{�=ȟ*:�=��rÜ=~� Rs��,�퍑��r J�}�=0ʐS�=2�ʞ�=�d�+n��=I\��&�=D���ͣ=�ᯒvƧ=�!�h�E�=W8��,̰=���2b*�=�(��M��=^�ńX�=�pfaO�=~v��ܬ�=����C�=�yk�8�=��g���=CJ"^��=b�z��R�=踧�gýJIu������-�ɽ��6��mĽH��̿�f �Ļ����-�.½���� E����2� ���`~q��X��j��� m���o���u����V*�ڳ���)��X��\R��2���a�9.���O6���V���qb��Ȍ6���B�H�:G���pT�u���plR����n"�f�������1s���Jp��"�����)��b=�r�H{`=>�����f=v�f���F=���j�=l�/�C6=� �Tm��+A�O`�� �]�w�����3��L�*!p����g.'�����t�\��Т⎛���'#&j9��2O����ly@ ��*�4c ���<(�a�ͧ�@3E�����\��Y������挹��� �t��������e��l6#���+ܑ����_1{1���60�S���t�ӑB`ý��2����.KH�½`��W��G��$��F��M���b����߿���#��ɼ�~� ������ӽ�����!`W���G Q���\��+*���z5e������������� �����e�Zj���1�kй�^2#܎8����)Iܰ�������`���:�kE߳�P��<v���X�ן��w�5{;y��m؉YӪ�N���\��ڑ�{����]�K᤽��������,���&��(��`�9��Ɯ�����m�%쓽�XtK����#�n�}���Nc��y��I�/�rE���Ef��P�WD`��&*�u���*�M���$��%S��t�B'Ƅ���<�����z��;������]����"�n���C�Pw���Mo����޼��'��.�������|uW�ɷ������먽\�赙����v�T4�����X-η��.e�����LtN� ��:<�3�Ե��J2�����7�rI9������ҹ��\�5����������n<��z����`����L��t-��N$�~����\@�;����a��k��d��<���ᨂS�^k�t���.N��4��� 5V���N�� ﴽ��jk����k�j���2�U�p���B~ 2���z�G��� ��͕L��֗":����nvni<��/CZ�bz������,>�����6)�V����������ޔ���׳��Wu��R �w����/���Ե�q��<����8wj�-��i:�C���l￯�6���G�9�|9^z:��QQP�M���J;g�䭽f�ճ����2W���8�;5������J-���=��|����  F���~��wH�������Xm��l��2���$����]�Cϓ�kq ����� �t����d���(�E$�v�*AX�a��� �tD����gHk���gf�n/��@ɢn֘�:�/׬{�����>i;������ĵ��������o`������ޣE�����5ԥ����:2ɨ�V�� �¯��f^ٶ7���w�#8���fR�k�L�� �B-[ԩ�PM�2!��N�m��Ӧ����FE��b�vW��ē).�ț�L� rI���r)�_b���(˟o6��lyb��璽2ن,X����?����h㥼�����16w�/w�ҳQ�+���`�\���v��=�敆���;����z�+���XbZ7j����0ځ����7�b��렽T����ť�hx�s?v��8�M"��B[}M� ��.D��{���yj =���?��j����1� 5���-�1�R{��P7�o<��ԫ�����ć�}�d��0������XH�� �������~��V(@[L���0*�����-�0�7�����:��D6c�D�u��K j����'x��s��9�=���&�U�H���,Zi�k��*! P�J��jn�-��=�K:�����)����V��>�/��U��Cє���SG.��9��}k푽H�z�ް���� &y]��X�ڞw�V$������B �?{��Φ�������iI���p,3&�p����f���q�l�V�qv�[y�Fٴcp߉�J�n�����]��J����� ���{{l�ڀ�dyň�0��.��#����Z�eDp���۷�^���),�s�j�8 �~�,RƲ fw��V���e�@L��9 s�dl��ݧ_����{Zj�zwf���c���F�w���e�Swk�t�4�m�����R��п�hj^�|! Lk>�&S��=S�=>���@�=P�39G��=��+$F�=��>�=S�U��j�=& P��=R�g�=SZ�s�L�=�*�Y�=�]k����=��8Y ��=h�{��=̘P�[��=Tv�Ƅ�=2`�r��=,c�T /�=���Kp��=������==D-_�=z�R����=n\T���=G�AS��=ү}��)�=� ��E�=�W�A�B�=�&��:��=W�R�+[�=k@��=��E�F_�=��V�b��=4-�h7��=B���5�=�8�9��=�M���=�U��L��=\4~��="����=Z�t(%��=��G�{��=��EQ�� >tU�n?=>������=��&�3?�=^��C[�=����=�B*�9��=����=f�*����=�,����=:�[E��=8���_4�=�o��=Xإ)�>`�t�&">����>,�gϨ>6ؓ!>�5`&�}#>���0�>���g��>�.� V�>�ܓ�!>L+�H���=���/K{�=��50A>�C�NY�>/\v�dh>U��ٞ��=�E7 ��=������=�,?�87�=��0Z��=�d�L-�=�Ը�F�=��l�=��&��=� @�^�%>(�G�&A*>� ���$>��@~#>��dҁ)>�O��8_&>&�'���#>nY��$>pM)�&�->rP:��->�3έ:2>�ː��->p��T��>�l@��>�T��'� >,oz ��>(9�l>f��x"�>��ۻ>�_�Q �>_�eN�r>�-�m�W>@��a�>ʮΗH�>/#dƍ!>9��}�>pߘc3t!>�'���>Ȩ�7r>��@��>(��Yk>��1�e>�9 Y>H�27���=��o7E>^@;�lH>�꽊:��=¶Bl(��=)��(�'�=�(I �=�kN7��=����r��=(W����=. �ax��=�P��%�=5vv�,>~�o?>��oel">G�2�$' >r��d�$>�;��0Y>ʇ�԰!>�@*Nj�>pg4�&>�[�f�_(>-��B;#>�&�D�%>�~d>�yŐwA*>"*t��Q*>�� �'>����~'>�xT�)>&L��E)>*��;N'>rM(`��'>��<(�> xǰI>8&�`��>J2��>� P?�>P48�4>��/�Y>� Xm>{�JA>�| ��� >�R\�f>.RK��>�40���>)) ���>�s� ��=�Z��k<�=��}oQ>FJ����>������=얃����=$�@O���=��T�%/�=Dh�a�=�ϨF �0>�}�@ �1>(��+>�HC�a$'>�-�O+> �tZH[3>K�Ԯs�%>�|�<�(>zo�s!>�2O��">ڳ }>Pɗ�M>���e�>F(�>�#>^�i"a�$>GR�biu >8�4�A1">(z��,>�Q�v��0>���Q�2>��e)]P->ӂ���<4>-�p��3>D�� 3>DZ_/3>"���pB >R��Œ>���p�^>9��D>��1�(>XZ�K� >���#R>�/v&>t�֘�>�,z���>���Tn�>�v}2`>,�.N�>&����C>+/��;>o��wi >;R�8>�/����="���w>0����]�= �Z.�&�=���m��=���G�8�=���s1�=�An��=|�[挴�=������=���i���=8�Ra.�=J�3�@_)>��9�&�(>�����'>�|�4�d'>���2LE&>ȝ�`� >>n���$>*~�^�">$?���>��-"%>�E�8�">���t|7!>8ԀN�b>��j�>�/�, 3>6��p�>#��P�K%>�$3��G&>�Դ� &>������%>�}�">�m��$>��2$f�#>$��_�>�k`�@� >��F-h>3 U�] > ���>�n��9�>�8� ��>�'輺/�=@�~i��=<�;����=�>��R�>uܣ����=��� � >�=�J����=�GȈ">����.�/>���v�1>C����*>s���{=)>��]Ŷ�$>��SzB">.�^�%>4�sP�!>�䉒R>������>B'E^,!>��WC�: >�����>�ϼ��� >��:�rd>�e�! �>�K`�p(>�UY�c�>o(հ�~ >�z��A��=� G*W`'>�� ���,>�1��U)>l�&���%>�q& �>'> ��P�20>�E@y�'+>JB��1)>��b��5(>��"gI8$>���ƾH >���ʋ >�����>;�|c= >�\� >���K�� >8"QB�>�W�ȏ�>`�M��p>�9�e>FCVu>ư�!���=ؿ�Z>vqA2]��=Z`{�l'�=a+t��=ؔ����=uFiPmu�=ڇ�i,��=J2~����=ا'����=�V":���=�� ���=�,>jK�=>���L�=:ܼ A�=6�R���=*�{� �p=`��|V��M�"(��%>�`��X%>�ɻ��$>ڏr'{$>�AF���$>O���#>� �#>�^ �h�">X�Ɇ�� >D�M�'>2L���">��A(�>E e'nE>ڃii>̭����>K���J!>�6��^">^Ra�j">�oP24� >�/�\�� >lr��� >�Yt�'r>�(�+Pi >�7���,>���(O>>!�LA�=>Z�H��=�9�a��=�ԧ,�>^޷H�>ɤ3�� >�� �8I�=�6 tY�>���>�Cl���%>$H��">��{v��$>M,�p'�!>2����v>���>�4���>�Av��>8�O{�>��h*�>�{�p�>n'��؂ >`У��R��)�w��& �T��=$��Y]ͽz?�N�P�=�0ȟ]g�=Y�y`�������=�=TYFU�޽ [�f 7#> ���`�#>֡����$>�L�M$>~�$2�r">��(�_!>�w줻 ">��b�#�!>:��">k�o�n!> ^-�� >r���#[>�0B1~ >@=  >=TJ�f>�$\[�>�c@���=��#c�'�=���vJa�=?I1�C:�=�&;?�&�=Ph��.�=j�1� �=)��ԋ �j�����=zz�T�3��z.�Y����8��=�h� �&��2J�� ��.a�l�'me��=����=Υ9��|�=���D@�=��ޣp�=6�Lv�ܾ��nEQ̽�C��BWֽ�E)1�c����uW�Ľ+�չU ؽ��Խ����ɽ�.,.�">����+">���j�f!>jd���!>i��z!>�j8�*� >hZ��B)!>�Ƥ2!>J����� >�8��� >(�0je�>�v~ �J!>�A���=m�qd��=�͍�>�m���>�\�-#>���:�>��L�>����>�����>&�M� �>̓L��� >�j�a4 >��� 4� >a H ��>ԇUw��>� Z {>U��*><�2QF| >�6��>t�i��r>[�5��.�=2��m�>9ى�|�>���Qk�=t���]� >JE�R��>ă�.�>0����!>�=�]d">�G��-I#>��aUW� >,��A��>�2�~!>�ҁ�l| >���� ">�3���">���$�">�`5�5#>���a�/$>�@��$>(��ef�$>u3�<��%>�{�5*&>q^��B��|݃���h�� �r���ꛒ4�r3=›$��(2���>D� <ǵo> ��i�.�>bFd�n�>4��^��>�iQHA>Z�QeL� >]P��=%Q/��3>��b�>6�s�XZ�=���58��M�5(����$9�k!���B�h�(�A�3�����= �6h`�d�Ԏ0��� aB>��?�H�>�j3��> � ��>��6�O�>��>���>�*��\.>�@��a<>fQ�&�#>���>�v��� >6 IQ��>������>X���>$��x�̃������F��U�=<_�_���T���Yӽ&)4���l�ȆS����YT�{�΀mIq�����$����:X��׍ɏq[��,�lG��[��t����?�m潀��!��L�c=����OK��A5���EVnn(z�����B4���ܒ�uн�2���ݽP� �`꽮�����6�7�C�ӽ�v�K�g>1~/� >p�]� >n���4B >����^B>��o�> )Ez&� >� Fn��:>p �{�:>����a>�e|9�">�%���!>�m �1>�K��">��K�kF!>|u�.�9�=�F0��g�=k�2#�=Qz)2���=�;'M���=����É>�F���=���b>fQ��>IE��>>��->�^��>�t��h�>rL�] :>b�-A\`>|��Wv�>�Vk>Pj� >�8X� �>*b�m�>c��뙿 >,�75#>�jW�]"> �n]�$>k햴�v#>���%!>0Ut/&&>icSG��#>}��ĸ">�����>(t�$� >�>�s-!>Np(V�>3��@��$>�-?�az$>�C� &>c֎>|$>$���PE&>H�.ނ'>߂g�'�'>=�؆�(>�A��:+>9�����'>I� gE�&>r��Y�T+>��v��2)>�Ӓ*��ɭ���q�VƬ������= �ވM���� ��\�Lp�^'!�q���� ��� ;��bq��%��F��� ���u��h���ef��-�v >���F�=����>��f�3�ʽ�U��2 ><0�?Y��=,u�|��=�;�� �"1������\�B2 �v�f Q����R$���{z���c���(�-*���� �s�B��'S>! 2�y�>$���>mG�xG>�Uh(H >� �f�=�C夒�>(����>�|4m;s"�r�#�� $�G���ǽ�p�}�*0!���/�W"������ ��h;��,�2��X��� 6��(��1�/ ơ1f���f2)�y{��R�6c%@�b��] �����ǖU�W]߽ON���� �0��w/�����N�ܰ�Z0d/���lŲ�Q�������C�.�$K�_��`��������H�:��ս���]�q��}׽�(���(�V�n����Ibԧi��=Řw�J�=3WU_�+�=�d��+��=0���^>���S B>$�� >��.�*>=�4L�%>GK��c>���E��>Jh:N>�{�J$>^f�[">huWѯ5&>���AC�$>�XL�� >%'h>�� �q">he�� >N��5���=��0 ��=�����=�s��|�=*?�]���=���3K?�=�H�����=VE�R#"�=& Ӧ�>>���P >��=�;>N ��>5 >c^�xr>��O���>ڄ�duv>��� r�>�Ϝ��(>n�d�>]���P>A���Y>����S�">8�9�M>���m� >X�C]6�#>���A>��,">Ta�~�>���?%>z�cEz'>x�p��">YC�a7}'>��r|f^%>��e"��,>(\^g�(>�*�!j,>s[�G:'>�� �2>��4���0>ؔ�F�;2>B!@P2�->�=�v�k*>��ڙ�.>��m^�3>!s��)>UB��#�l�8}��#��MYe��%����$�(��Ɏ �"��-'�; ���!�m߫�|�����@�(�|lQ%��ծe7#�_��'[���(ɠ�*�w8V��{"��hӝ��!�'�)y�{!�l��R��N��\%s��g�/ �ȡ�v��:��=J�(��T� .����4j�-ة�=�{�v{N�|4ź" �(���^������⛄>�S,�`�=�e��'��=:$����>U���s�����|�=��U�4��=! �W%%���<2��z#O�+��fS_+�'��-�0��,���N��V'��7-D�!#�lʕC�� ��ه��$���3� B"���2�q���(m�"�6��-��������!�����3 �|9+_��� ����t��nҔ3������vg��И�����kջ��q�Ȝ�����b� �f6�c���,�_��ֽp2N���ս��M�RS罂����D���������Cc� ���\;ԝ����G�n�=��'��7���ӽ��Ʋ2ѽ�A��&��=��2�Y�='78'd�=,��0 �=fk�� Q�=�5%��A�=)^����=reP�B��=��5�� �=�PΉ�\�=,e����=~եBڼ�=�h�-��=�M�� >����>�6fp�=,��/� >��6ۍ,>���F �e ;�>&�o�>��B��$>����I >�Uq??�">�΀�\H)>v4�[�>&��UPO$>\�0m҉!>��`�-(>��N��>*#$�$>��g#��>0���>�ŮD�<�=L�KL��=UT�\b>��f}>� x� �&>��ϯ�(>:A�3,>]�� 6B= z�'>F��2��>4(g�>�B�;Cx>"��6�&>䗠D� >�Ex�0>�6>L�>��8B��>�3vI�>��m�v�>L��)�>��O� >�8-Q�$>I�c���">.:f�x�$>�?��> �a�{�!>�}I�:70>��k�O�1>�ͤ��*>b���-3>zp_t;4>%��h�]3>䒊s� 3>�橷�0>֬�N�1>� �R�+>01Ѷ��*>�4��h0�¯�yc 2���Y�+���<�g�&�~h0���+�,�=�3��;H�%�ZCD�xl$�Ydqu�"�B���)�8t�=b%�p^��J!�g�U�zT�^Uz^�q#���-u�� ��3������k���m����������(�/�{�S[ܽD�a����_0��B� ������^� ��*��f�@�N���� tC���T��PO�`��'(b �����t�#�Wx�(�3�� !�4������3�?� ��3�GO�wU&��#wv�*�na����$���J�'�Z]� 1��ۄ �2�BV��!.�"�ɇt+��7��F!�D��ٳ���,��t"�:?�$�j �fMB����<��)��n�2��l4ym�p�Q+!�L�D)���dc�l�B ��:g����'��ZOŰ/���_)�(r�����,ޯ�ڕ���TǹI�<�9�=���'+xf���w}������%���0[g������ �_������� �R�/��̽�n]�2l��C�ɽ���b1�8I�F��۽�VMNC�½:j9u����6F ���=P�d9��=��F0���=�'z��f�=�8J���=���!��=Fl��x>�=�|�.�=P�Z[��=�]F�=闺����=���L��=�����=m�t�k��=� �S��=9�6���= Z�7��fq�"������j�� �"�����6PRL���w�j���V-���=vD��XN����������$>f��>�6�ds?�=%lY\� >�z*�D>�y+vS�">��}P>�|`b�L$>������>2]Ύ�>v#�*B>�����b*>F\OK2%>�� S� > 52���#>k�}��!>�x{f >��߯��>6 �R��>=�I~ >�@�7Z,>���o�F>_=�!(�>6�|pK�>�*r�ԇ$>��f�r�%> �1�Y"> �m�!#>(����&>x�fIn'>����#>�f�!�%>8��<��>�� X�>����&>��Z�!�>� ��/>Hf�6{4>�?��ئ>}0�Ր� >x���0K!>�4?9>&J8-�>�Ue�T�/>�/M�C+>��q�'>]��AE�'>O�D'>P�^�V%>n�}�=%>��D�T#>�"�()�">� �qp����ʋ� ��J� � ����V �v)׿G"�x�;Y�#�@�7=�� ��lr�0���ty�2��"Ou-���]�)�"`S{%������| � LK%�"�G �O �"�?�'�4�f��$�^]����"��� Z� �b�=v������=?�T�RV��B �����W���x*�q��"�X�^ ��lT>���2#��X���/7 ��)8��S��=X�/���=���b���?����=�LS�� >X�=�>"��9~>J`O��>��/�>�0 |*&>�a f� > �ʶ� ">����>�>��� >�2�8�>���S�>D�J=>��pp�>� o3�>�P �>"�Q�g >�y�i�>��w��>��o1�l > PONķ>*��P��!>$��8#>$�]���">"� �n>gwv4=�!>ҡ��T >!e���>��t��>�<'}5>��IW>�߆� J> ~��v�>Z5�Spz>l�z\"i>ð�J|�">��8���!>��G��^ >��t�r>��a��] >_c9Fb�>�J�R��>��Lóf>��)Y >(}/�5�>�����>��) >�g9�����u�Ee ��e�5�n"�^� ����|�I#��'� �9$�c�f(LE%���*p�%�д ���)�q�X�;q%���%�@�$��Zm�]�)� ?�p��'�~��!�d&�^KД�, ���Z(�!�4�_"�� ���fe�!�v;��B)�v����K&��N��$������)�����:L#����i>A'�e\��l=%�n'py)��l(p�)��<�H�J'������'�oU0k��]�����!7������a��Drz�� �;���!�>��b�� ���-�j�!�TF@?s�#���w�wR ���!��(��M%�&��� �j�z�>�#��!��� "� $���L> ��xG��=��[@��>���/��U�Ģ� � uh�r�����|���c�W��2��х��]# �~|�=�O ��[�8 �Ν������� l�%�=X�{_� >�� s �>z{6���>D�{�>R���y�=�Ӂ+�t>�E���>����:� >Z�!M�x>&&� J>>B��S\= >X���>('Če>� ��r#>��@Z�">@P��V�>4y��o>A��� >�!!¯�><���>�ֱ�{>| �ɵ>�7?��>���>��O�>(Η*ͫ>�h�%p�>��~�_ >$���>H�>O� >7`L��GMGc"���Z*�����[� ���&�^�� �![� 2�x?2�G�+�a5p�&��Ew�+�/m e� %�I� 9��'�}K�B��0�^D8΢�2���p�W-��|c.�)���ɻ�-���*3��3�Z$?U�P)����1&��v�L$���v�;H'� ��a�o%�E{9 Ć�!�i����!�FKƒ�!�&���so"�P$� ��!�&L�o�"�q u��#��� �#�9��q"�V�i7r�"�Q�sa� ���<�!���4j�� l6< �X#���$�.�%X��"�S� -��#���:�G$�J�śr� �4\�"�PŐ�0�"�L�� Em��ܥm�J��;5%F��t{:c�s؅�����'�e�����3��R<��vn��A ��G�PK�*o�]d�XK�� ���o�-��:�������iu������C�%��,��K��l�e�����}�2H����ҁ���?ӖzPҽ.�֜��ར�#\��ͽ�"�����};��=���G��=��B��=�2_b ��=�����=m����W�=��cP� �=��ԑ�=�=���=�^<��>F(3��\>8�v!#��=� ,���>�>��8��;�8-%����+}���[������I�������Svk�i������a���Fw� ߽0&�>L; ?�=���ܟ>��?����d �&�$�8��=�sQ�G >��Y�ߚ>� ��T� >�'��>��ǯM>�{���,>����O� >�ئ��_>tl�Nƒ>�\� >�zu�.� >��Gܱ>jE�S >z-��զ>��G���>���T�=����>[����=�"�@D�"�A��*1!��,+6�s(��KJ��#���/����PŎ�e��h�!���u�W����b�4�i����3� �f�3���>���3����/e0�hъ��A2��L+>�,���W �(�1O���-�P����&(���� �+�p�� �&��I�[.�(�hs�ІY1���U�˰2�d���G.�`a �$,�ߓ<]��&�Z���j�$���&�'C%��">��%� ��-[#���v�Z%� ���#����3$����=o�"�ց#|R�#����I:E#�ٍ]�@"���B�b�"��h��2"�R��8"���|"��`&�!���'�I�!����(B"���l�!�0�<��!�u;��!��+z"t"�p����"�B͑�Z�!���-aJ�!�qE?�ew���7�id �����]��:E�eH�����?!� `F��H!�dfo��s���&B������7 ����:tD��H��Z��� Ɏ��Z����@�� �ڨ ��w׏K���n�R�����6;m�~�~�6��a:u�y �̻�x*��v���-��Qm����r�Z������y���NR]�OٽB^4LΣ���/���ս��������t��=`=d��d�=����6O�=7���0�=`�&�x�=�VN�Z�=xj���= �%�=X �/��=9����t�=(��-��>�5a�=�.�\�R�=�0�9���������^wV�,� E���Q%��� �N�H~���0�������cg��=J�kګ� Ai����"-�'�����=�H�> ��O��>� %�����=�Y�"�=S�Q�B��=p��TW��V� �� �=攈�I��=\�y�=��PL�#���.�<� ��@�鴉&�q����"�������s\�~�����7m�C+W����1�+�6_�-���N�B,��~��+�x��*s(�<��"��(�>��Fs$�� ��E�%��P�O(��[�(�Z����%��j`�{&���dN(���:f��)�d~�NGO&��;��R�&�x-���6*�P�Qn)�} -�8:'�E�ݥ��'������$��7�J��#����s��$�H)w�8#������"��]`� �!��4�k�y"�6�湛!�ڕ/z�(!�)����(!�5��U>!��U�=@� �~PctJ � �!�Ǟ��=� ����<�b%� ��`��2� ����S���Tf�&m��$���� Wm�N�@(>����z�����$�4G����{���}qL�DIbF����ފ�n�b�v��N��xNh2i� �����#`�T�I��<��l�(���=cZJW)���NH��Խ*��(>�֟�D3����6i����,Q!��#|�Z2���s���"��(�͓����^�c��vG��@~��M r%�M�e'�:8N���'����Y~&��-�I�&�1���%��k���(#���.���$�1N���<$�<�1� ����h��#�'��L�!��N��T!�H;]�&�$��k��P%�x����L%��ZT�f)#��J]��.$�꘩'#�0�"�$#�����ɻ!�]��!�0�� aX ��s�U�� �O=TT��|M~J �ǃ�~�'�|k/�>��t��U���~i�o���1�������� ����S�u��G�����@˭����+�Ջ�����nf�� _86BZ�_���,��K�RN��N5 �_���!�$5p �����4�� rˊ�c���N�J7�����H���[�i ��Me�����hYR/t�(����D0z�= x��`�=>%('6�=$���/�=6��+t=H($�]��=�"(��[̽^�}<Ϳ���׽�Wdt���L���f �U�r�}�R���-Z�a������C����x�m_�%��� ���}x� ���g<��4�:z��g�����C���sJ����.7l�Wq�^ ������g; �����n\�$�S�`��|e�R���R�'�"��Sp��m!�~ e�5D"�u�b�� �t�F;��}����������������>�^!���:& �3�ر= ���2^=�ܵ��y��>v�+���V���G�V<%�g[�x.�IJ����,�)�*to������V�p��[���\�f��^��O�`����G1F !������ƿM & �i�2�n��� 佳F ���*eZ�'�F�����N���w��0�v�o��ƒu����ŗ�nk��qJ �T�q#��6�N4�ؽ�K�;�褽0�+��Žfzޭ����X��Oս�����罩<߽W��R��?�� j����z���B��1������e����T�ƛ���ϞP �n��'��*�M�т���B�J0�Du2�J��!X ���1��5�녩a4���D&5\���k�f��(z�G�4���B��@cdz������G,��t��A�V�K�� ��l�%�����?�����Y�}��m���"����� ?w��DO�z���@}�^]� R�������ͤ���v��?����n�g����d��v��8{:�'�̃�� �0�M��k���;zqI ����^��T��Cf���V`��_H�����]���Y�\ 佼�P!�?���Pm���� !.�8���~����a�pW�ɽ\��K;�޽,n3���н��-�V�⽌G��ʄ�� n�*�F��Z( ?���ny��2稡s���w��� �luv ���ve�Vg���/�^S����6*�#��`�� ��!�ʿ1�ʞM٣W���;X���& "�v|���G�;qH8N-�g��)����r����j��3���T�@'�NF@����0�x+���o!��# �����t��c`ASc �o<*���(�R"����}�����hp������7G���q�6��㽦U`���%��0��pF�GO�@(v_8?������Խ'׿�����]�ս;`r�潗�a���c�%6��������~�5������X���m=9ܞ�������cޛCqy�D$ ��� ��PL� �� /G����)����J͓��z �z�A�� ���%�h���]�z- ��?Ŧ9�� �s@���"E��I����@ej�\��Zռ�L$��^����LYJ��άF�h�m�h�?�1��\�y�E�N_��QD�_K�+�ֽz���S��La�jgZֽ�xF��� N�Qi��6P?��<��n�G��>��U3����5ք~�*ua�9��>P�����ϖgy��ULvb����46����������P��"4� m�����a�� ��gy���Xz)�������y������M�Q����6��Jֱn!޽��p���� �5��Mm969{�vc�z�w��m"�<�Խת�h;Y��͟0�-ӽ��aK� ��DA����<��B���8_�Ҡ�W0�C��>l�C������>r�t���B����a�J����/�������Șy�)W�8�1�K���>�@׽J���轎��^�ڽ��U�]t��NMZ�����J��н�I�u�޽j^ B�˽��s��ؽ���:I8��:�d���J�B�F���ou�24��#m�؆�m"�㽀��"��<����Ͻ�u ����?��Pzӽ��R>��ݽ�i]���ֽb �wtKŽ��V7�ҽ8�Z۾�x,,�nɽ� � ý�ص׽2��7��ʽ��=]��̽��6�*����?襽�ٔŦ��1#�S����xtx��ᑾ��i\#��8T�k ���U� ,���~�n^����8�u6��~� =����]�jOߠ�/UoQ&��� S��ڢ� �����`��Ӧ� //M"r��?�SW~���_��f��.T�v�� ��v�'���^5��t����ƾH�LGK���P��l��.L;�j���T��ʾ�A��82�����w�m��b 'n����W�N҉;ؙ˄Am(�Yŝ<\�>Cl�92����~�]ξ�I�!-�>��A�M%�>^/�ӷ2��|��c�;xi ҧ>ڪ��>. N�����vi��ʾ��~@���#v�3U�ƾ���洬>�d �O��>�̡��5��%�A2g����ؗ}�� h� ��t��%V�>X�7��-�>B��~�>�ruy�7�>��K��آ�Ul� � �� 6�>B�,S���>)[n�V �>��W�]�=��N��⑾�J����/t�(�>ze�菱���q[�� ���v�.�>�}�����>��2�kܠ�ـ'���9`B�s�>%f���>�8V�ͦ� �"u�����?��>������>�y�Ad����tM�*���W�7���>����Ծ�>��������f ���������>e5�v��>|�dQG)��p��3.u��C�>��Z�>�d�Q8�>Hق6�(����Fb_�>�fMPƹ>5�h���>z���Y�>{fHN'�>����Ź>�\�8�>v'$_Χ>���܇�>�����Y�>&�uw�>"��8&��>b��P���>���>���8s��>�~�� �>�=�*+�>FرI*��>F%��!�>8�h�׃�>����f7�>g�P\��>ݹ�`��>�H�ru��>��+<2�>p���t�>/�*���>( 2u��>�� Q��><�q �>uq~8���������?=�0�14��<��J�H�v�`���T�|�9L/T���+y�I�^=� >a��F1�^c���Ms�Y���'��\�үS�{bb�H�O��h���r��n���{bcvp�v ��� v����%�x����\m�n�����Sbb���g�v�z�6}U�^Et��Q�%� f�Λ���{����r�^e����ڿ!t������d���t w��Q)X�g�`e쀽�U ����V�.IO���({� m'^���.�y�m~���ףp��+HgF?��x���ڃ��bN�f�~��b�j 0��^�܀���C��-����*����4�'wT���\�;�-i�2�-t5y����K�����!��y����s��h�X��1���~T�f�:���{LlK��F:��v���j��g˶� |:J���fO*ݭ걽u�6�ȯ���5���0�O25��g����������h2�O��N����A��Č�S������g� w���ͨ���������� �j*���)�����"_r�5ys���F��_����M/����r$�gYRv��2h�U�����څ���)��G���*�eq���o? )��4��=�ܽ��~]C��,�˟ Ѻ�6�0���ý��/*�ý��:IUȽ&W��䙙�l�t:8��j�f��ҧ�H7rMϡ�(oS�Ԍ���H�bVN��'�92^�������,���5�y���rj������G?�Х�2��UIe������gY���i�P]����u�.{����2�eL��� �}ij���] �������A���� ����wO�*;��8K��|ҕ�>{.�cԑ��(��d���oP���`��_����B�0�赃�~}�h���ɝF����v�6cg�p�<�@�x��axpa��6���ev��ޑ0d��e5(�?ý� ^��i��ꀺ+���"�D͏��2]Z�����lXꨢ벽�vN����~-d5��^Z�Ё��Nf�Q�D��n��qϫ��8�5fo������a�H��Jgj���Rr�����"�5������7��\�����������EQu���B�����xI�Pd¿�^��I����;6����嫰���l��~�����,���x������P��@��,s�_y�����G� ����7���ᮒ5�����6�lL��� g����a\��@���dp���א� � ��t���S"�����Zf �ݶ���qhB��x�����z�$�3�ϒ� Rv�\މ����zvƽ6 �b�ǽ�<�͠½� ��)侽nrYR:½41�h��ɽ�F`�O���i�P�n��L����K�� ����P�u�����G�%䴽��4�v���4�@�����!������� N���jk�M�H���q�&�½���n�ƽ����Ƚ�@q2��ý��!�˽�p�3H ʽH�F�-oɽX@���ɽ��O�1��\��4������ �٥���#�g ��,~JW���`N��ޞ��`�ͼ <ɥ���=��ȱ����> �`���~�S�q��;<�2Y����<ܥ��7C|n秽J|E���bռ���;�3�K���J������� /���z&�����5l����:��~I��c���)/���;g��&����ob_���.;�}r��@}�x� }���j�p��]�S�>�k����Q��r��~��B�l��hSd7?:��V�(�`���8WA�n����l�,Bu�����![ ��@������!��5��2i�Ǹ��?��T����n9����������w�Ҵ�� IJ.�2��l��('����� sHf��H*B��_��z�tI�ϼ������e��X4-�d<��^~% �����uA����^C٩����j ~���?�f���*�d&�� ����������F�ʰ����������y�����zv��w���V�34���'�s�ýZ������� �\���!�ʐ��P��2�Ž�-f.�½���e������7}�(�����~������������$�>y ��jR��)��D������C�&�o�����&��,7y�2��DF�o�ꜽX�b lI��Ľi��䙽�U���M��n0�D� ��"����Ė���td����^�q� ����+�Zh[�n��AN��R@ A�ϖ����p�͒��p�@�{���m #�DZ�5��)���v�0�4��tX��z���X_�ID��`�C�u����Q�K�������W���#�Jꦽ�`�I ��J��7���~ڇ�!J��<2;�N������ �R���;������X�w������>���f�)�X���غ�P��� ��t����}�����<���f���@M<��y���dI�1����ˬqZ���X�Y�����|H����s�N(���io�=V����/ u��B��uR��dE~����6ar3,_��,ınVܼ�@88�����b�_�=����;c�=�Y��w�=�L���=\x� @'�=�ur\[��=�j���6��T7P#���NYaٱ�&��૽zUٿ��x*LƊ^��־.$�᡽p� -��&������=��Fٞ� �{k�����l�G�)�=�z�v�ʔ=�_B�=��� 2�=���|�/�=�^�d�����x2�='Ɇ�=\���ݴ���J��;��d�ċ ����T�cX��n�yy#��(f�:߱��V3�>$��8}҈-��b2�]ǰ�:5˦#���l�j����wNz˯��r���8�����萎����Խ��=� �|$�= <ќޘ�b�x�)���{=�}���i=f���h��=<�c7ru�=d�q��w�=�%oqj�=��4 3��="����s�=,GPե=��gc��=j�WfXy=����A�}=�X8��Έ=�$�q��=�E��}=�Q��&z=��p!���=���A�=Xtv���e=���Q�s=Ԅ�����=�)5qj�x=��������������������j=2���I�����X�\��R��^KI����i�����R�L�������2���|�oΚ��z�Q�!����g���״��|�������{lqf����.خO����" khz������ ҵ�j�l�ḽ��a�n������������������(m xxu|���tl="{�����������������B�;̴�y��Wv��w�V��" 댽x�-�r���w]c����vu]oy����j���z���+������w��� l�p�����ϔ����� �f+���e��e��"�8��`�� |)흽v� �����+�|�㶽Ħ�������������=�{�����.ܒ�D��@���շ���l���^�p㚴�$]+�˻���U����'�j��zJ� X��p� i�������Hb���xhr������z%\��@��Ǝ,½�\��m��:�޳���u�=½ί�>h���ږiv�=��� ���=�]ِ&��=0�6ĭ�=ؑwN&��=���C�=�@5̔�=��$b$j�= �-s2�=�f��;�=�aLWw��=*��A �=��g8��=4�l �=���H�Q�=B���ͭ����'�Ψ��ܘ�{����$G#����ȏ�vࢽ�]?� ���C�(���J�A&�9��`I�А��=~,g����=(Jd��.�=��-V�=��u+|�=�Y y�a�=����="�g�ҩ=��i�,)�=$�;/���=m�����=�6Շ��=:v��ʝ=d���bG�=p�֊|1�=��$��$�=���B��=D�ǹ7В=���"[�=v�-x �=������=��!8�=6� ��݄=P�����=��ck��=�3!�vm=���*�|=��+�n=.�'va�=~ ��m�~=�֕�Zu��9/U��r�.K3�!p��4���Zj�*��Dq۩�>� ��Ta_�����8��Ṕ��̢BK����������=��>���|��㰽�*��ٺ��O ������������⇶���������k+����|�x�����F ��*��X �ݐ���#���ш���^�����n� ��k��$�JO���T�-�0���|�[⑽��;�s����1�[����ِ����E���V�Ɏ�}���!�Q��X w0����^�h�P��p7ge�ر�JW�,����V8+4x��,^q��������\밽h�*�b ���P�H�~�Y����0�� ����S� ܲ��z�A'���N�Z ��-�I]����^�V�����1��t�BǺZ����& (���Ε6�Lý�Fξ��� �-��½��EPh��,��OfȽ�Z3�{ƽ�D�*�VȽ�G��:�ýԜfZ����� ĽH���ʽ���I���J�b�=��`Z�E�=����6�=��r�=�� J[�=���U��=֯�����=�a����=X�s�q[�=ZS�Eh%�=��}�d��=P~�(�=Fä�>"�=,�h%��=��j����=~b���U�=�[����=&��"�L�=�5���=�Y��=H�<�dP���u "�=�X/Z�#�=����q���5p�=X���Ƣ=�R�3L�=̵/��c��l�M�#�}���<¿���Όb����<�\�=@'g]#R�ny������z���9�=�x�N�W�=2�����=��b�m�=�t�ta�=� ��+'�=:"����=�d��og�=47�Z׻=���_�=n�H�.ų=J�Ϯg�=://�& �=�q��3�=(���=������=��r�=�,��H �=��KH{�=�0KЉ�=b;���=�l� ��="�*�S8�=��8�Xġ=N��u�=b$�I�[n=�Y��m=�_�vv"=� �$62�=D=����=���ˏi�=��p80~=pi��f�=�O���ɐ= �U�j=h����f=��UF�e�*��{*_��TFvC�U�2p7 �w����d�?}��5'�3��8�w&/��� �)����Cك��Bb����T��Zi���Aw,����f��-/����Ie�ò���h�X8﮽����U���;�m~ا� �� 說��ݎ��뻽"'�� �����/�ϸ�bP5j������*��g�sV����%Ii���&_�##����6 ��z��o�Ζ��5 �l���8䆞���'Iz.��ʯ~ �E�=.�;4���=PJ�'z�t��P�=�u�q�=D��^v�� �$�ֵ���E0�]ڐ��l���8���L8o�����Z@���>봚;���I�+���=3�"N����UN���s�۰�v��k���h��RK��~Ǐ(�N�����&i������"�����N������A �q���=N F��l��aQg���]̾���п�����l�u�]��f?���̛�嚾g��ڌ����^3�}��(&����h��Q�Y����u��F��=�x��������>������������!�����^q����%J�F��P��'��P����m[�����m�u���$` �T+��zR"�v���\��iHŽ~?�1½ Ñ��r��D��@�)Wݾ�|0_N��d���kZ��V��3�͹�Nkt�6����ݸ�P�=|�'ZOX�=�$�آ�=� �r�=��m~�б=�%�Sm�=��"6d��=�f�W�=�{̓j��=t4����=xLl��=* ���A�=�&h���=ʢ�I?�=t��ު2�=d;h��`�=H�UbX�=,K"�}0�=���B��= ��I��=�2*�j$�= ��D�k�=��P�p��=���g{�=����?+�=mx�7�=���#��=�&u{��=��@�W��=�J>Q��=�]�B�=A�zh�=�<� ͩ�=�Wo�ݐ�=y�.RA�=0��#oƨ=BR�ۮ�=f]�����=tb@��ۨ=�#4�$�=�L��=�﷾Ȟ=j/�����=���8b�=�m��=LtN�n�=N���R�=�n9��"�=NЌ�=2�=D��M��=Ȏ�;��=�N�m�ʍ=��炧�=�����f�=:�����x=��9N�=��H��-�=��z�0n=��i��b=h �O�ax=���p)n=�O� �x3=X� �=�$���e�=��:���=�}��2x�=;dž�=t+y��=�M���ҧ=���紞=�9��1�4��2zeڑ�ʰ7���=�ѳ��v��*$�����b�ezP��� _����R\����0�u;瘗��_��媽 ��y���&���0�o�۲���^.Ң ���zT� M���:F��Ĭ�8"t|�^����l.�:���5���8���&���7���n���p�j悔�|S�$��<�ѹ����|y�~���ƚ�b.����ɱè����6�ʸ��Yc'���4�a�P���0h��|̵��b�:_M��8(�ne+�� �� �Ӳ���o �鰽rT�R�i������#��� x�dV��PT�=ꭽ&d�;����2T��������� <ڵ� �i]��� 8ҡ�ص���p^8n��3�bʳ��]l��i�����s�����;6�| ��(�0��*��e�����;vs��="�fAF{�=~���ך�=ڂ�bP�=��.�޾�=" �4����="r�_d�=Nn�����=�N���=n����=b����=6Y&�G�=����=8�����=��k��=6S����=:/(��=���a(��=4K ��=�J��=�T�x$��=^w�����=��]�R�=�����=�J�8 ��=� ���=�/H��w�=�C p${�=�>��g��=�ی�bɵ=h��;��=V���n�=8<��AR�=z^-Y��=����=�8�G\�=\��*�G�=�|?����=�+۵���=ܪ���=����vݿ=\�:�=�=���,�E�= ��x�=��x^p��=��O�%�=B�Yt�=�@�1�=r�*i2��=�?o�O�=/�}3�=� ��=�� j��=���ڇ�=<������=��A��j�=d�>i��=,a��=Ȗ~O�]�=��� :��=�a�Kn�=��C�VG�=�Wq��"�=�{2��=��@�I��=�2�\��=,Lh1m�=�c�8��=�[�RE �=P�=��Đ=�d"��=>������=��� �!�=�4c_��=���0v=������=����J}=�t��}\=LY!�s�h=,�j?sCT=2.KX��p=����鴁��:�Uf�c���ī�u�\����f�$��,Ux�4÷8����� ���d���W��w��Ư~�Y���� k������C��Ý��7 �F~��V��4�ڗ�8�݆��=�'Q�c̣=��b˻%�=�EXa�=h|2�� �=y����=J�����H:�� w=vh&�嘽�������=�l�;]e�=���d�D�W B��<5��e��F��q���n�s����Ի�y�V��q׉�R���D&��T�a5=��ڸ�P�R����ɗ���� [w٢�24o�_��� ��ztH��^ ���7��< ���q��Ȇ��B���`"F-����ê����v�A���>��g������,��X\ V2���4�>f����ʢ#�ݪ���e����1b8h쨽X�< �먽��Jci���k#P0���j���ޡ�&�8eγ=����=����m�=" L�Y��=l��ر��=�Rp��=pRLV h�=�/��)�=pE�_���= �'��=�#��汿=ҿ**G�=�$�տ�=X�Q��=����$�=��u����=R:s�<�=���eW��=�]*YH��= y=K��=� ��=�}!���=<���|�=�{�m��=B�ӷ�Һ=�� ��U�=r2# �q�=^�}r�ɼ=x\d�f7�= ����Ž=�P ��%�=��X�u��=�R�1��=bx۔��=��R�,Զ=Đ|Lwc�=�x�����=��7��= t�Sk�=$2C���=F��+��=\3M!�=f�vd�=��2���=���Ӟ�=̹PQcZ�=b�J�r�=���X�=��2ٳ=^��a�w�=���Ż=��x��=�,�"_��=��.��=>�Ls���=���n��=�l= U#�=��;%��=�8tK�=��F=$�=�� ��=���a!e�=| �8�=v������=Lӿ<�=l�52��=�����=��.�s�=� / ��=��_M�B�=��OÉ�=�*�Ƥ�=��Ƅ���=΂�`�=����s�=�< k�Ǐ=F�p v��=~���Yg�=� $Ƴ��=�D�+���=LWI��=��q��=/0YX��=��4SU�=8$��`�=ƨ����=��k8�=�����=�=�]�=*�[��R�= [���=�=�.�L ��=�m��� �=.����=�ӝ��̬=��V%��=�n�;� �=��m| ʨ=�kv���=>�>�E�=X&ݝO�=T�cb��=Ѯ�=�=D'w�#�=~���5e�=����#B�=� �g��=&rîy�p=P2d�=��GAm=�d���=&���k2��<�U�q�i�BɚĐ�y��;+PHh�2�avURw���QlZy��_��M�����=*bȀ�n�J��e���>P�K���J�R�@����8# h��B��v�v���t��}�=*�w]ި=`�$�i�=|8VT��=��R�b�=�� k�=F��N�nu=졼m�L����A�@�=R�����=N��۾G�=�"ԁ���&�b�ߛ���Ua՘��3]�okv��E~닍����2@�������=*u"n���Mi�#V���s�Ԟ�n�Dßd᛺=�e8P;E�=<�u�j�=rW�Y�=bM��ò=D}�����=,PD�0%�=�[��]��=��-_w��=ܮ�|���=���n���="��E��=�q�`Q�=�}6�V��=�D�N L�=��b�ɼ=8GNS9�=,���?]�=,-L4$ȼ=��a �=; ��8�=,�A�0 �=4�/�mǽ=Z���OR�=�hN�~�=2�����=�mGZ �=̍ر�i�="� o��=���b�=�غ��=���'��=�4P�Z=�=<�����=�]M�o��=zdB�ꀷ=*��G�=������="��yfɶ=�) PX��=�p[�u�=��^>u�=@�΢�N�=��5�=�?׌��=t�@�;��=�V�GV��=���ӻձ=8D�=D�D���=�⿸��=�o-�M��=�.4��~�=^çD�i�=�j��=������=�/0G1q�=0 �\x=�=�P �=Bw�ݜ=&�[�`�=f�ܩɞ=&0kou$�=Mr��=��,Nח=�^�=���:�t=V�X�=,�ǔ_�r=�L $�bz�ʚ����d�(� �6Rs� �2?_`�B|ׇ[�k���D2�S�(�‘̀�41�7q��uU��p�<�'�y��Z(��Dy��- +�i�t"~�"�H�B���ɨ=���g��=؍fV�%�=.��p#��=���c�ؔ=�f��J�c��r)��%|=T_�wk=7W�-�=�`y���=z� ��=Y�=e�=P4 ^|�= \UEĸ=����=4� R�`�=�4�&��=J �=��Ыͼ�=�`����=,�I�C�=X��H�A�=DF�-�=&������=��IM�ܻ=d�iU�=���!�=��C���=����z��=&�Bd6"�=�Bmn�=�_�ӹr�=�W4�]n�=��ý��=tn�h��=�=��k��=�� j��=(c�$���=�:��=8��BPѵ=���˓��=�S� ��=�_x�Ǿ�=V�c��ʴ=�Xl/�=��x'g�=�0��=n�$~�{�=T��S�= ��_�"�=��5�V�=ְ�^_�=(��D`�=,Y�>�F�=�\q*u��=�'���ԩ=�X�d�=�-��d�=�~��� �=�˴�?��=&� }�8�=��%��G�=���Bab�=�V��?*�=ƊGK x=.��Z���=�W�S�v=������=��Eo�X�J�op��T�ǹH�]��+DŽ�=�x��  �����-�4�n ��b=6 �y�7U=�U_�ųn=^ۍ��(z=@ E�9J�=��a���~=v��>~�=j�R����=L�\���=�X٬�ܝ=t�*=�Ũ=�-QS��=d�K ���=�1�qO��=\Uݢ4�=2v+7��=ja,!��=8��5 m�=�aO��=& `j �=>l��ޭ=� ߕ�=X\��5�=v R�QC�=v�@��a�=��Y�E�=R����״=H ���=�t ~��=��"~z��=�ːT�/�=@R��,z�=D��Ʋ��=���8�.�=v<��=�����:�=��p�`߲=f�?�B�=�b|�=��'˰=�(��q��=����=�~� �j�=���۩=�I�;�9�=�Tᷖ��=�J�o�=�>�7�s�=.��GJ�=n��Mg��=�����*�=FH��=(�%^��=|J��QP�=��m�$z=�UY��=���ߦhy=���T��=���俭p=xfی��;=�; �P�\=�tv��)U=F�rM�pl=�aǽ��~=����$�=��=P{=�ri���=Z��~��=f2Uι̛=p���~��=\�•〗=������=���V� �=�m��V��=:h����=�m�=|6�=ʝ��y�=$̵�]��=b�Xr5��=��t� B�=~�w���=h�O@Pg�=h3��nܳ=�r��u\�=j י�̰=����۲=��bxm�=��!�9�=\�����=�p�`���=<�� r��=�� �=I�=(���2y�=^�z�j�=`\(�٭=f������=��nJ��=���{#/�= �=> A�u�=��j{�͠=N�0˜=P W���=��lwZ�=��@����=D9��S�= ˋ�=� �^���=:�*[�w=�����=�g~W+y=z�\� �=�ɳ4 �=��mO+n=h��.��~=�^�%6�m=�a�W�b}=:��}��=�0�<�ؒ=�K����=b ם L�={3�3�=TSPT�=�t�uR�=*y.8T�=�fH�=�IH��=�Rm2�m�=���� ��=~�o�Ӗ=� �Y�q�=��H����=��'<�S�=e��o�=� l��=�L�X_��=��Zct=�4��4�=P�� �v="�N)�=�[p����=V�$�'l=��J@){=(=nR��i= ����x=BEc+c�=�᭔�x�=>X� ��=�� �=T&21X�=��LfR�=�/� i��=��S.��=�t�j܌=l��XZS�=�Y���Q�=x�����=���ˣ�n=��{W��=2�cF�q=D�I4�|=��:��{=$O@Pf=����~t=΂�� �b=�oD{p=̨N}�Ԁ=���6��=����ۂ=&ѽ�R�=ēQK�u=�u�+�Dz=z2c2��x=>�+Y*e=Nѯ ��w=B]=�Q�i=B� (n�s=��}�qn=O��l\=�>����h=r���T=�'�J�`=�D$T!lY=R��h�n=&�e�E�a=l,� &��` ����Ľb"��H̽v/k�]ѽ��Ґ��ҽF �L�ؽ� 0=ܽ hC��ѽ�!�>v�Ľ�̔"޽B68��ֽ�Mœ<�Ƚ�����߽N���7Ƚ+�~�ֽ8�4�W�⽑[I0mڽn����1˽���L�-㽮��ݨ�S�^����E��3Ч�c5/�; ���P7㽊�Y�p�*6�v����)g�ܽp�0Ͻ����u�CI�=��r�x|�ҽ��N�36��“��z)ƤG���������G c���~�(V3�hL����d�÷�.� `w�ƈ̽b�-*�jܽZ�" Q��(/* ݽV6H�L;̽Ӣ����t��EIu�� �Y�!�Y��0���]����w(/|�@� �M������ �b�R��t��<��Y��*����E�8����K��8��_�J�-1�*�$#'C�\#Z��p;�-����m��•���)�΁��t�փֽ.ڏ�Ϥ���\�?�����.�Kٽr���Ӟ ��,���#��i�聪���+Y���)Z��J#�)h9y�� ����\����:��c�!4\���&�ߍ��Xv&�uȬlh�+��U237��[�&��GǼq�� �f�4��.�����f��!����*$'H�����y�v���b���n�B�Ak �ر��ø�H�k��� �:A� �" � ������W��Z6 �-g��A���f�������-h5�$���EX����5�RE���X�����(��—4��f7����8�(.�$��T6��0⦅w�AV潚�H�'���c��9�H��Cx�ʽ0�[?ܽv�%�e��li���aٽ�Q��~�ƽ��8(��%��� ����.���V��x��Yo��y��K��Ø�q��X����������R�-�5� �n�o"� �|̍�U�wF �c�(?���dlb���#��\G�2�#�3ߴ�i!� U��B�!����.qY#���H#�F=cՉ�!�h�Y���!��_:�)���>�B����C������ӭ� ��<$��.���� �C����j����V�"J�#���X�2�ӂ� ���$���R��q� ����� ��^$U�����n����2�n�@3,������Z�,��R�Ծ����=�,ܽ�����޽�2�GQ����}��P�@���p)��/���*�=���I%�U�Ô��!��ek�$�$��m� �G-�r'��ݛ �ӷ�4��"�h*�!�f�joÉb��#P�M���̬��EK&� g��*��U޵*�-�����~��,���7��B%��3$��)�Eg�&�V+�_��d,&��%`�.��萟�-�i?����,��kR/-�&�vP@����g�ڒ ��4S�����E�:���u>���� ���*��g����{��ʽ�F�� P�: @��i�(��m�2�����,Ϙ� ���F'y$ �Ƥt���:�r�̻��� ������:y� {���<�>�I:����m ?u뽌��,�&�R�������T��ZQ�q.���=� ��Խ^[���9ܽJ^l��ν.�55�����V��0#�����"��;RV�!�����ı!��O��A� ��N�F��Ԥ$����\÷a��B��v�. � ��i������ IT ��g�nx���Lw���L�Y���X�-ZcV�]�#xX �v��q� ���mU� ��g��:D �h�ފ����k�\�N0٥���3�e��de��Тe��T �eD:1�/���6w����Z����0�풱� �l���P�Ɍ�&M\��۬ �D��&�~����������0���c���RN����w#��b�R֫���|]/�+((��d�%�*�4�fP�.$�Rj�<#� ��� �q�9��N� �1S ��d�����X�t��f�7G� �N:�������֌��� N����!h���.��(M�����w=�U���: �K ��S<� �[`���1���l&jW�!���Mz8�%��|�"���2ע �Ԧ�� �!�\�X΀(�r�~�$�`%]#�b�2U�O"���BZS����� f����a�_��� �����u!�`����L�7+���qk��o��ћ�)���O�mb��>�� ���3����W��(�k�h����n�����f/������ ��J�Ey��� �� ����:l�����m�i�2&�� -��D��P���C��x�4��#ҽ�X��*ὐ% k�ѽ�H�柽c��xMݿ���VP㹽��2]oji�dL�(V�=��>4� ��^�(X% �D�������iV�g�=�n����@&~��J �F�myQ �4�G�dh�6N÷R ��L���>�7�6����h�P�>��_�K��������ne{H@����&����L�� d�cQ�}@ ��^�qw�2 ~g�r� G[d �bDhF}�/!f���Q���w ��m1�;�འ �4�=�%!��8ݽ ��/�����˭���=.��O�ս� Y���=�4m,�_m�놰��Ȓ�k����n�����S��X�� OH��Sk�iL�D� ~ �ĸ��V��b�s�^�V}�m?��M`����Ne�Me�DH��T��r��z�=oo�~������=�����PZ ��t��Hw��-��<����"u�v�y�x����#���� �y>�j� �ZԽ�7�-i��=CR��·�= �}Q&�ͽc��=u>�(�d9��=a����=�5�Vx߽7M]R~ɽr�Ŗ/�ؽt�)����kO�;������KW�=�1vj�=��嗧��=r����=E@�8?'�=OT�i?�=�VV��=6ik:��=���W�L�T@�}�x�p��R�D���v��b�a�hq�WTt�y�����������&n�b�����(��L����d1��i(���p���|�@�_��-�_]k�>G���A���+.�����S.U�D���Q�~>|���,Oq�v&�6{�o�����P*�h ��`��}Rnx�;��nY��, gx"�Kj,� ��ș�� ����坋�,���F�q�'��d ��<7��̔.��u}�<���n0NB��*���"���S�����+s-���Դ*����ai��,ЅΜ,�0���`x�% *� ��Hw=w�zg�[���n��M�5��Y`����V����"��v����␉��EʹE.��r�U����qZ �n���� �,�� >�L�n&�>.�:qjT>��N6V� >�GwN>SH�y�>E��O������ǡ�` B::� �����e��r6 �8�q�����y�mC�E0��὘�#`����z���z��) �3���U��Q>��d����=�y�d< >�ܥ�E�>����X�=*�m�ƽD�ã���=j 7/��=.3V���o�l�n��vo��Y�R�H���"F�����@�"OR.��a[<�T�J9����ڎq�Gl��t�u�� �fNX7�� ���� ���6b�2ʖ�Z=>e\��qm>�>F�/oŽZ��u���=��D�=4�^M���=$AEͷs >�����>���H#�=:Ο��5>p��O�=�P�_�>$���>�܈�$y�=hM�~��=��U��=~+Z��=[0p���=;�X��=�@�M��=�L0W��=s.O�X��=R�ZL��=,�,�W��=��]�7�=/�����=����u��}�7<5�jXA��m�NL����4A���E�LC\�Fx���zq�bZ�_hJi���H�����®�;]9��c(� ��~���O��Pv�F���?J2��<��!�!V�བ�o=�޽B���(�ܽ\��Z�ڽ�r�b� ������Qi���w�pV����8��:��X2���3���{��'>R|m�D���b?�6�0�S���ߴ��-e+C~ �FH[�����T���o%۠��O+Ơ�T�7���r{��� �t Ea���d�����Ih=�q����b��z��X�� ��7�RZ�P�s(R�x�H�1m�`6��֌k&��~O�7�Y�@���D��M��"|�� � �� �S���o�8�E� �_�X�t�!���Ġ"�����>�"���G֌�$��u���!��4!���h��$��.��##�����~> o�#s�>x� r>��H��>l ���V>l�a�-�>hR����>Ԛ ���}#�>�����n>N���Y>��l�<�>�/KM�>�5a�W��4���*�⦅[7Ѥ���z����=� �T������B�>�0.ὢ2� {f >�l��=>�(��>0F�S~#>�d(��=���>� JQVz >k\M��~>�@ ���#\(p� ����;%� X~O���x Bd�n��5ݵ���A�����|�/��� $���>X�U#�R>�w�I�>^u0>DiFS��>���^;>�o(A6>L9z��C >�4Mkޔ>�bq��>������=��Q(�>� ���>�� �s��=Ďt�,� >���H¥>LVy��>$�AR�=�E�|M��=<������=E�� ��=9S��ż�=2�1����=r���7�=>����]�=5a�Ԑw�=�6�M�(�=�nW0Sj�=z�3���=n� �T�=H�62�2ؽ�Rv�%fս�b@ SHҽ �G��ͽ6(�odM ����h����Ɖx��0�"��t�ƺ@���"�YR�:��(R�j�b���#��:�}m���_���_�s� ��S��,;�n��5� ��(��W|�б�����^$%f/�H�^�w�� 콞 2q�Q�����3����~�����z�%���潼=a$sD������@�|��B��0�-�p��*�v�����Sw���C�j�}�m�"�� ��Έ�]��J�ɞ�9�~ �ג� i_�*�L�8_��������?_��t �)�_���!�~�0#u������-�!�l���) ����R�%��0����"��>�}%�)�YS��!�K<��P+�|:���z)�T Ņ�+��l�&�&��k���#��Ž '4<��>r*hڍ >"H�F5�">�ɹ傼>���C��>�Қ��>�Hr��>5���">��m��>A�a�>p�)Q�>�9H�>����>�>8@}�>ĘA%r>�>�C4�>�I�|�>�W�|>.Л�}>�o0䜌���*U��7 >� ���=��u�+Խ��ެ�>v��G>>���P+�=;�}� ���C jT��]s������\{�I�R�k���=n��������,����>X��x+�+>�4f^� %>��p���!>r����%>XS-�!>�K����>��U�c>��#U�>��:4��>'���g>�$��0�>�L��R>���\Vm >� ���>۪�+4M>�r���>�r�C�>�,�۱�>�H�RVZ >�̋� >��g/K�=� �n �=����">r���=b�s�3�=H�:m|�=���p��="�%��Z�=+������=F]��7D�=f���*�=��;K��=�U���=$����=�m�!�=�NV�`�ǽW�9�Ѩ���e2��˸��L_5ͬ���-2M�Խ�'r%-�㽬q�[��ڽb��ꥒཊ�M���ー��gw��6U��a�a�B~潎�Y| �b��C(��*3d��� ��$������;����2�1���&O������� �XZ�������|2��W�������v��:Ui�v#�����;��-K)�(��Ͱ('��NWJ��I"�R{�)Wy���������`,�!֜�,�I�"L�RD�����BN�Q��/t�4����G�C�t��m��;(!��'����"�-���0%�kUS��� ��a���%"�j-7f�k��T �f�d!.�� �7I�{JD�/��ֱ�����Aq� �3��TL�JՕ�@�ص�ԇ��� �7����t��L���"�K�|�<�>)��� i�J%c���d*����W+`�p`�M8B��g����Yd�z��(�"\0�4�*��Ԓ�=$�0#��-��S߃��.�:u�K-�I| ��,�^��8)��4#e�*��Z ��"%�F7�aG$��ml�O�(>z�0�TM+>�6�l�%>�F���!>���Y��$>��ۂ->#�z�΋ >���Q,�>A�\��p> '��e#>�(� z, >ě�9F'>L�;�/>���i>�=���>��C�>���g� >'0��>�yJGq(>�Ynt��>�/'��q�=$W� \��=�J�����= U��� >����>H��^���=��_v>"��W�>�Y���>ԣʚ_9>pRgō>�%���->ƫe�P/>oB$ Z�->V�*li<.>5"�3r� >h�"��Q$>���>@!��%x!>�����)>6���nI,>cH�u�&>*���1$>�j�l">�Bvė�>�I�,F�>�\�g�>�\�>>Ɔ�b�>>�)�r�> �ܽM|>���I �>�n+�L� >*�4���>l7xNR >��J�0>!��8��= z�n Q�=J��{>� �,H�=z<��u��=�`����=���fZ�=M��R��=j$��=��L8��=~[����=�� @#�=`���ޮ�=Q,�u��=d#��UI�=��,Fg��=�\R&��=P5-?X-�=`�Mt�i�=^3���=7 ����ͽh>G� Ľ~�4tm�ڽZ��L�ѽ �+�9`6>��.Dk�> ��# �>��p�X >�0����=J r�K�ݽ\�E�x��= }�o}��=�|fC����� ��.�����;���X�O�4�S�sDq�0U���nq\���B>L?� ���|%�l)�Y��P��1�#�|�6^B �� �k�G����.9�ʺ�R��d� ������� @���* �= �F�=�������\?�ܞ��z��ҋ�&Y�π���h+��W�ފ �p�B�r�x �>\���R>OjO.n>�Q��>"���>��pC,�>D��s[>@�5B)>~�xs,>d�v���%>x�x�|�#>[��r? >�n���>. 9"Q>���y��>ך΂��!>�i IZ!-�>�ń�XV&>�&�%�>q��o�� >���>C��$9� >.\���p>a��kUf>!#&7�>��-udk>�^���>��d��N>���0>\��Ŭ>T�L�>���׭�>���O/�>LUD!>M��>Y>*]h >l=�(� >��:œ>�F7&3J*>��w�'>���w�%>�A�@�%>�莜�\!>8ߑA�">��Ǜ��>�l��� >~��ʮ$>�u1���#>�^x�b�!>��HS�`">\���N>�� �Jy>[�(ot�>��Awa�>��>��-��>v�4��>sϮ���>�2�`�>���U� >�sXas_>�}3�>� >�t���+ >���܏>��D�]�=J��q>6��w�=�Y_��> ���֜�=��}d��>��9A�X�=46V�I�=t�)�a��= l�^��=$�����=�H�7���=7`� $�=�$\���=�tyJ��=���S��=�w���=�Nx�j�=p�huy�=�:����=؛�fP�="q$e"�=2\��]�=1��(�5�=�#�%]��=(a�(�ݽ�۰�ׅ���̤�� ѽ�(W4vý �X��dս���/I 潊`����X�E�Y�n�Hq�齴T&m�(��H|X�`����K�����^��M���5�>�OP� >i���>�K� 8�>b��&�t>��� .�=(ǣ >���f>��r�_y���EC;��Nt���=��o���ٽ�z�4g}���݅���V���| ���y9��+��������/�z�6���3��� �����0%�*'���G�Xm��Ŋڭ����^�5�����O� ���I��4�efm���Ӊ]>��8�A�>Om�>�E�|��>|_� _->hڿ�*�>�٣�� >]<�L/o >�ӿL�J#>�>��7 >p�B�`>�P��h�#>*OQaI">��k�� >�o��w>j�i=�>��Z���>�Ֆ�A�>���#>���0� >�T|�E>�z�ŏ#>�U�"%1>��}Ɩ!>U\4z� >l��ԈD#>���`m#>F�Wiϝ!>a�r<0#">�Z�">�A�p\�>�}Q��>��K�>��H��>^,���>dt�!@v>��T6_�>v��5�)>�oZ)а>�c�>��� >�f��K>j�4�>�ƒ%{I>�+~�>��L|�>K^$\�h>HW?<�>�<��7#>|�^">]j���">wj+RF'!>1���2�>����� >蝨�D� >��#79>�2�Jd >����>�.(e��>���M/�>4P��oa>@�M2]�>|�[&>f��R>|A�X�>�~N��>$�Ixe�>l���>�aP�p� > �A׭k >�戾�>��P >d��9�>�[� ��>}:�Fʀ>�ҽ�nj�=su�Y>��)���=L�W���=;��4�=h�e�D�=������=��v�Y�=~m��%�=J��t?��=K*Q ���=@�S��$�=ʪV����=.�����=�����<�=u� P���c�Q�5ƽ��R碌ؽ���o�ɽN�85�۽�*����Zx��A�G���L����X�q�2�����U ;i���HӜ���Xж$G����F�'I>���p>����n>΋ڋ(� >��]�>��9�d��=4.�����1ޤ7�=ĩ(�6��� ��>)���� �=�C٣a�ǽl������0������g � ���F�MiM����� k�ɻJ���T��d���Wa7n �~h������Ʀ� \�jD��,A���-q�s�f+���� �!����2��\: ���~���<��T��t�&��LuG���G0&���-��Q2T�p��c�\���_q�Hx��I��)�y�> ��g�$> �&E�vv���p=ɡ �c��:@�X�4�@r>3�T�|�>�����>D&q܎�>|��J�k>hӤ��L+>����$>t:$�!>����%>M�T2��>��+��!>R#eN?)>`��5N ,>6��U�1&>���c�m#>n^(u,�&>�^��->�1��%#>�6u�� >ʳ<*�>|���!>�����6 >�� �s� >`:� �V>h��e>L^$�'�>r��p��>�,w��O >:Q��6!>X���� >����� >l\�C�+>v:@*՟>�Yx �Z>���K'�>I|���>v��i�*>`�C�>�Iߖ�4>T[�,�>ڵɻ�&>���kX>������>(���>2�ep��>,���{�>h��;�p>�;e�?$>���u~>���]2T>H�>e�x> ��&�q>Ј���+>~fI�>q��?�>�Xk��S>�y�}>t�����>�D���>���`�>�X� �>��� >Fb��P >ۑ!�k�>"*�H� >8㚥e >���Xd�>����O>,��͓>~!���~�=��}�Q�=�>j;W��=��V�m�=D)b���=���K��=k厌4�=��!�=M�rQ��=��BJ>�=8K��z�=Sɟ��d�=4��!�d7:OB̽���ܞ�ݽ*Jb9^�ͽ2��f3޽u�{?�$�ig��4��C�~�2�@��� �t�d&����� fP(��sY LF��^c9���>��iX>���Bl>�\ڻ��>�3ત�> �uʋ��=�S0�ߍ>���4R� >zD����>�`�1�y�=xP�����@h�������/z���$a�<:��=ngSn�=r��mT���W����:�� ��R�/���gd & ���y�2��w  [�����Q��)H������s2��W��N��P��ۄl������ŕ��81��u S���.c�&������F/�6@.����"���p���m��>�� �>�/h�s~">@�?&�>6tn�_q>g�y4y>`3%��>��z�Wx>z��b�Q/>��5ZӃ->Zc<�#:.>%�I�.>�ү�%�(>m� ��+>`�q.�%>��G���">Z���(�%>h�w��D">�� %>��κa!>< 4:��">�-�>*>�C�F,>D���&>�U�H%>\j��Ve!>��< $&>��9I� >��ݚ�{ >� �G>��.{E& >��O�">\_�hU�>���>w;L�A�>V3��&>��x�>�z�q!>�p�/a�>����i>�g�V>�x�Rl >Razy2>$Hd���>�:3z/�>Ĕ*��>;�����>��v�;�>���3�\>�Mޏ�>ӿ��ٯ>zYh >?�,/��>n���xO>Xm:�l�>0���b>ı��%>D�=�y>UQ�>#q�>J�H���>����>->y�߈�Q>�@Ϸy >�>�"G�>��f�� >����j>��Lt �>3+�&��=�����D>F -����=�wA���=pљ���= @�c��=��nC>�=��G��$�=� gR��=8����=���`�=���9��6�?^�VͽV���5ݽfO���˽H�mڽ����A�콆[�8��?�x�㽉�M��?��-8"���R �>�7����=��콢*D˳ � ���>Э�:/ >�5��1�>���0�>��Цz�>]�k� $�=JI9 8 >^qH���=^��G���=�e-�o���tf ����b��$���� mgٽ�M������$��#�X�g�z�="��gլ�c�,_�O�p>ōjѽr�/ �'>J�$~&=> �x�qU>�E �3D>RD1��g>�y#k��>H�I;�>$�eڒ�)>0�C��&>�*r>_%>���� %>e�1*~">������">�d͓x�>HMr+ P >�:zN�b">�R��">��^~O >���)�!>bE�Yb">y���S#>�;���� >�y2�u.!>�x���#><��* <#>6�[[w�!>h�T ��!>v�k:�U>��S�1�>zGPeo�>qp8��>��A}��>�}?b��>[�����>�uS��>�{����>�'�?�>���n��>05��܎>i3% AQ>���A��>�#�%>ޘO��*>�Z��>f�}}>J���>>x\�I6>!7��h>b�"+�c>h�Nc>ȵV %>�x�m�>�bv�>�j�r� >}��$A�>{Iڜ�>����uV >�Dd䘂>� �o[>|\�4�>�r�G�q> ����=.�=���=6L�t�=����f�=��2�H��=��s��=�3u�~�=$&��E��=����ݽJuv<��ǽ��(-0�ս &Vՙ�½Gtd �ϽGP����{� � ��#_ӽUZm�+ӽ,B�R$�)���ܽ#�"�Sͽ!���櫽�e0�p >�^�C�L>��4�>L��n� >�U��=Tof3�ƽn����=h��:�!�=v��V>�ɵFgP�=x�M�(��=4v$U2>�ʀ_E>��j�Y>��#��>J��̷�>F�{��| >���@�> $7��j>e�\ {">p4i;^!>�Kׁ %!>"��}�>G���>�ւ���>�L�9�>�2��>�9w�k4>ɸ�%>���đ7>�}�P��>f��δ >O�\< >����w�>Э �Շ>��%X��>�@��K�>���df�>PT�ذ>�I�ù><�\��>� :�!k>���|¤>��ee�>Е��,�>��U�>3���>>���>�����>��tǙ�>Q�au�> ��f%�>ֶ3�_6>{e�q� >��L>�4|K_F >3�Z>.X/�>�h���>�O_�=>ۥJ�M��=�/����=��⺧��=33�@1��=��Q3W�=�Fԭ���=�� ��=�<��57�=lZ���lH��̻�����@���� �M,sȠ�RD\t�n�`W�lj���id'�r�=[�j+. �=��Df�=8�����=\�n�{��=��ϡT{�=�g�d}�=�b���M>�J>^\��=ܬ����>���� >pė�K�=r��ӌ>�Q��L?>Xš���>|'�e�>��ϙ�7>tp��&>�3�z�� >N�m{�.>��J�>r�"�1P>&W�m�>��!]>�S�"ġ>����=>��%��>���F>.��' �>��Q�9>�4�;�F>َ�jW>���f�>nȲ'<�>����$�> �����>�[&�Vc>�Yr�>>�V&�>2^T�->�[�0�>�d�T+4>�Wkb<>�}��]M > (��Y�>p h��� >��^vJ>@�>�� �� >�u� ��>֦@���=b�ɥ`��=���qK/�=���8u�=��h���=�_�1Z`�=hE�L���=��|1�6�=�+{�#��=ra s��="��JD�=^q �y��=�N���=Prg�q�=u&���~�=9 'tϡ�=�M� �=4BV����=?oe��=�w���=��t{��=� ',>(B%SW>0�4v >h�"�>���ں_>4V))�V>0� XV >.C� �>�a��l>�Wmu*� >`� �?>���r�>ε ]��>��f >{�~�k_>��f̬>:�'�E�>�h� >�'~�; >���,�>~3��>�{�D>|š>�rk7�>����J>6N�B�D>�[c)Wh >r�c�>�T�{ >��r���>�Ym|�>� �<>�7; >8��~\(�=��"u2�=9z?]���=}�>����=�@�� r�=�12ԩ��=��\�q�=��RR��=�."]B�=�Sy�n�=<z�!�='�����=u�o;��=�1u1� �=�F�~$�=�|����=�ĵ�l{�=�F�����=ֿ�_n�>_������=�Wݭe��=P;�f.�>|0�+oz >����,k>��p�>^[�chB >�� >�y���>�GO{>:�焚x>���$VG >4 �� >F]n� >����� >���3�� >4�I� >j<�+ >��(�>���>�6��|>�4�*i��=��=�y�=� �wnk�=��Z��=(�V��=3�Y��=�m��X�=lc��5�=��Ѕ��=nl�`Z�=HS�*�K�=�C) ��=��I��<�=�"��p�=0����5�=��t���=S���O�=><V�3�=��ۓ�>M��`�=f H��=���,fc>Z�!�Q>R��{>P�\xF>p��j�j>+!j%��>��>�﫵/�>H��i >� �U�P>��!͋�>,�"��=:h�q���=�t�|�=���j�=\�[�Z��=������=�]ȦV��=��C)��=�.�#{ �=-Qg��=r��ze�= �֯DT�=�CD+��==�Ϧ�=byd�k�=��&��[�=�#�����=�=���=�!b.t��=�Ӽ�\ >�/k���=������=(33&3�=�+�U��=��7Pk�=<��� �=���r��=��΋M�=�����J�=��Hl��=�~�f6?�=�n�&�=(�Yi��=��� ��=�wǍJ�=0��� �=X�Q{Ê�=Xek �I�=������=�X���=��f�I�=0�$�J�=���lnn�=rN�jWD�=4�zQb�=���z��=k ���=���U�=����/J�=p���1��=nMqjZ�=� k4Do�=�)6Fw��=��hh"c�=��~='j�=s'k!��=�߿�,�=� g/:�=�]Ծ��=Իʪ.�={-8�:�=��u:��=�����=�=*3@�=���Ҍ��=�Ƶ�{_�=��{v��=L��*��=��:s?��=Z7�����=��c���=֕� /�=�'�ev�=�|�lC��=�dD@�=�3�=�= ���8�=�'��V�=�}�y<�=�k�r�ϼ=X��(|�=�;`�?�=�H7�W��=p���{�=vXy�l�=�X�Sm�=�^�=x��p~`D�>����ͬ=Nϩ��z�>��OuB�>�� d$�>��x)"��>O� �>YeN���>�� �7�>&�8)��>z+Z��Y�>� P���>A�ί> I�E�/�>WQ,LaĶ>:H^�Q�>D_�n�>M_K�>�5�K>��>rb \���>��ix>ͯYO�> �74��> ��� �>!�D�ؑ>X�o����>I�Q�7�>4׽�2 >�0�3̑������>Z��_��>�B*�)����g���訾��ېi��>�.�f@7�>x�"����%��K�����2r���>���)���>��\��O�>%�V��>���֬��L�|v ز�P�'� L�>NWQ bĶ>�����/�>^q���Y�>�6qUAJ��y������ ��p%���H��(kN��4�|�Å�>ř�M�>��@7���>�;���{�>_�:>���(�f��'�$�����@ �}.��-lVj2����R �E�>�$����= ����F��v� ���>�;��>�)aڐ[��ºF栾���U�>����9�>���.���`4�j���7�tX���>ӊB@�ү>�!��>I��4v/�9���ڤ�M�>�����q�>,`|5l���:a�谹�,�O����>rU@;���>���t���������W�E�>OH�uݑ>�6CI���g1�3h��(�1�`�>*��?Α�� 6�İ�]�SR�����7���������먾I��+İ�RҤth��|T=�W��� l�������� Ѯ��^��g������Y���2&�?ײ���%�����Ŷ����<�q�K������+�� /h�]��4r��69��s�*%z���݁{��M��9d��QI��4(������oN����'N� -K��UO=�x�D=���o�Z=�N�*�^=.�Q�r�S=7�!V=�qo�\=��|T _c=��͓��g=�d�~�i=�"��q=��+��Ws= �L�uh=��0U0�\=�%M�t=D���xo=���ea=z~f�ݗu=�R^��`=�IR"�@o=|��Y�y=pSSJp�q=$�� ��b=�&f��Ez=�|�ɫ}=Ҵ��@�=��W"���=&I��=�ǞK�z=4��n��=pn��=)�-*As=>��v�\e=�:�j�=�|�w=�-�i=���D�=�gv�K�=(T*�۫�=l�d��V�=JJ^� �=��^S� }=(��7��=d�t��="6�4[�c=�u^�vs=���85�~=��; �s=��MVc=�Lu�ݬ=�-H�β=@�X=q��=^gUuVį=�O�}��=�=]�2�= qЫ=��PΫ�=fz�[��=���2(�=«�˛��=����f�= �}f���=R)��F�=,E��a.�=�208���=\��__k�=���M�=��8N�2�=� �۔|=\�!;n=�5 ��̆=Y�TTG�=*�>�Sq=L��y�Ķ=pMȜ�3�=��&p��=|=�j���=�,+q�m�=���.�= x�wb�=Rti�д=��}��=��Ă7ž=��ھ8��=�Xx1ߓ=z�8��=�� ~�=����=t���U��=���O���=dS?p�h�=J8$٩�= ���Ǚ�=�T��q&�=RC���=Xk�2Ѧ=��O�s�=�Y=� ��=�\$� ��=BQ�ӝ�=f�+����=8��/�f�=^-�FH|�=J��+�_�=�� �=�=�a��H�=�ǽ�ح�=��`n� �=V���J�=�z�\�=Tq�|_�~=�nJ�#�=�`9pD��=��uXW'b=<�[@s=2֡�҈|=� ���bq=�f���<_=�2�_%�=d��#�=:=X���=$�{u���=�cI��=�FX_�=�۴1kT�=t��3 v�=�ϤU�=J|Z7A�=¸"Y�=v; �K�=�|8{}�=�y�=4�=�QA�E�=��-�ڷ=ؒ���W�=:�T���=o� k�=��ߟ�%�=����স=���J���=�u>9eE�=�5>��=�PCʣ=<����=r�..@O�=h�3�:�=��k�4��=r{�����=Ľ(K��=������=�Y���=�'v�ʘ=����ʛ�=1RH�\e�=�����%�=��]O��=Оۦ ��=(E0~Bh�=Ζ9�1Ls=$���_�t=��z��3�=���V�=�y��!�=�My�l�=b�%,�=��rb��=X�F>L�=#Y>�=��D���=���X="���C�=V;� q�=���̍�=bak�G7�=��;�v��=�h�_���=*�N�X�=�R�C� �=�,i��ٲ=�S���=(dL�{�=ދ$=���=<^sk_�=4���=Z�E�7�=΍����=,C�~��=���?�>�=R^�V�A�=�� ����=�E ����=��ns���=�.�`.�= #p��=>�u��=z�T�N@�=�w��=( ��Ǧ=�c5���=�,�����=��,L��=�2 �6Ҡ=��B-g�=J���ב=���8��=|Ud>�=ati @�= �1�΂=&*���x=T�X�W�=p�Q��H=藯�'\X=�p�3 �l=)�}�Us=f?�� �d=RY�S�O=̹A��I�=�\ ��=�*��Ud�=�o24=�=����=�=6~Ts��=v�~+P�=Z%g��p�=�^�Z�=�����=8���;�=�34�ֱ=���ii�=���ʧ��=�5(C�)�=ʎܫ=�ӓ\s�=詭E��=p#6�ն=E�TvH�=@��y���=`�#�˴=f��g��=���^v�= ��h��=2�Z�& �=����=��G�Z��=Q��ӉY�= tDO��=�3�w��u=�W?[qiv=[d�j�=���+��=`(�����= $�`�=؎O��U�=M� E���=,>�s��=���‹�=���́8�=`���t��=��j��&�=�LGȌD�=��HO\�=��Y��\�=z�(q)�=/c�MO�=P�m�Ag�=�=e?��=�Cy�а=���PA�= �ٔ��= �I�iC�=4��F���=HO��.�=\��wa�=2��W�s�=���~Ə=�e�8�=�j�)\��=*��U@��=��w�ʶ=� ���=�aY�w��=�e�"�"�=>4���=X�V(��=J \K�=|)"_�;�=�㓝=�o��)��=�o���̕=��G�z,�=��D<���=��2{�W�=��.r�= ��3-.�=H>]�&�=�"K���=*[E��=$@�]O��=tǞ�l��=D%�/ك=DKh�FU=�=�L�݊=4/���=�k �T�=�U�kQ��=&=���v=�f7�h=��I�܄w=0�Z{U#h=&=[7�5=.�)f��U=fz~�P�Q=��-�=��h���4��� w��=��[`(�=�I�_���=�iΑ\Ӵ=,�BA�G�=�9��`�=�ѫk���=����Q�=��!�v�=^��-_5�=�XUC��=l����j�=ޤh�/�=��p�/ޥ=�!| ά=�Rfo�=� �t��=v�"w�²=*%�L'�=���gq�=����n�=�֥�|�=8�^� p�=�U3m(�=`�R�!�=����w=��}��v=�d�a��=P�I`:��=���O%�=@�l��=�$ziP�=(J!؞e�=͋�UT�=���ȸ�=��)��=2�}BY�=�?'�=~�=���'��=���{"��=�V�����=h �ڼi�= +�'r�=6��!yo�=6[ΔO��=�ƭ�͊�=^ ,�τ�^eİ�4����7t�=�� �-f^��tk�t=���*A��=8•o����#�n=|�ј>+o�������=׆u�U�=��QT ��=�00�G �=��<*o�=���x|�=2��l���=~H)b���=�\�h�=v����=(KRK�=V���s�=���8���=>���㩰=�?��l�=��;mԭ=����=�-�"�5�=�T/h�=��T��=��4l�΂=B��-4΁=�i��~=x��eW ������k=�^�v�x����n���V9��d=��C���fM�d����%-�S{�л�a�u=z?���va=&8!i q=z�H��2=�w�_�=\UUG �O��ٞ�HT]�΄ I�$g�8� ��{O�n/ R�UU�1.x��h�T��!Oe�� ����Y�Y�#2b�=���Ӳ=z�s���=.M�F��=,�[��=��/�r�=�LL�DZ=\���ѱ=�;�jY��=6�%ƞ��=�����_�=,� H��=x�?,�v=�tt:V�v=\&� 3��=(�z����=�*@~��=B�9&���=Ƙ�1e��=pw�9p�=Ώq�p��=��@P�W�=��Ŝ�<�=�W�=ʰ=. ?�vH�=��O��=/�{݇�=�C=�ꔯ=��\lwɡ=���5���=�j��l�=�0f���=������=D�E���=X��ڗ}�=dLhh�߆=��f���=v�݆X�=�5� �= w��5�=��X�!�=��LІ��=x��� r�=�Nz%�s�=N3}J� �=�����=X�j|��="C���=V|Mq���=���Ɣ³=6{����=6� 0Y[�=< `?�=�J:�f�=<��y,��=�5�1`뢽z9���\��/e�թ��$���G���T[�����P���;0,ԭ=�RZ�f'�=4'1����=�馳��=��� a��=ФuSu�=��&^›=���Sf�x=���ɠ=D>w��=��͓j�= ��E �����<� �_]=�ĉ�u��N�( d�F:�3T�~��+Ϭ�n���ƒ7T���F������`��b`��Utr#���xot4p�.�,�׉���7�c�s����2��v��s�wA��X�L����H��w��C�dULt��r��$��H�>��ɀ��c��� a�f]�X�n�B���T{���_Ss�BMP֚d�D�kI�=���J���=�8�y�L�=�����ذ= ��?N5�=L�撡�=�ŋ�=��(�ŧ=�����-�=4�� /-�=J$dK�q�=�������=h��wU9�=�Т�;)�=���P�=0���3�=�Qh 5�u=^��$u=|!�c-�s=���3�ur=��MGNr�=�k,�"�=x�۵�=���2(��=8��L���=F^�҉ �=|1�a��=��7����=���د=>��=����]�=Y}�k%�=^�)�:�=�Z�����=�%'�Zǖ=���ǩ�=�o�$5��=B� 1���=�?t���=�KB�㛵=L�f��*�=\��=ı=rmS"��=�Kyȡ�=�>Rr�e�=����@��=�����=�烯Ḻ=$�i���=��|�%��=�6)��7�=�2,�Nն=L���9�=`z�VD�=� �G\�=8(���ϸ=,D�u�e�=���m�6�=7�;e�=��ο�_�=���Q�=b��B��= Hj:���F�6}6x���`�e���Ԙ�Ӱ�d�d�������̈Y�����&�ű���.��e�����j�����������`"����E����6F̩��U*�Zt�=ȱ�iŅ=\ ��]ē=��,�[���dB�7�=��敤��=�a�c�w=P�5Ģ�p�h��Ȍ���>�1�%E�ب�@�1���z�B*���;���d��Ѣ��vl W��4���I�d����h�ɕ��h���=��ʹ�2W ��$�1<2��x�F-o��x��Ţɇ�zd� ��f�z��3K"v����g�@�7,ǁ�R�9�w��4��$�p=z$�`Pm=e�}v i=��r��td=:��s�=�O��S�=4��- �=�P��\��=��^"!�=2�Z)�s�=�Cq���=l3`�.8�=�iPQ״= �u���=�Պ�=҅�$3d�=��O'�=tj���n�=���j��=��R}"�=�� �㞄=����C�=f�I��=��h��&�=�V�X���=j?W=Fn��Ë=|�UGR�=�ۥ �=X}1��=�&K���=�z��'�=��x��T�=��|�#�=B��i�3�=���w���=�;�c\��= | � ţ=���(�=����D�=`2���o�=��78�\�=دO��*�=��"���=���"G�=KF<��=�L�6�T�=��b�E�=*�� ]S�=��6,���=�*7jV�=��Z��#�=v+�GW��=Y1o��=� a��p�=�1��=�&z����=�Aţ�s�=�"L�F��=n�N�پ=�|�'`�=9�*%0�=��ժ4�=�M�Mֺ=d��@�����hd����!�����/�������l����"�G�Ѱ�� �Qfc���&w�[��,��J�d������ص�ز�E�賽ܐ��S����y{A��>�Ux�&���&ß p���R�����&!E`ݮ�Rn��K��:q�Ű�N�c³��,Y$fFuI=�oX_������Zt/��Ɓ9�Y�k=x���"��.(Ԙ=&���@�%���� HžB�=����1w=z.?�썋=��P��=B�ي/��F�=�*L=��P"��=�e��赽��Y-��½�� �<׼�b��E�d��`=·晽�� F ].��zҳ�\�Ň�c���ԢH���V8}��경F�t ����N�!�Ҧ��GV~x���_��Ȣ�V.л�ɰ��h �Aϫ���o�uh��t ����F&�3 ����ƥ��42ϔr'��p�p�����*���x��� �┛���֋P��v+��g��g :�f��-& �*x��c�К$����B�j���;�Ξ��&��nw�d`+�����̴x�6����9џd�Ȱ�G��a�t �R�``=��+�0X=�Rc���P=$��3�C=�uTӱMl=҉#C�4{=^Sd[�Yr=����v=��ߑ��=؋'�4x=�f��X��=2���~=N��Z^W�=����=l���^�=(��Hy}=�vT�D�=�ԓ���=���M^v�=Bʄ�a��=����ΐ�=Tڰ�"��=T,bT�߰=Wc�(B�=r���*2�=H r��=t��R' �=`�G� ,�=pEA �= ��%���=(ܱA(��=n��m9�=*�����=� ��T�=v`�� �=�����=n�4���=V1 �ʀ�=?A��n�=`��78�=�c��J3�=mP�Xܸ=�F��� �=k���w�=�I69#�=`����=h�^cl �=梏Pآ=JD�{�S�=~'��Y��=��>[ �=:�-۔�=�$�(��=4P�Au�=��LIq��=�i �q�="[��u��=�k���=2:��Z�=t=�=�N&e-��=��{��3�=�qh|�=�$(,���=�1�H#��=v�eo��=T� ���=n�7�K-�=�|4�l�=�>g��=�*�ǻ=�_��,�������½֓z�ݼ�w�En���R=~2���^��r6Ľ��?�Q����B��)���]�P�z���"4������*���'��Ш���鱽���SGc��0�t@%��6��Ȅ��f�rxz�����<��(�y��#��RF��xߨ��ch@���zΘz]m�x�o������I�K׀��{M�-P��B Y=������/p����0G�g������g�������<�� �e/2q��TA���=���ly%Q�Ľʫ@^RrŽ�_�"]Ľh2|Ն�Ľ�N�(�#�����ջ�Vs� X����}1"{؇�������_ýf��98���4"�����9汽�Kt8M��x�D�� ��E��,�9g������� 䤽}��ᮬ� U�+nR��������4������:پ@5��^��/|���2��Nğ��j$�ꔽ���������n#Ψ��n�y�����r���K�u��Q��.܁���dks��$���~����@��������SZ��2�2�i�����Z t7��\�z�ѵo@�]�ϖXS�p��!���Z�إZcV�v��ك�Im���dn�uS�J��Yx/C� �v�Јd=�z=V�[=b&��=r=ך�T?h=e�5��O=r�2!�/=�&��u�C=6��͖^=�^ Ԓs=� ���{=��p"��=~�(*�=H(�nR��=�� ���}=6�-����=��&@[�=�?�����>�m����|S�^�Н�8W�䩽���9j���C�)�]���I �Mt=�s�E ���rg�|�Q�G}�=��Z{g�='��)�=B�<�U��=@� .��=:f;{�=@�O��h�=�����=��g��=�3Ĵ��=��ص+�=z��5�V�= /��T��=n����P�=Biɷ��=����uo�=��ht s��,�-�ʃ��[M�h8|�.��log�xdZ;�j]�"%ޛ��r��"��iig����R:.�撇�a=N�"�Đ¢B�\�Sc7Z���T�(�s=�*�Q�S=�����vg= >�R�Z= 9�jKNm=>-t@1~=r� K��=��ɐ��w=t��+��=��8�ꝋ=�sg{�ڑ=�'%M�:�=��9��=����R���-ti D��R��,���r?����@1�c��.�������?�d ~����n�՗����.�,0=FZI�F��=D43O�(��6� ݈q=��?e��=d߿F�=B��<�2�=�<=6@�=���Q�= S����=&�j%ɞ�=>��J���=��ȡ��=�$��=v�+���=��T�=|����=@�\n�٭=���ܟ=����=�4h��=Dh��Z�=���F K�=$����W�=�!� �ӟ=K�"�G�=�d���=x̹�L>�=��K\H�=�� �~��=��3���=83���=����j�=��T�\:�=�jdoA�=d��F�=R����=��P�\�=�d8�=��*D�g�=�$6�P�=�L��=�ɒ��=�$�Q!��=��}��=d�����=~e�%d�=��u�=V0�jt�=�� Ë�=��J1ߧ=�d+�嫽Z�tD����<�x/�������W���A������j|C�W���"|� � ��@�����x� �m�����B7��~�\1�}��B�|ׂӺ��V�^�θ�6��l3���F�°����i�����DD�N����+ \��4՚d+��D�5���&#m�p���:����˺��HG}r���b^�����]�Ԗ����5��d�� B�����>�(M�!���K��_ظ��3$*h��l�rX��F���n���%R��:�^�x��z ��yX���Ckp��r��9���כ����ͤ/鰽�bҤ3���K�M����.ImS���x�̎:����.eo����d��貽���0f���x�\·��d�y�TA�������Zp�:ܻ��6g#����n��K����0Uw���8��I(D�������T^���T���_��s����s"��� ]V��2���(^�1έ�ܰ��O���KF�yB��v1=ffĬ��W[����3r��G���R�ٶ��� g����������Dp>(��:���1i��B�s�Қ��/��qI��D�HqZ=��:P�@����49���,��:Vh����"(ހ����07����������Q�-���u?�dߏ�I�1*��H�\L�z�����j9q�jQ��n �������v�V�i�`V�*q�Vc�P�-� uO�pm<�;Zj���f��|{=>�$m^=���2��p=^��Ȱ�a=ʝ~�$�r=�ٮ��=\TG ��= �9~=�/�֜x�=��^����=,�y�U�=2�G����=z�K���=z�2�N���}�*���N�X�����4$C����86��S��0E�畑�~����=Dh��v�q����JS�=D�1��白��=�C��jb̪&`=T�Es��=h��D�`�=z�� �t�=��Ql�=fd }S�=���,W�=�Clo�j�=@�� �ݝ=�?�+r�=�./I�=����B�=tYHU��=��{/G�=p����=�V�s�=z�;ݘG�=���>�=��;�jƤ=j���ɪ=��+x�=`۰��J�=��.�du�=�Ӎ�ҧ="S ڤ=>sT�վ�=b�\��X�=(���2X�=����"�=����=�==b�{=ꁔoP�������� ��`�����4��v�����)ϧ ���^ٖ�½`�4�������i���ٕ�μ�FY�ϵ�fU� ����?��J�������5ýX@зf���+�uq����/9Ӵ���VNy�]Ľz�~��:���ج�����8(�6���a�D��t*G�5���%H_㶽Nrf��h����Y��Ѵ��Yc��㲽���ҿ��.�KFX���8s�@t����ee��<3o�����dԛ 0���Z�����y��TQ]E�����i~'����p`����d��-���:'=1���F}Ƶ�����������:�����Qd����(��W ���0�Y�G��6��ݭ���EI��l�� �Ӛ�������Ю���ǩ�����z ����� ��{��v� ����I��&��� J{����cd������"���F!دYa����8� "���V�v,����������TE��C��<(��0����)���ʂ�^ܖ���߳�=O������s"��JS�8Ԧ��R N�������8��Ԓ�Zs-j\nj�V��������ϮҺ���{�}�����|�2�M�-���`�)w7 ��$�����b���Y"q�ԏ�^���}6�t�� 34%�=�R [c=�/�Bt=��OsHd=�6�L��t=l��d!�=��� �=l��Х�=ij��蘅=\f.�Yp�=rsB/H"�=,�"w$Ƌ=NƏ�2�= �@=����mB&�����E�A��d���떥��Pf�[8����A�qj��6{��������B�1z���n��p�`�b5��=�� ��=������=�O�k���HYgLj�p� ���o�|=��S�1�=�\�=�=2䢖��=����9�=�PԬ��=�7s3�=p�L-H��=:�t��=�:"E�S�=N��(���=�=��蛚=b ��%��=�P���=�y��=�X0Ig�=&��Ʈd~=z�L=�=��x��=ĵpD�E�ϱ��A�zcU����*С�� ��.g��r�~ ��Y�p]��6�T�Ǯ���cĞsŽ�V�i7Ľ���Y��Ľ��}�Ľ,�P�������f�½|�G'���r��fVչ��y� ���.�N���#�.��j'��]Ϸ�hi�������w�������)q]ýB�A�l_�� }�# (��L��OԷ�,�HߘU��d��׈����9����j6i�� ����&G>���3�Σ��α�:��F�2����T��8MM���:�4���27o3I鲽f^�."D����]��ڲ���E��Ʋ�d��zc���T�m�O���������n��k�경Z_h�B��8y0�*��#W��a��&M�����"a�/�l��l*x��P��6��:G����Kʐ��4�^�����4�bҫ�P�c�����+��ޱ�� ���豽Y�4(����pă�|��@�ӓt��N^ӳ�������D��Ďi{�Z�����;ࡽ&U ����� �=��0I�� ��f.���E����� �ޒ�R��*6e�����;䔽�b&�(��8��C���z. �s����@������Y9j��ݰ"~x�F��A �f��{ ���{��͂-A�}=��ڧJd=���q�t=�P�+�b=®��=r=���H�Ń=$Y�p��=�`�� z=*��N囀=@h�W|�=* >H�E�=]�ƕ��=N�v���=�T�q���w��M��P][�6��N� 2��������0�l����}����p���B��_F=b\�ոE��6b�~dz����j%���X(�Hz�=f�]���=֪��sF�=p&�W-gq=<�lA�=ԣ��({�=��ъ�x��%6�؆=�+ �V�=�E����g=H���h���Zh�fQI��D��l�Y����w~�g��`�2�!��0����ק��:�?�i����]fJ����%���������������<G���a�xѼ�����T��P;�臰��f@�'0���l�yX��#���/��: jmg�����/W���~��K���Ԝ��.��옎M�x����G�V���2��#���jV�� )���qߝ7Y��*�Z����-1��a��h�}�Ov��F7��&{�����'����(ҕ_�ϳ�n�P�T���V5���@���u�*�$��N��k[>����6DZ�f3c�jDZ�#�诱���\K���z ç����ia����#鉰�dk\[�<��ĈC������g�����]��G����H⯫���^�S���J X���rw#$ѧ�����U��tg96����!TF���d���<��|���G��d��F����E ����u^i����Krh��8���s�����=E嗽\8���/���,�d�������,����g0������t�M>p�иH.P��u~��qm���*�.��jѓ�C{t=/�:a�L`=p ���m="J�jY=�h�e=�D���Px=���z=X`�ˉj=�Nt��Cj=��r��x=� ͎8�s=�c�2Td=�KJ^A!C=�*�Ms=��̯�|�o����@�ܟ��j�5+��������=.�����_=X����u�F�DQe�|D'�����x3����1����[6�г"��?���עX9���G�Z��{��l�����I:2����m" ��hRR��ۧ�^��H�Ѹ���t�N��n�� @|���C�޵�v��X�ٳ�8�Q�����: �K�����?Z��#���`[ ���f˂�����e������N�� ���:?T���h: ���L�ޠbڳ��e .鴽�ꍕس��� ryճ�h���_���Zoc�G��`�{Xﰽ���˜��~���% ��΃�i�ఽ�0L��#�� +�L�U��r�ww������$y��_��e?���e�(�媽�ݰj����F� eꪽt�m!���6������:^�o����@u�����<�� ���gib���V=�2�r��@��[W���>O�'[�������������r�`���W�9�z��d�A����Ԥ�عr�p*50�C��r�Jg��q�p1'�FS�����FH&S=C� ��AP=VO�TW=~�s*�6=�^���=�jqkL�&=B��j_]��0��xP�� �#�Mt��=`F����⇥ �w�����^����i��럽Y"\�b��� v�-�����)e:��.��=鏽^ ��K ��|�)؟��y*}���~���ͩ��I��W7��.�۝���w�wHQ��N�ɣF��2/�����c[ӫ�F�������L��l����1h��첽b.~ �I��l�4�-���^�<�ū����oy��6�w �����D<���5� <괫��p&'�ӱ�xcly�t��2l��殽���a�٭��g��el����m�x����jg����> ��' ��4xK�}��p���悔\>͗4����T��������-����&PS�ѣ�?׋8���� �3������������Sc9��^��!`��� �K��z�6�[��p�^*���XP��Jt��Bm����X)�,�s����'����2mNP�i�FЍ��5��n�GV�U&$iamP��%�rf�>��+(�w�p�����`/~.��t�2 �YN(����C����ҁ����&_�2����P��R>���B�F_��K�b��x��ֿ-��X��Zq��ȫ��<+�����X������1I磽��� ����3u0=�� ��e����Rt�#����0�!꠽���Ѣ� ��យ���}�H���^ğF ��V�� O�� ��c/好T�>Y ����^� �ػ)VQ^�������%���'��/j��P�6>�š������h�����^w��R�Ð�0���/���V��nB�F`���ȶ�~�:s�o�`���zDK�Ɏ��ʎ� w���7��蒍� H�N�4t�.�������.O�u�t���P���j?T�rށ�p ���d���?��Rv��V�f�dz�o�w�8C�T�B��;���������]��lw� �����W�������v�x���h�o+��: $��LYɤ�훽�5T���� ��� ���1�1���u��� ��b�}������[���Ě�<���,����W���d��sY��r�Q�� ����\4���j/�LB����}�����r�a����I�Q����Oc$�dr�d� i���(&EUY�s��K�偽�ʋ�ぽ��5�jg��Z��w����%�(g�a�^H�v�?�Q݇���=�A��4.q��Ԁ��~_d������3d���PY�}����n�׵���@�[g~6��L�@k�L��� �z��� �ۃ�h����d<~哽 �2ͷ����%/7���1bJ����hR92�� ���RWy��4��q��X�(�ct�А��^*s���d�m`�&l�O�r������-d�8����n�6�>���g�\n@�V�f�Z�:c� _�Q�O��9{A�YZ��(�뢻S�����g�‚�#�[�@��C�]���4fa�B�������N���'䛸.���4 �mC�=\�Ed���=^\*���=�vlī>�=������=B� j�=0i��}�=�kI��=�*F�H�=�M����=Zl}_�`�=$�f�=��=�2q�Q�=�.���3�=��֕7�=�;7E��=$$3�H��=X�#3x`�=%�U"��= �c���=�襉! �=K̓�r��=V�J����=nf�Դ��=[\{�L�=�g���=z鿧��=�����=�z�@��=�������=*o��q~�=�PM���=��]0�=b��#�=�=��~�=��̍Ga>��o>��� �1�=~һ���=��^ t>�=�k2[��=���K���=�$�"�=����c��=ݦ8�[��=�'�~�D�=O ��-�=�Q����=�G!�{�>�V�K�>5���З>0����>��� �>�V.�~>Y�S�ƚ >��auXB >֫N6�C >$_��M>����R�=����=���]�=c4p8c�=�D.��=��13[+�=��<�^��=8�]�h#�=|K���=Ln��}��=�{���=���|D�=5/"�S�==�� q�=�y�B�;>��b�0�>���$�>���0>���S1!>�\���>�:`�>�]C+�'>�(� �� >c�Y�$` >�9 &z$>��祣&�=o���#�=�~�î>8�V�m�=φJʲX�=?��?��>����� >� 7a >3 �s3>�" �{r>6= 7�>F�"�-I>�����>�B��>�+�O}>ZL`�?>�hX �T>[ �T* >�h'�F�>n,���" >��:�`� >��1�d�=�q5B�u�=�@bu�=��%\�=�ʧ���=�_b��H�=��!-���=f�c� �=�1n.pR�=��ٌ}�=��o�^�=6-��0��=t��L���=��x��>:� ~� >e��y�>�3�>O�>�:�>�}�[C>Y� x�>W� 2c�>>�h��`>>�~G�> ��t5>ҋ&�b�>pc��> ˷���>h=N�>pPޛ�c>�P�� �>!��]6>d�aa>���\��>l��=>�bh�W >Q��#C>�W�y � >�,��^>Z)Wb��>���h[�>����� >ht�"�>q'��pV�=��I:�r�=v�^�$K�=��ܤ�>>�LWc�=�mUGS�>�V �0�&�#>���6��>wʂ�>^-N�`>%��X%>T9�ep7>���R'>U�=?>Չ-�>Fު�B>��\?|B>fSsi�V >����(�>���F��>\����&>�b�>0���> F���J�#>����) >���Q&>�ɸ�*�%>.�VO^%>H@� (%>|�k`��=c�%�Z�>tVG b >�>��Y>5=õ7o�=،1 ��=�"vȿ�>���� >4}M z�>�;h�& >�.�,?>��CA>891��>����>>ce\�>q�Ԫ;�=�)����=<� �d�=Z����=⊯��K�=u����=c�j\2w�= �����=�]3�+��=��l�=ε=#���=>D���=�l�����=xkʹ8��=�����>����->D�b�H�>�F���>���A}�> %Kw�>:��b�>~g��>�0�1>:f �nN>���w�x>�xy��>;\ŁN>>Sن�` >���b 4>�9~�-� >:�2 |>5���&�>��\�M>�<~N��>�E���>�D�c">� �yO�>��>0��>��r�|m�=V^�dZ2>v�3�?��=� �!% >� b6�f>.�����>�gN�b]�=������=[up����=��V���=TH8�6��=�Α����=��a ��=Z8�M���=�����N�=��j�!>� }�d#>��P%m>�J��>bTF��>�)X�#>jp��{�>�TLo�T>����!>Rj��x�>$�"ֳg>j�ō��>j6� �>NM��!��=`W"AdO>��P�� >N���� >�{e�Ƞ>|twf 8�=hK|����=�V2Ϣ�>)D7r>���t�>J��A>|D�q��>v��M�!>TT� r�>z��e��>�%O�>��ۃL>�`�A���=*0��;{�=��R���=zv4�= "�O�>zܱ�:W�=d��!���=��1O���=n�@��=|�PY7d�= a��@�=\Y�ғ5�=Ě5�m��=T:u-�=��W��= [W-���=b �>��=:���A�=r2^=��=>��z���=/�]�=�âpGs�=� ��3�=x�����=62�fB�=v�Sq*;�=�� ��߲=>�H�b=�2W����̬3>��́��>�'��#>^�Y��*>�+X�>بT؝�>y0y$�>h�A4�>���>��[�>~4���> ��y>��ߙ� >$���F>����>v&m� >��*]1B>���n�>"�A>���Fא>�+�W�>>��2[=>�>�#U�=I�қ?>�o��K> ��S��=��S#sT�=T) �Y�=���!7�=�,���?�=Ul$���=�,�,ғ�=N� �K��=�����=�Q�2/>������>�5�8 �>������>ܾ �?>����B >����0U>l�7��� >ķ' ��>1�X ���yq�=瑻�V'��=�L���RU=�P�=��d�#/�����"N�=_|���=2*0���ݍ��=��sJ�н�~j��0>n����>��}7��>�����c>���FhX>��_F)>$A�ɽ�> =i�޸>jP�vĨ>��̶u9>��#h>ғ�d�>Q��>F�P�v�>��cg�Q>8^ Q�>ҟ� |�=I3뵫�=��M�L�=�"��4�=�c�ć�=��4�k��=�>��N�=`x[����H�O��=�R����ٽG�4����������=�(���^���w9���fW�ݽx��N��=Zx�d=��=;�� L���) >0�B�0>�Ծ�S�>�-�G>ZI�;p�>DZ~���>,ՠ�R�>��u�Q�>,i�̭>�C���m>��e�> D�c�T�=�F�`/�=ٲ��$X>0�C3) >��h�&� >�A��>�6�zJ�>>�� >Z�ߙMa >}*x4e>��'��X>�����>x�ݼBe>RSP�$�>C� ZC�>`��ߪ�>Dwe��>��" j�=�an��>5��T�=>�e��v�=�>�)[ �=��Н�=�OZ�|X�=��M��=Cm7\v�=�/� �=��z$a>%D�!H>�T-�D>tz��>B�t΂>�zX�9K>�L�W\.>��u���>vX��>`|L���>/�?�1>����4C>�yG�>(Y�D"�>�۫J �>��q��q> j��H#�,�� �� �m�)w����Zk��$�tA�� �4�a�;k��=���>Z�q]� >�ʘt(~ >�gQ69>��+q�>ȵ�j�!�=|-ꐥ��=�?=G3�=��P�}�>�ʳe|�=���/�=Z�!\���=���-��������$)s��~�3@�ڽt����=P�)fx��:��ʶ���_њ<>�ق�ڊ>75�c>��I�>Q�W�}>H@�IӇ >��e��� >�_�s`� >v.�xc� > L1��Q >���!�>�r�D >��>�>l2@��>h �ۅ��޻�jS �Գr��A�=����1׽ Y6UŽ2͢vG~�lo���8=��Y�����|�������L79���L:&�� ��� k��t5���Խ�d���cؽs{���zߜ]�7��rV•ؽ�}�r �սD���A`��\���֡-��&½@U�gн�v}�ݽ�Pz��Խ���Ԉ�Ž� z�#� >�݃��>f�CH�i>�Q�+�>��:�� >�o��%M>;wG��> ��DCM >�ƫ�f8>/e�M�� >��nt�3>R�VU�>X�櫠e>r���3>��R�>`vqH$ >���y�h�=�v�p��=/]���="� Υ�=�t��0��=��y�=�=&bD��=TkG�Խ�=lu߲u� >���~�>T����� >ת�S]�>��k��>>�Gʸ� >�8�0>�6HqP>�'�aq��=|���=�����>�=y�Q�>�1����=e�vJ�>���MA>f\��>zK�Uw>&��J�>�xpm>6s�S��>d̈́���>��u�J�>����>�V��>��+�>�̔q��>G��e�>�6�ǐM>����>�>��B��>�끟��>��oyoh>ׂo�C>@s;ţ>�d>�>h�'�>���O)$>V��>|�S��� ��:�^��o湙����I"����8�I���w�,���������Ą�29<NB � ������Z���#�,yey�����u ��0I�=��`[�+�=��� �=n�8O{O��T�&��=�����v�=�<@�l �=�P�՝��r{=ǯ�� ��"���hp�4Qr ����5?�ܽ~C�D� ������ !U7���v�� ڞ>��8��~>Li���>����>Z���0�=���љ��=�s;;j�=�����\�=�v��X��]Ҝ��7=��WXԚu��,�놩:��m2Y��(f蘱� ���~بU�E���(��3T�N� ��j@� P�BYy��!�F9W:Y��������c� {���������Z٫C����r;�p�6ͽ��L�t1��9�eoj��=jh����?=�u�n�\2����Q�t��dȽD�1�׽d���Ydɽ��?a@��`����Dٽ�/E��=ȍ3-l3�=���5(��=�xu����=�w�f�\>��(c� >�։�Ʌ>@��S�>vɗ��� >�̡4>l��p��>�ˌ0� >��.>�RVJ1>>�!?�G~>)MW��>„��A>$�4{�S>�1N��V>�b_��<>@]߯��=�福v��=�D|YD�=칣-� �=�J�¼�=*Ez����=�W���=_���]��=����m�=���E���=��� AP�=�F���=�gm�� >�Q�>>��5��>T4L_G} >�[�QE�>T��� >��vB�� >���[�� >���r�>:n��(>�ʆl�E>�p�Ls >�T�(�)>�E�p�>\s��a>�q� o>�$9�>���0��>sL��x�>9A��ؐ>~Ȁ0�>����NP>�N�V>�?���>ߛi��#>j��� �">\^i��$>./��j >�^$G#>@�^ � >*�����%>~�Ă��>����f���z+C���[Ͻ�"�@�uT�,�������Y!��D\������;-i�Q��+2�E�X��@�"�<1�xx�YV���Oc^��t w4Nb��������(PK�G���m��<�$� ���U�����?�_� �ܭNj9�=�B���ʏ|u�J�}eeO�i�=j����⿀���� ��&3��&-���=�$�߮�=��S�=(��am5�=o;e2�9�"���=V��៹�=^h�0�Q���8p$�� �h����d���� Pi�Ӂ��1�+�����p�?��2���y�M������"�?���xU���l|�J�FX��, �jv3�����H>iG�����¬� �t� ��� ��7Sf������;��� ~f�*���9B�j-����؛���q�D�[���������h�ɽ&�i Ƚ60#O�ٽJG�����\��)��8ʰ�³|��ؽ�\z��(佾�M�ܽ�9�&��Ž0����½�sH3�n�=���2���=�j ���=�`D��=3��� �=h��b���=0.�q1��=�?j�*�=��V��L�=h��s��=K"��f��=5�g�e�=�\�����=�1���=���V�>x�A�^�=���C��=�M� �� >��{WVK>\��P�>��3�% >q��A>LJ�Ҭ�>�4�E>d�Z`��>�^Nf�p>��E��e>�$�+zW>0��>�H����=� >����=�ly3`#�=d~�s8�=sȔf��=� ą���=_%�g�z�=�a�hI�=���>���>d|���>=�U4��>P��v>@���>,~��/�>* 7�i^>ؙ_*E� >�N���=���>T^��x�>F�҆� >��sv�>:r�>�) >ڋ�h>��mʔ>�]C��&>ڽ���>���3�">�(+� >� k��>��y~f�>�Y� �!>�K��_#>�_f��@>��j�i&%>�:��O&>�D%�[%>0�`��$>����ZH">.�2�Y�#>������>�r��J�>{��*f"�r��|V�#�Ҷm�������n���l���c�2޲��%��%���]���`��̻�X�s�G�F������a%!���iIS,�2�QVq��}�o����x�W ����5i���&�7 ���բ�y �\=��Qw��q�|��BϽr�Ȥ�P�^֊=V��B(E�~��ԧ_�����kv�~�ۍ������F�@O������3��J}}���=�gU��%���g���&�6,\y̬%�$ZB� &��<8�-���k�+k��I,��>��]�Ҋ�x�����"���E�$��T�Hj� �|�5����5 �����"��>�)yZ���{Ȥ�uK�™ �4賽l<� ����������� ���2�b�>0��X��r��G����N5iD��� ������� ��B����n�%���!�L?�����Yq����d�vA׽ފ���T��3�Խj��q���BX�խ��g��>��,�cbs�����xaѲܽBj�cy鿽�\ґ��ѽ�?=Ϛ��H.�:^yؽ��E-z�νg����\�͹k��!���.��=m�<�X�=� �j�=Z������=*%���ݰ=9Yiې=�Ja�9�=( �|��=Uub2\��=���X���= `��%�=0j��yU�=y��M�=��@^���=VrO���=ȶ����=^�G�w��k�%� ��W&����V�~��� �أ�T��V`g�k!��ӆ�D��=���td������P�޽�l���=^}���>����=�!��t�=�(Cs� >�ˡ�=�>� Jb;�>SK�Jc>~�b0�>��:�4�>������ >Su�nw>���:`>0Ǧ ����>��99;�>��,.��=_W,'�&�=b��f>P|�R�>>b�%�=^H����=��F� �=�Z�.u��=�)1F8�>�?H�\�>ff�W<>}̭4�>���P:>��4���>����>��$8�2>@U��A�>�S�Vh�>Jޗg�� >��QD��>� ٥�>����|>2N3K J >x��M�;>���b>7�M�>t�~�>�]}T�!>w�8Ր>�` ��>R#�A:>?d���>b���;> %��l>F��#�Q>����'�>r�]c���ɭE v�����9��$�7l�?A]��(��^v_���TF����$ט�i"���wҿo$�79�������R1��X�!������^m.���(W������p���FB��:�^ r^���� <�eg�)��"�H �X�(n*� ��*K6]��?Y���x�8�p�&��B��{pI ��w̥L�_$#X��2[�HW����3a��^�p ����O�&��n�� ��ah��@)5���3d�Ÿ���o�te�P�Oo~X����M��~�������5�l*#��� �)�#/'�� ���;��V��z�P��-D7���P0Xɪl�*$��xN�OL��B��8f����VԘR����f���< �<���b:���� ��AD]��$Ao�{���N�j�c ����� <�І��/ �%��H ��2����jr$x���P ��:����>Qa(���=H_�����k�{¸h���9���n���_l.S��%������ ��4T9�|'���.YT�佘�U2ǩ�X�����҇����Z(��G��4���轈%����s�6��g޽�3�{Խ,�������� ޽-\_�Q�Ƚe�tO�� �(�=Ԙ����=��WD⽻֗ ��=x��0��=��b� >4E �d>2d)�Q�>>�F�~�=��}��8>�m�V���=x�4��>Q$�AF>���6>���&�>��g�>�/�&L� >�sK:��>����>�[I���="������=P�~͙>��=kl��=d��� �=��(�> �%%u>&2�f�2>��lg{>��Gv�T>U$%�o�>�yXq>�P�l�>�f�B��>���#�>�S�� >$a��+>�,�N�>��Y�� >!vm��> ~Kyt�>z�0��}>�*�� >�ٯ��>���Ў >�m&}�>4|��Y>�n��7>���:�>`�L=N( >f�6L� >H��?�h >��1�v� � �3���g'T�η-9ge���Z6GE�\("�M�6|Q*u�-�,3��,=J�5!�e�� x��M�����)�ش��{���g��'d�ݱ��?�h`���O:َ��/b�>�9� �y����������<.`ؖ��h�}k1���!}��&;e�H�Ȩ�//�����Vl�f+�4��Xdm�WS�p�[?q���2��q���v����.�O�"�Pl�BLx�˚9�1_��G�������[4��l�����y��Pf�u ��!��+�,����|����Җ(q�}����� q�:w����a�/Ń��2�F�O ��7�^��T�޴T���W�x>n�^ �1��4�������5J��ٗ��[LG'��~�}�+��4AN����O7�H���#��5��$j0vW���&V�"��~�5�i��y�Ud����i�R��:dU��5ܽ��$-XUҽ� �yv%�8y��2ؽ�9#J뉷��(_i�RĽ� �ʽ��p�{=� ̽� Ɲ�A�=����:1�=J�gޫ��=��d�&��=�,�[�=�q�6�=�`�!���=0����=B�B�f��=<9AP��=��H���=�<���=yz���=t$|��� ��y[��aA,}U �%;�����h4�����O����������.�=r��?ӽ:������=Vf�����]/���Ih � /�=��2��=� �><:�9�>b���I�>z�T ���=��"���=���y>��>���=�? O�D>0����=�Q�$�=ف���>����� >�Ut�O>0����� >�S��Rd>��mq��>\�\�>�E�n?� >ᆩ >�q���>��8��>��E,0[ >bߵ�1>�RV�>�5BK�>�n��>D���� >���=`j> ������=��V�]�(����F�U�2�s���U�ƾ�+r4��B�!��#���8j� �����j����a��@�6���=�/�� (�g"�����r$�'\�-�- ����4(T��@ �{y �v���6�%�� �l �����bz��'���b�4�A���#�ͣ�j�\է\��G]��$�~)��`���|7y^�"In���7]����o�Z�����s��L����C3��� ��ٗۃ��F��_����?�R�$��a��T>��ʻ�8��n@����� �T���e�!��fX�i���������(O~)����؆LW��@\�A���#�����a���A� f�����s���XZ��J�:����wڄ����w�[�]�~�UYs���� ��5�+V�����1+�$ �8�D_ׯ ���I���P�{Ѧ ��ܘ�"�� ȾL/�����:{�������iJ�:n!�bJ�WI���JWT(P������R��b!��] ���t ��� ��'E����ᅘ���_a��!Y�C}޽���1�A�,��Є:���$�g2Ľᔾ�� <ҽ�4�pnc�� �u8](ֽ x5#��="����������������Eh^y��=�����=��9�N��=#i��i�=�*6���=�3�����="���D��=������=m(+��=,��k���=8Qه�=��s�M�=Թy�A�b" 1����r �� ��e2����*����d�@��n �<�j�����d.g�����%@�ѽ�"�j��="�*���=:�E1��=2��S��烒F��ѽ �����={��K#��=[�3Kj"> Z���x>�Wd�U>ua��-I�=����Վ�=YhI:Q�=. �q�[�`>�M�dz>��GHER�=O�p��!�=��;L���=<�V��=�/��h��=ҥjl,�=�*nE�i�=�ԯ��=�/����r�1���{LX���w�ݜ������s�غ�N�� �~S:͋���K�a�D�ph8�&��R�%��x/: &�������%���+�"��8p1"$��������x�)�}Ԩ<��DtS(�����:������� �W�~? h*��0x@"#�}b�L��$�S2�F� ��������GI]���� E����N��r��V��.�� ��X���^������������F�pP�q��������9Q@��%��!��5%I���Ur����d}'��t>q ��GLM�����Eb?g��W��ޜ"��V#��o�3=s��U�R������$�Y�,�ގ���ǰq�~�l )օt�9������������ �\��|��qt`�RcFþ�bS����z�後�$�f�3 �{|���Y���o�� ��pn�T�� �������f�����l�z�!)^2�^ �������)�r����O��έ ��<����h����>�B2�佸^�ִ��M1�߮��f�X��˽nl$U�ڽ���aZ+Ƚ��4��ݽ3s��D��=f���bc�=���ՅK�=�k%��=d��|D�=ў"ʹ �=��E(<�=� ��=oRM����=>/ b�=����b�=�m� w��=^�����=���� �����ҋ�h�ӻ�� �{�kA�`�.�H`��<+Fϛ��gz�ѽۢ�U�ʧ=�K!�|b��h�ۣ����I�1轕�+��=X6xH���=��A����=��z\S��=�[Kx�h�=��I���=޾aQcڽ��SP�=�J҂�s�=�L�i�d�=ߨ81����œ�Ef�F����� ��ާ�@ �����(��` ��ss�Kx�ł�F ����"����?~ ���{��)�C���~��:��ɏ��B](�W�\)nj��VX� ���n������~P�, �y�o��$�s�����A˲���#��,���Z��[�վ �, %K���4�m2� ���8�r����������R���w�2���V���%����h���mD��n�l5�m��J�`�싪�k���T�%����P |���)}v���t�ء�^Av"N��"��lo��Nc���6%�g�X���� :�f�����J:iT����ZEx ��g)@�6�^<rR�״�Y ��Ȉ�$�P���LA ������� ���$����*�����.Y�����J[3��Wd؇�����&�h���0������E)o��ܟ��0K�)���\7a�3��̆ǟ�H�z�Jѽ)J�M���Ǔd�VϽ.�'n�⽚��K���=Z���9Y�=��#���=��J�F �=F��u��=��3j��=(N`����=��>�=��'B���=XI�w�s�=|5}���=�#B��a�=�r��Y�=@����z�z@��#��(�����`� :��N&��9��I�� ��=f�ExA׽��ꀱƽ`�G������ye[���Ffb��bc���"$�P��?��:v��/��#h�}�! ���q+�f�?#�� � n3e � ��L k����C���22_���VUG�����!��;�'*�o*��UQ� �F�>� Vj�F�v�����.��[��&��:`ހ�û��C}��H���!�(w��A�+����q��h�Z���p���ZL�?u�/�1�~�f� UҺ�qZ�ڊ����.�����i�-�s���=���h�X��3�/��7��!d��X��"� ����Qg���R�� ���ѯ� ��l�� ���������)��-8 ������W��,{�����l@��z_턹d��r�� ����m���J�r�4�n�<\����Kz ��8�����ӽf���p�H r, �ҽT �ԑ� ZG�+a�=�p�%�M�=J���3�=l`�y�=�-�E�Qf=�S�|��=*����D��%�/�����/M�]ɽ"B�G͜ս���h�� ?�|ٽ=�6y���i������؃�p�`��2�����J`w�zG����ج.�����'�[���Y�������C1w ��t�H���n��"(��Rq.s?�b��V�� ��G�����t., � �A�i�����g+08�V�"��$��S��f�nӑ�i8�t�(Q� �,-o�!����S>���z=�'�VF�����J�L���0{������+r�6T����� �潇M�f�˽&B�� ����0�Z���b��[|����$�ǽ#�&'nٽ��"K����VY��TֽV¦�2C�����l��z�����&'r�V�³��k����F�)�� s��[K��i����Bz� ��u�'���\T�V���vA�a/��e�8�� �*2�~:� �M�R�b��̂-rw�8�%�h�˓���V����� �,�%�)�T�h�P�A?�,v �0صYm �:@t�6 ����ý� �j�X � � B�9- �� �.? ��������r�/�!6 ���Ó��������E&À�Z,3- N�Xlr�8��F������)��n�ջ����V�\�������9���*:^���r"�b�������1ֽ�.�T潠�+I1ֽ���L���^�͉ݽ�y��9U��U�����н~��:�½H��k��Խ���먠��x6e$�(]#i�ڀH�E}��V�����(�)���|��#�s�W��$9����vc���5R�e4��Q9P��4��#��� �F�T����Y���چ�N�F�Ӡ�w�a������|�ԕ����j��P�a����<9i�����F��C�1̆�ޅ�f:���څ�����cgJ4��"��JM~��p�%�z����f��b�ʊ�l����;fz���;=Łս~�������� ֽ^��MgK�VT ���}f^� ƽ�����׽�pv~�>Ƚ�V#V�!ٽ�Fz:��ڈ��X��o?b�㽓�� ��:�A����>T�g ��6�n� �k�_��d�; ����� �EE�"�w���Б�Ҥ���!�#$�䎾6ch��:�V��}��@V>]2����t�������������Q������o.(���҅ qGo����P ��L���as���\<.6�ӽ���R�����b�Խ��� ��Wת ���f��Ƚ�`��1Dٽڒڱ��Ƚb~�AKGؽlQ�`|f�� �c�#�&���6��e��`���0�H��H�g��$0������x\�*�����jm�� ���~���@��0��\w-��m��*���pJ�V���S��VS@�`κ�����iWH�%�δ�B��PyĜ�I��@(2��нD#�������@ҽZ��h߽����p?��nB:"ǽ0��ͬpֽs���&Ž`z�h�ӽ����佲|qT�,�.��3Cܽ&y��dὟ�sD֨��7�B��6PVը�� �i(pE�����佼��R� �V�dɽ�p�8�۽Z���Jͽ\?n��׽ƹs �׽h��u�:½�y�z��нD0Կ�����XP)B˽C(���۽�3�Pj��x�͔)߽�S �ڽ�of�aҽik`�ս�F9LfԽpy�"�|�����q�ӽ�̑8�zŽ.���iн"�� 'ɽ ��{��-���wĽ��������� ���k����\�|�^~ɽf��b�������Mȿ�6�Un����֙�Y��6&K��Y����-���x � e��*��[���ʴHw9���҉nc偾�J�gH��zBԟ�d�� I���#])s^ ����y̾Y���#.�� �����U��se�����j)R����6��Pɝ��2\ ������T��J޵Uee���I�?�h��6PM�����;Ղ6���7Q��G���MV]Q�������=���;}*eu���Ǖ �����.9�ˬ�¯Z+ս��P�q������>Fm�)#��]��'����aW�K4�>�w��U�>x��X����{:b�Խ� �x�>�w�d*�>���>ͬ�| ���<������R����C_����&����>��G��@�>�x�zi��r(�� �������ȝ�x6 X�U���f���d�>�;�Ip�>"�U���>�|�Hk�>#ٍ���_�JM ����;W`��C��Qm:���Y��*��>���4v�>��h��>����7�>�PSێ�=��@�`����ÃϨ���޸�J�> ����ށ�<�_ >O���+��Z�>�X��;�>� ��s���E��[���ѽ !��>��Xj�8�>��ր���O~��v���W?O��՚>�z���d�>�⮑`N�����Uvh��a׫� �>Q�C�>(B/ �.��e���J���s�ʥ>Gi�C�U�>�H^l��F6qu����eOkʘ�>-sU�mx�>W�d~�T0���>$P ���>y��`z0�>�LoTk/�>�=-�W�>,BO4�>�,6��x�>���� �>_ο�+�>�zHd���>,��4V�>��8� ��>+I�AK?�>s�M�ɥ>ٚ��>z�h�vg�>����m�>�ļz7�>�݈&e�>;C����>�`[��j�>�1Ӧ�՚>�����8�>��ݒ���> �_6Er�>ܻ���>�G���9�>���e�=\O��\�>����4J�>�4r#�>P\ r7�>uq~8���?=��M>��:o��1���$��=�\I7 ��<��%���y2��u%��H��^{,:�K�J#�g]B�1����PD�C*e!�5J�� s?�Q�޽�Ƌ�U�s��AxW�T�6��o_��QM�8�a�>G�NV��;�$�5J���P���b���;:�\��s�GqO�?�4dz�c��wN�Kxlw�\�tϞ���g�\�Εl`�F��'Q��0�| h�W�CN�?k�/��Q��m�A�M�Jr�=VN�m���s��g���JL�s�i~ۘm�q��a�٧�a�v�� �S��ې[ �m�ݝq4=�e��=:� �W�(��s���)66�Tқ���D�u��R���|�X��+wwq���ZY��j�� PO�w�d급L�r�q,���Q�Y�����a��+l�zn Fb���KW�Q�Ta%\���o���rE��A���[��� =?,��\m�"�?��5��ԋ��Qefy�����z����ng��3c�����dq��(�5�Ly�+�?x���w� k��% \#Ӻ�y22x�^���v,�Z�u�9!j�q��R���}�� �`l�y��#�'R�i�Ȥ[�'�[�+p�&�t�_zg �m�������_��r�v�褽��8����0r룽‘�"��}l!�-E�����$�I����;S�����Ԑ���1��m}�� ��1�A��_�bZX���o��?���ϰ�Ԅ�V0#w����L�4�c��c��>���l]���"���U��~Υ�t|��"k��Q���s,kl6���c�Y���+�Ig6������KȒ��]�.4���c�tSt��5�|������k4}.��p�.��)��UN��T����b��w#���$N�)C��cٛ�e�qaz�@ky��6�?=�����[�q��Fq�;g�s�����l�����y�=�Y� s� ����P��.�q��a���c�f4j����_�{��L��L����hq��� �g�����m�2����˒G���%�C�K���a�N���6���:ՠ�PF���;����Z����O �'1��b;ೇL��Yaw-�x��,�2��ꜽ��������p�&5 ���Y�K�祽��&��Z��}�\!qW����ܒ�B��g_5��,���d�������>Ӌ����::b����ߡu�ė���̍,��%�CD����,'�z�g���U�j+���][����]�Þ�E��^�,�������~c�����m�����T�Ć�� �����Yn6~�|��T/x�)sm��H��y�������t�p��n��Ƹa���i��b��\+ P�z� Un�pr�N?��w��>)T�^밽% �&����f���Ïq�����s�:��j��l�)�䤽#�kk�m����>���ɂ�Y�ڡ�%Pf���8�ȝ��s�hCP��Ԁ�����n �������*��MR���v�1yO���a9"&����JK02��ץ��<2���7�t䫽�ЫA��SYҁE���j#�K!��*�[��@��C��$���c�m�"�����?��&��%�A��H���������2Ѡꋊ���Y�8���\-��헽�������]v}����Ӯ�딽�^��)����T ��Z8��T��R� =厽Ո]����?���b��^����x���4nm����m`��}�'�/’Eq��w8 ��f��O�C%u�XW-�l���_F�d;�]Z�0� ��&/Ns�!�� ��R��6@b�y�=S�����~=p�GNji=�#�c�C^)�� P��5s��b_��س��o!�@��͏X ��1�X==F)j�~�J=�JP:@U=�>�7��<=f ��9@|�R ��cr2� ��e������ͺ� U����(��E��{q�w)넽�P��䓽���+g����v|N�� ��y���| &أ�mlGa���� W�P��#���(��tΩ w�Y�).`С�p��KDR��5M�v���l��D:X��-���`���BУ�V�H4|��Kd ^�����G�L�}����+l�0��ߺ��_�����Ȧ���N�R����u+�詽w��;g����1�8w���g�|���~y6�����g�ݱǙ=FS����=��#~�=�J]���= T4G��=�R玡�=\>(R�=v;��=S�����="�(�㫔=�4_�=��j�'�=�4�����=C����!���ZW���s�Z�pa'��P2�ٸAI=�"�4Պ����Iz�=�azt�e���;��;�=T���Znz=\��SNԇ=A���і=����h=E���@�=p�+'H�=�k�oC�=|>>����~���V"o3a����҇�O���F�\g�銽�>Z��|��~�ʆ��>��4����/ߍ�=uB�p�=wo�WrX�=����}Z�=`���s�=Aη�^{�=�C.��=K�V+h�="��:��=�����=ߘV~a�}=n�V~���=d� C��D����z���Ⱦ�ux���sU�q��Bĥ�����"��<�'��y�x/��������� &4w١���Ź⛽Y{.����]F����v�y㚽�u���7���������'��8���6�$�V���d�����W;�Y���z�c"U��X'Z�����Æ�R�����·�g �����Y����j<b.��^ef���?pe�RY��j�8��T���b��#�����s!�������<���� GA����2`� ��=�1� ���=R��Ҥ=���%�q�=J�L��="u�3�=ޚzO��=��� �=r@�A�Q�=Z���=֪j~H�=�j��U��=��/�̳�=�Kv���=�k �u�=���"��=J�5�W�=�S�ZuO�=2EC��̞=��)��ř=���Dk7�X�,}�=�޻��=A��dY��>c�jE�=�w�pĊ= �ֵ͗u=�ջ����� �%��Me��\�sNy���k)l����>�\qo=��/�9����(p�؞�}�='4��Y�=T��� |�=/M@�f�=�h�]�.�=��߰4�=�Ѳ��3�=ֻ�1f�=g��\أ=���*_�=�W�-/�=�_�?��= ϰk�N�=�g�]@�=�ȧ��Ԟ=� �=�7�j�=k�J���=e< �~�=���v4v�=k�ne��=��/ � �=����9@~=��T�=6�s�ǒ�=����УU=��t�T=��G1f=��l��w=�n�}��p=��fn�~=ԪeR��e=�1��dq=�,Fn#�w=T�Z��R=d���S\P=L$��N�7��rC7F���r1?��c��2�C2�A�Y�@+����h��E��0�`�j���N�d���O�Zt���[A�:f�����E9q�:�O�Kl���^W�ou��WB�҈�q��ސ��=oUk���O�·�ִd ����(�l#���*�����pa W���Gl�磽S%}����x9 ���� iA����)z� ��Օ��?S���1:�-����rž���!�k�遽\ ��B����i5j��y���…���p��|��ó���x�ċ�Ye��͟�s�����Gr���:�jH�Z��e��q���̋%�FN��#k��Ԧ���>�v��j�:�:����3����y�D������)�V���'l�F[N��A���Ӏ��AF�]z��+L�]���0�3���������<��� 7�(��0#+�����ߍ� ۡ��� ������h�����MXơ��*�S~B��b����ۮ��LY�9�������o=��:v��?��]'(�?����-gm���ɛ�F���Z��d���̊밽�K<^r����P�&Ƃ��c���V9�=���,�=4�g ��=��oG��=#� "8�=[N!�ď�=2q�TФ=6$�1�n�=�6 9R�=~��7Wf�=���gX�=���0 s�= �5��=��}��=[��hh�=��Y+e�=�}�)��=��;@��=A� H?ז=�h6�T�=�x�Z=+�C�K�w=⑗�n=���Lѐ=;��wň=����}>�=Jv�ܴ�=��Xfh�=̗��9�=IQI�\�=�%:���=lZ\E�ݲ=wz&ձ�=$]�K��=MY�v�=��,�?�=� 5j���= u�ӣ=_�����=��D�5�=���#�ʱ=�o�_��=�Q�Ԡȩ=,P�y�o�=���� O�=�C�b��=�ф�(=�=�]O�(�=�L��*/�=�r�2 W�=�j� �@�=uq�!KP�=k�T�\�=��Bt?��=�j�3&/�=�4��+�=���6�4�=a�Ƣ��~=@Bp���=Μ�� �=`܊P^d=���ܫfp=I����a=����_l=sYH�W�w=@&�~=*���l�t=u2���z=O�oY��h=H��@�K=!6d�^=�p�˭H=�"ize=uyA��Z= �o��A=���1@�1=�,��R��@ZF�QI�e��7�`�/8��tDV�-�� =��|�����~��O2��H�:�K�Ia�9��a�7�p*�i���w��t���u�n�p��B�-!|�ȟe�i�k���_ha�w��K���r�D�)#KI�=�"ڻ��=W��� ���mf�~������T��4���Ѓ�F�D����jԡ����� �Su��Jm�2u4���aI��S`�FK��$���좽�sb�������ڰÓ�5�jcн��a��`Q���}�B �$��X��"N��s\ �� ������ph���A�۫v����u2�t���| j'白�y=3o��Q�~�~W��CDa���`R��j���������1k�@���ER�� ��0|;n�5����x�d���3�A�䡽́����=���ڟ=�&!�.s�=s�ml��=�C��wd�=�G��+�=%q�=����ů=@,e¡�=�YsE���=�UG訨=I��oEp�=�b�98_�=A(_iϡ=ӛ�d� �=p ����=G���GΣ=���t���=��4�L�=�&2�k�="�Zd$�=�"�P%��=e㊕q�=֓�9{��=��%g�=��H��=�r)�3�=ȃbș��=1��x���=���Ƽe�=[�����=��o��Η=�tm�Y�=��U7/ݞ=�H��L��=�~��u�=pl{�H$�=�&�=h`�=i.���=]�j���=���p� �=�Kz���=g� �<[�=�(��`ץ=d�7DЧ=Vs� �X�=Sv�E���=�=o�>�=�8�%!�=�LY�7�=2 ^�w�=�R�s�Q�=҃%�)��=#��p�=kA�y��=��)�Ė=���X� �=@7K�@.�=�F�D��=��[M�=�jݨ�=*��|��=��(ɉ �=k����=b��Ň݉=[(���x�=vflW[�=�^�Y�d�=8��/��=_��Q�=3���om�=Q)C�A�q=�=0-�w=��*��|=c�����n=�㺋_�=l�*�L �i=��^8��U=6�7�`K=���`a=\!]�U=x�U�-�=xڸp��;=�Lh4 1=�b9�G=!�z4Qb��J�2��A�e��2[�U��|".�{H�&u����Z�hQ���k��B�^x3s�=6�Y��e���";5p����\y���q�e��7�i8b@v��N�cnf}���@W�=�%��<��=�h�躠�=+CN��z�=�>�h���=%�etg�z=n�:<��=�頕��=�F9 ����b�kty��z��тo=[�\+�`��ҭ =lj�?��N;���3��a}�����2�~���N �!fҀ����G,���v�Z�3���2R�)��yƧ5f��t�s�m���뽭,^���$�mā��ooh�]Ø�g�s�i��=��ՆB��R7*DŽ�u�;ڈ�����@Ƒ��k9Ӣ�����'1�����f�:��ͬ �ɠ�Zt�]J���~�����? �S���G$� g����Q��I��2U���J��<����R��ٝH� ҡ�>�i 4Ѡ�?��q'���eF� ���33H%��M n�v ���_<�6��#��e���%,����m��-oK�����\}ʙ�ޓ,�5약�f:~��=3 ��2�=t>8lj�=����X�=�'�Y�=�C1d >�= qVF�<�=���tR��=M�~��D�=q��)�f�=��W`��=.�˄��=�%,MȦ=Q]=N�=2R�JǞ=����l �=D'Arr�=vjJ�ܠ=7X�!�=D� y�6�=u�Ү� �=^���n��=j�ОQ\�=��Ҵ+ �=�ϯb5�=����<�=��r,p�=��n+)�=i'���Ц=�*�땚=��O��=���5k�=��e����=�7�$ �=�K�ؠ=��(��=M@�嵼�=� �����=�s�e �=6{��d�=ؼF�QD�=��7�+ҟ=�EG#���=7ᕍ�)�=��N5]�=4�Vc���=�O��=�����à=D bo�=`A����=�~�0���=u�F쓥=�?���=��&��]�=�����Ƥ=�bfi��=�u��h��=�?Acw�=Ϋ�o�w�=�C���^�=��U�!a�=��f��ܝ=D�g��j�=�s��ʕ=旞�Ŋ�= H?���=P/i���=LU���=�^=@K�-��=>0wlࡈ= $��2��=kr�(��=tg�4�Z�=� 8w„=�B%ޘ�=����V�=%�-.+F�=<�[?��w=�ulK��q=�~ ��D}=?5���0v= y���Vh=u�ܢl�_=����Oo=JKޅ��d=��x�ND= ��̈Q=\'�/�<=����"3X=P�i�^>i�I�"��K�RÕR6�^���Q�40P�WАdTXa���B��Mr��*�N�x��:�H>�k�/�y�ɷs� g��2����b�c7��d�k]t]z��m����% T|�=�Ǽ�89�=����q�=��7��=��(2 l�=�L_h�%�=�zN�bo�̅;��z`=�6�ۉ���lG6�ɇ=ނ*y�s=�z ҮM�w�+��t��,\�;x��Q�iS ޑ�g��a�����LϝvWv�Z=��E��0Y� '��G�k�~m�����0���";����&�w��ފ�ux)��� ���6���@����?�$�^ޘ��b�ż���ɻ¨X��}r��"����S�ߙ����' �c��64gd������ڴ��F�A6����]z��$&�����2 ��1�;(đ�A!_��Ñ�Ȁ�ˬ����Ž���a��'z��:#��D<�=P�J�~�=4�P�E�=�� (,�=n�7�Vv�=��,��+�=D&1�z=�=d�, ��=#��it�=��� �=X�H����=5hR�n¯=��@}.��=�\ ���=n�?�p�=Z��\m�=�� E���=��0�=��&� �=���&aP�=Vl��&�=C}4>e�=��d���=i\ ӡ=�ML�z�=G��I�X�=�����"�=ɶ�<���=%�vlj�=�Q ��8�=��0�Ƥ=d��� ��=o��.��=���q��=$��s�E�=���ի�=v� e@�=^��u�=n��Am�=(BK8E��=&s-���=��3�=�P���=�[ⳏ�=������=�.0S�=c<�T�=�+/5�=�����K�=A��碚�=�р�Jˣ=�i�&�=|O?����=]�h�K�= *�s� �=Oym0�=12�E�=���$�=�=�<])�=g�l3�I�= �ZPۗ=6�%����=�ڛiC��=��=!�@94��=Y%@ReՋ=��e�)�=QQ�5��=1���L�=/�ʹK�=4�x�mz=7,��=}���~=��@��Ns=�< � Nj=�7�L�v=���L%to=��p��lQ=&'�x_=���mGL=5CR]�c=m��*�m�)�f�z�Q����t��b�[EmJ,�R�\�?�.�b��K���Nt��\0���z��N��m���x�s�V;���M��S���M�Й�y�6�x#���y\�ٚ=�9�����=�oF+L�=׊f�\ӓ=�v�G��=���V�=��(Vl �= ���=�:�l�]=��� 肽d�b/[Dp��ٷR0��-ܿ�.�=�m�{�^=ka��nj�]�W����,�n���J��9�l��%�>CM����6A�]����K ����юK�����y)��_��������V6ro��. ���o��p:=�����i�ㆽ��瑁��>Jܾ怽Iά�7�k�E�EG�����3}%��s��b���=�/il[�=���C�=L�6X�=��X:}�=���p���=�sy�ݠ=&R�C�=w��F��=���6`��=}8I��=,F9�=3�F��2�=O]�r�^�=�hF�/�=;CC���=X(�?��=閺���=��}��=>�2sݥ=��l�o�=m�ば=��R*}ȱ=��2%^Ϭ=.��Uƪ=v[3��=�&mQr��=�گ��:�=b�.�ڻ�=��胏j�=!>�(�P�=�jXp.��=u��7�=IY���=�E����=�J�{�U�=�#N��]�=� ��<��=�_<%�P�=���c�=�=��C�1�=�[5@��=>�d��=7JZ�-_�=?R��Ġ=�ܚH���=v���x�=h"j뷎�=�.g�֡=��.C�Ѡ=�co�Ƞ=ܭ ί��=�܊�L1�=�9J����=�j�^*�=�6i�=�:+� r�=<��NY��=@���OH�=�Y̼t�=5Ȁ��H�=�B%^{�=� EY��=�,[hj�=��n�D�=�5-p��=��#p�t�=G�w�J�=��,T�=��r_9=�=����W/�=�^� �y=��R r=�zZT�|=�=²�nt=}����X=�!���}f=Z��/�T=��O �i=��Z}X^k�KD�BtR�r%ަ�_b��w��6OQ����6�`�BҞy�(r��p�Yߢv�\uF�g�ATl��n�V��{�E�����U��pr���K�JJt��7� �q�=�qmٹ�=�8O-�ј=G�1��=�i�R�4�=]�*(}=qG h�^=��,��4��4��渏=��|���=�_��x�t=�Q��3ぽ�F7�����`������Ɵ�Dl�_�SDT�*u����e�u���$��f=c����t�MP���o�Ơl[z�U��5�l|��=%0�ž��=t����q�=�6��%ҡ=�U�FY��=��R5.�=�ݣ��$�=������=<`�K�;�=�[꽗u�=�����=�g���v�=��lBC�= �`�P��=���u�=A�f/��=��1L� �=�z�/T�=Y����=T� �vd�=����D �=팟�O�=l����9�=�~���=�d�=�K�92�=^9>*��=�Y�d�=�c6\~��=��N�΢=� �o���= �-��1�= +���=� x à=H��3��=m*�����=\y�SS�=�34��S�=$^�x>�=r�8�=�^b+얞=�4�e��=��n`�=5:�ݨ��=T�ߍ{s�=.�CJ���=_=�=AD��l�=v�9�E�=��a��)�=�p>rߕ=� AAۛ=�-���=o% ��Ҙ=K]!�ĕ�=�I��D�=�(��F�=]7�5Đ�=R*���̉=1M:~��=���8U��=6��B��=�`���=h�㧮�v=6���3��=�p�fx=0��;�]=��C �l=�4�2� [=�kR� ��ɠ=���d�=Ck���(�=>O�Zru�=������=Σ��S��=�����Ɯ=8�s>�=��U���=�>@��ƛ=�E�UF��=�Ft��G�=�wT���=�u�$Ę=E�Z=禕=A��O)�=����•=�P��i�=��p�Y�=�O���^�=��\�@�=mNk~�3�=�Y~MR��=ëPyz= 2a=�Mb��p=�(w/`=��b�#�q=�E!�ۖA�O�E|�=�C�nD�#E��Q>}%�-�I0�c�22pΐ��ƅ2ڝ�J=�Y.�n=>=v8d��U=k�brĤb=A0�|�r=�a52��e=�q�$(�r=�"R�(P�=��n�~=�M+I�=x@[AA��=����M}=6�cz�=���q&>�='-\�8�=30�/��=1����f�=�P��~�=N�R1Ґ==�w�"!�=�w�J�=e��s��= �XN��=��o3�=��3t'a�=E��إ��=�e`gʶ�=���€�=�%`}�=�������=uuqKᆠ=q�Z,��=R��+��=LmX>yŜ=:q��`�=GLTO�i�=f�����=��\mW�=$d9vZ�=�����=��3V�>�=Y�0))�=3вv��=�76n�=b۫��Ԕ=j_LC3�=ѝPa��=�Ed���=-m��Y�=`[��=�Ú�c]�=�ղ�Tl|=��e�4��=|����|=;6��b=� zr=a�ob=\��-�s=̠�v�W=,����#=���=A?�ދET=�'aL�e=� ����q=�i�q�Cc=���Ђo=�����{=�5��Ѓ=� �J��w=m^7���=����=����y�=� �䧜�=��)��=zz(���=��ЌН�=�߷k G�=U���=�� "a-�=�Q����=����>�= ��WP�=#XAq�,�=��N1�=�����=������=��A�5��=Q�Gp�̖=`WW364�=�[ �=.�19���=D�����=5g�=�o�_G�=��[��=O��汪�=w��=�=.\��%j�=E�؁ɧ�=���I��=~�S%ݣ�=���%~�=�7���=�-�_ؘ�=}��S'.}=u0cb>L�=�Z�;�|=����,&c=E��Ds=���%c=��"a=s=����{i=�S��kqH=]a�#�]=�r��yP=Ib�;b=��`E��s=�B�gb�{=P4�)| n=�Z*��u=�Q*cӂ=���D��=�>z�o~=�T L�i�=�'����=o�cH�=�u+�Sm�=ۄ��\��=�Cq~/g�=D(:�g�=oE|M�=���D?�=���dȎ=���Gɑ=��cB��=<�*D��=�SR�=�Ḣ��=Ё`� >�=H���q��=RCf�D�=���7��=�����=4���r��=�Rk�E|=�����߁=�&͘s({=��c&�b=�ݘ<`�r=-��E�c=��n�>_r=�D�hp=�M#S=I�5(�d=�90��T=5�q��e=�f6c}2w=1XJ�ht~=��$5��p=1,6��w=��w��=h��1y�=)+��h}=p. ���=�>́���=�3lN;�=�y44�>�=Q�J����=��A@�t�=3��=��g�͔�=3z�{�v�=�YW�~�=�F��=����+�=��v����=m�rvĀ=�J��y=bP/�G�~=l��6��w=�熲�`=�����q=�Q?���a=�X��np=I���mp=��<�U=���n�e=̓1uDU=3�y�@�d=F�C��u=U�y���z=�+��n=�:� �+t=D����b=(��D1�=1�)� �=.O���z�==��&x=����Nv|=�AS��=��.�hE�=�Z�FE�=q��M<�~=yˡ5� |=(�&{=�����u= ͏�x=u�^��:s=��W��\=�u�B";n=���~_=&+S�*k=���f% l=�Y�i�S=���<\c=����u?R=O���[*a=q� /��q==��r�u=.i�a3bh=On�s&n=��El�x=��Ɉ�Dw=��l�q= yN-�Ns=1�@"2�t=u��[�p=�@�B�Uq=:�U[V)l=&5,��U=��r4~�g=p���EY=I@K��id=�n�y��c=4��,tO=}����7]=�����pJ=�뷆q�W=�#�V��g=����l=�����j=��`Eg=��l��A_=�J�yy�b=�/a��a=@9��Z,N=��wUW a=�/,��R=���Q\=�y��R�U=p���BD=����{�Q=�`�[==MQ�2H=����B=�،y��U=��� yI=����kK=�)���H1=z�D�R5<=Z`�%6=ќR��1==2��憽���&���z�t��� � Q�䦽*����e��k���A�����'�����ȐX8��q��_)����{�ٴ��2/�M����ka��hl�.ҫ½�b�q*ɽ���`C̽RS�ɭ�����N�ٴ�9�`��(ν◒&��ƽ��'�d�����Ͻ�|���<��]/t�6�ƽ���9E�ҽ����!ʽ ��I�7���@{��1ӽ.1?iV�ս�I��|�׽9_kݻ�ܽ��i�%׽�$g�&ӽ#���v߽S< Y��ܽx�:4O"̽rh�܅6���]C�^z׽�<� Aѽ�F�_�½Y'e; ���\�""�m#1P7K���Gk��:ܛ�x�۽Ĩ=ɺ7ս �i��⽏~�5 5޽�gB\����� ��tp̽_ d �UֽLj��4ͽ���.A�� 1��U��z ���U��&���n�U5�ڇ��S� �S _?� ��a`�R���f�5�܆��f�m:� ���cYFg� 佲���I�K�3bg꽢��}>�]�Sل4�DvP��F�,̕��_ܽj�m��罃9`��!����ԽwJ�!ƽ�d�>��D� b%�׽4bsHQɽ���>��AB���������6�dH� �o��;�N���1X���t��� �Am�Lj��'��H��d����z��)� ��M�zC6 ���G����4��0��3��r��~F��^t����O��9b��+�v�z��ڞ������]Sq��*�Ny޽��353�w��Y�� k����EJ"� �Fᡳ��<��8�l ���r�pk�7���H�މu(���-���7�����>@���Jx���8�>�����E�\c*�k�F>7߽6#b�Zֽ ���k��*A�w%O޽0�������YP !̽�B�Z��Խ�0?gɽ�B�MҶ�!������'~�;%\ ���`t�a��-�Q��GN~u�G$�c� ��L�o� ���j6���w�یKs�ț��� ��C�GrI�wY��N��ǡ����6���H���0FOm��K�&��� �.j]��h; �L��!��(��2u��z]���,����؁��u�������) ?����!�~03��6�����8: �n��M� [��/���C���ن��H����/璝Y����e���$�s����҅3���|��]�Pf� "#�|�Q�2�ˆ^�`�ڽ���Zm2̽+�!�νcX�ϫU�\��-�Vݽo�I���ڍݣ����z� �/ �:�����c��D����M�YRg?I���y�`���/gl � ��cdh �W"uR��v�\�����P#���`1�]�m~#1�h�{����ߠۊ �wu��qF�u��J���A�ۂf\�鸧�0�,=n*��������D�e����$5� �Wˌ������>L�����fCx;���p�b|������.���eܿ�m��k�>�����?��z ��H��* ��^�D�C��I������ ������"/u���֎�*���=|d����$��)���|ꁠj�}IJ}��qz5@��5�z��%���z۽;1@O�*ҽ��"�G�ུcש'�ֽ��{��˱���� �Ľ�&1r�?̽M%��$��T�]ꇨ��O�#S�4��:uYا��}^���4SBh���Ig̸���Ky�2� ��7[$�ݕ"�g ���5�{�M ������xw� ���ݮ ��Q�;�|�������m�p4���g�p�Z�w�����g�!����_C®�j��=�G�����l� ���}��b�qQ�N=� ��v�i�e;ut�����b�iZ�� ���q3�w�S�'������������������t� н+��X�_н�7�*K߽[����)�Al罗�� 4g���r�lQ�����o(�O�@��A�� #-��z�՛����@��2��~ �*��sm�^��4��� �B4!ƏV�r��ؕ� ���"����ͅp�����sY5n���-ep��f�Yñ��o5pl��mB�j���w�$����l!K ��� }Q����M�Y����h��6罽�����? ������.��S1�D���y~����nSׅ����<��7��eI��\�,�S���-M����ׇ��@:�ޛ�������콈�{����� 2��!��x���ܮ��nڽ��mĂ1�-B@y"�ܽ�E%�L|н� 3�'½��x�.ѽ類i����%b�/-I��䯽�dP��驽 G ��Y�;��Z�=1���R���֋�(��&��K��|�'p�m�n ����-�� �a��Ut�КE��: �� ��^�������[D �tRۢ���"M�-!�P=�������DV �!E�� D��t���� �� ��i �ZF\�g ������| ��-�\�w ������i��C�β���������OInm}���G���нi B�2�н�0�*_���\����^�� ��R� 4����O���2d�wk�PD�F ��. �����g�_ �^M�9�1���bh} ���e�M�a�fp���k�$����� 1`�i���d�� ��ǵ������z �5���hpS7i�=V��,5��=a������Z�H�H6�=�}iO@ͽ/I>罽 ���=%��W�Ž�U)����=�fr�+ �6��:�� ��_{�q��3�ż���� ��o+7�M �U-j�R �װ� ��Z�j\ �lb.d ��%�}�D ��zb�����x�\j��>��&Y�٭CE��\�!��}�Ԟ�lU_Z潥w��{彵�g��ݽ�\L{۽o}�u/ڽ5�ս-xg�}�=�k�k`Ľ��% Q��=6�����=��ff]���2.�y�=������=�q ��=X�4MϽ�O �����jw*��Ƚ��3�̯��$�)��t�汪ٺZ�=�j��m�=��ڣ��=��k�H�=�}���,�=,&���B�=����"�=G{���=�3ϒR ���}�� �;U;dX ���i.�� ����v �4����~ �F��*� ���Þa ���S��� �d `r� �3�.��Z��q�- �Oť+r�н",�Ƈн���I�o���E�:E���p� ��*�`��Y��N���#��w L����f�k�*��2�X���Y�À/ ��Um�m��~ 2��@ �&��; ����p'��0>����DI[���dt6 ����+� #M���8�yj���v<������52�uOB~��M �,������}���X�OKUX齒< \�0� �䤚 �p[�� �V�-�2 �����} �,U� ���}f�| ����7~��.RJ�JS ��<�e ��sڡ{� ����h� �Z{�ڏ���4�R�@�N ���P�]��_7���r���=6���>M�@4&Y�=Hw�2$��=�XJ�R>�B���>[]������V�v����Ϯp>�:;`���E��ʺ;���e�É��|�\Z�G������8�ѽ������\?�,i~�c'���8潫�}IU�=�.�5��=�I (�A�=��?���=;���[�=&,�����0b���=4���= �&�����/ �̷p�`��!������;$�77�E� b(�Y��ځq�X��טS��C�MTp�v�,����1��S����I����D����e�=f�@>u$�KIq>�7��`u�������=F�ƵXH�=Ͼr���=�%u�x�=��"F��=����'�=�5� <�= �a�S�=x�:��=�#}ds��=��ޣ@~�=|�6���= �PS�"�=��]S, �=�>����=N]X̨�=PM ���=ӢI�Ӈ�=\�9.�=��ÀX��=9��=.o�U�<�=h�y�=s�1�gy�3 :��,��F ��qW�a���t�:���>��U�`����4� ��0%9^�4��Vڣ�;���O� �=�z�p � �H�k�Π ��;�)���H"08 �a�GV' ����-Sн�wl��ν����̽Y��ʽ�.�$f��A�D� 齃���߽�h�[�Ѭ0�>�Sl��ܬ�ߣ�k.��v�w�s����s,D�K��f�V����*#�����C����r�(���-���i���[$UmG��P��H���� �3;���F�����~K?Q� ��$�����j�G�w ��f ��� �Ƣ���B�s�%�eG �W ��(�&>��zDo�:��o�" ��CNH�^���8�� g ϴ�>���~�v>dQ'!_�>*6�/[>�U��C�>����� >�]��l >d�q�ѵ>��a$+r>���"^>�b���>��H�>?t�\����o�l2x�߽�� ���}iBӶ�=�Z蓍X��b��W��W��2ѽP���k�=�����=��s�w��=L��� '>�>ؠ�=!VT7d�>���j��=�C�9��=�DmK�����"���h���+��yF��������L�h�� e�z��l.��!��3�5�80�p� > �.�X>�ш�h�>-/i�Z >���Z)� >�y?;/@>��ݍ�9>�9&�I�=���>\����>g�QE��=<��wń�=2/�8&��=�W���=�Lj�Β�=ۻ�]7��=IG�2R��=���hV�=������=�4�/��=nmzzG��=������=>߈b��=q��P<�=���a�=����z�=^�҇�+�=��\��m�=������=���r�W�=����7Ƚ�Ҁ��jŽ��!L½��9��㽽=��S������.��֎\;������l\�y����u�����=J??��uq���G���'�n�(��s������ �@ ������Ǩ۝A�"�� �d�b π���ɀ� � x�^ �?aXHQ!޽�$��r&ܽ�'���V�P��r潃�%��ٽ�vx�w�ֽJy͟H����D��w9��J���7t���ġ��(�������}����O ���_��������2�=���Xw���@ ����[ӗlH����t}0��YT^sf �����.�]I �9�3�D�[���c�h�J�d �lz�W�����_(���7���}#q�S� ���(������"�,� �-�����������%���N��ǦK�,����Q_DV� �#&����J����w�Y`ʼn�� ��uG��� w{���� ��Q��e���� >�7~�� >jNP_&�>�8�\�>d�`�7� >�o�4��>m�T� >������>۾ͲD�>�s2�%�>O?�f >q� �˴>�����>�;���� >w9��� >�2�jaw > ����>b+�F��>4�kx�>��>��>�e됗����11�<�=3S�u�=�՚f1Ľ�uwp� >�rb�K�=ÒxV.�=ڑå�y�z���н.�u^!佥M�ȳM�LI���=́k����0����ٽ��+�>W�Cծ�>��j>5���=�>��<�N�>�'���>?���� >��F��h >n�X��>4pš� >B�� ]j�|�>5�Cr�V>^ކ��r�=�6�y�>��;< RIaF �>�kZk���=�a��=�X9Q&`�=Lj�ҫ�=��;)Q�=mCz-�=��&ڗ&�=�R���$�=u�l�_7�=zi�ΰ�=Ӛ����=x���^�=]��E��=B7�:I�=�$���=���ì�=�H��� �=j팻"�=[H�]J�=���O��r@w�������Ш�]�õ(Ӝ�m0�'��ĽN8OE�ӽE�˰A�ʽ�|e��н\I�O�߽��-�ѽ@k��g۽n��Q��ֽ ~a d ὯZ8a��F�V"a����y�:�սu�x�J����ۊ�U��F�����(� ���� �x��Deƻ����t������$��# �4G�f#���η���2N����k�Tc� �t�[gM�7E�L4����8���E�9����FL��O��/|��潷n��b�����R�����vz꽀N+4�+��A�㐔���qKb4�@X#��5���)�'�ڵvp����DBj��t%rT���Qc�� H�n�6���JC�����]~�O���&��D� �21����Ѡq��#v����#h� �ӣg������h �( ����8`n��d��8�H �L�h{�� ��UO����� ������_�� �-��푂LР�����Q�;L��������H+�ua�����$�D�&�L��K�&B�OF�>��6��R>�0��>k�A>�����>��x��>����>u��hN�>Uzmv >�&�ni>�����/>���5s, >Q�?r3>�r�P�o >��� � >P�i@�>D����=���>៧�,>�������=��)Kt�=�3�,���=�Ȁ›�=V'y�F��=��< X��=�O �M��=�ۉzy�=2^)y>��S��>@9���=�=S��]�� >��`�>����NV>��I�>|���qB> k�A��>wt ��U>� �8g�>?rݦ�{>��r�>y �xoD�>���H�>��6' >�����>ʷ���� >ܺQoX�>B�ޮ%B>���o��=��{��>��0�>�e�#��=�b,_��=���R���=�J��W�=�}�j[5�=���D��=��v�U�=c�� �=���,N�=\O�����=��p���=�7���_�=��%d˒�=T>�A���=Bʫ���=sX�J��=�!V%q'�=����Ʋ�=�� ��薾9>�A蕘��=!�����>nh=�d^�=�V߃��=�t�'�ͽ���;��=������=se�L�F����4���V�x2��$�cM���_}��8��#mL&w �`Pc���&�<\��M���H�����r�*�M�i���&� �M�� q��� �~�d�2M ��"rm?��_n%�� �r0����:��ĚC��x��C�������tm���YM��轁=����a�2O���p�s�^�jT�r�_/�� �b��9� �C��`%6�g�Nth��O�*vU� NN��W >@!|_ >{dT.ӻ>��6�� >�ϊ��� >H��|�#>E��G>��] >��SB��>`�aZd�>�ٮ �B>v)S}�>O��V >:�~�w�>kv��v>���g��>)̷�� >r�#l�Z>�b���>["����=�u=^w��=�k)ۛ��=��2�u><�+�%j>4��]�>�U�?�o>~�GEq� >��2oS>���4>4����>�X�M�>.T=%� >K�e3 �>��ѩG>��8X_ >�[5>� �r� >���fu� >l�AsO>�.�>�<���>`�����>+u��Z`>,���>�H���>��xh �>����>�*hm��>J�l(�>����d>+?T�S>�C�]}>�U'��� >1� ��>��12>*��W��=�*|>1��d��>xH�<`�=F ��v��=5�_j��>����>�Vh��x�=�y,��1�=4�IL�=�t�i�=2Vhj �����cC�?佥�� ��=.�����ɽȥ�oǁ���,�+��e��������Ұ�=�3��a��dRBZ����a�ͣ����f�O �/��dqW��$�� ���>n�(�����ZP��$��1��������齿� G��F� 1���`��Ip��o�Y7�G��, �ɦ��^�>��c��@��)��� ��] �$٫�  ���JB���Gt%:�7 �7T��4��/�hY )��!������w�yZ�No��.��}z�����b�E�K��[�w���Td�����M2�Z �{���� ��1���� ��M���D�C��~�L��+��j�e�q�ȥ�l���/ ��c:�D�/.�S����g���ɿ6��p�!���a>�M=�(�>�\n��� ><&����>���(3 >?�g�<�>vӴ��>��jTsr>݇r��N>�d� ;>O#�g>�b�ZO�>�]���>T:�C�>��u�|>Cuw� >L8B� >EIa�� >�U �{>��w���>CY�rK>������>�z��6 >mi�F�>opc)�>�T��_H>L�Z@q>g�rQ�>Cc*\�&>F�)�&>dl��>���>���:�>��.� >u?�1^� >�>wWK{ >�htT�� >�\6�/>ޒ���>�=�} >c{���>���P >.D�Ŏ >�u�e�N >��!�� >����k� > h�wm>�B*Q�� >�f�>� H�>�E_�>��wr�*>W_���>j���|�>��E���>� ��> >��^g>��� >���c��> 6�%��>�'Ke>C��x�>��h�T>���cZV>f;v,�=��XW�>v�E��>_��,a�=�������=�tС�p�=&t��Ϙ�=�PVh���=:I^a���=1:����=6�x���=9��7{o�=!6��\�=ر����=��y��=��n���=�[�$I�=>��h��=]�?��\�=72���*�=���1��=R��5��=�T� (�=#"�B_�=:���q��=�dso�@�=%��ԽҵM��:���~Է�Ƚm�����fK-�˽6��ݽ�+*�V��@_�ֽ���Io_߽���2�齉j8���6p�u���J�� ��lnWL>�. �it�=�j-�r>�-M ���=�f' >�_�&��=_Gg��ؽ6!�D2;�=Ub#q�<����(��=���^�=������� {����..p�H�7�m���*1uM��/N���h�y7_��:ldխ����$�������}�s�����<��o> w`��u����E������w����U����u����?��v�e�\��L���[��S5��~��c���@o� ����Z��ʧ��g��NO$�w����� �O��Y�)wrD��� ���C��+"n������\���i���D����rL�v>H���� >ԟ�N��>ى���� >35���p>��pR>��C�@�>��&�~>j:d>� >��>T��>/e�=D�>x�D�YD>�L7��>P{@�5>�&��q>9�G��>�j܀��>�K��)>W�}��>�|a�D�>���V��>@`�\�9>�v�Ǹ>��.�\ >�Zz��k>5x$^�� >���,n� >^�[�'S> E�">Bi��2�> 2�AV�1>r=�!�>�X�u�`>/���G� >w"��ˆ >�}!0 > "b�� >uk�3�9 >�R��� >�� , >)<��] >Y�< �� >4���%>��e=x� >��1� >��f��u >I �ҧ) >\���>�!3� Y>Q\h�~>����w >Ha���1> �8�޳>����+� >�=�6Y >{D���� > O���>AU��>f)����> �Gr��>t����=���!V�=G����>�9MC���=U�$�=ڞ� ��=���T�=@O2� �=�y��;��=/Z��~�=�m� ���=G>f8�q�=E�����=C�мs��=c�$��=3c���=���ӹ�=�H:�6 �=��H[:�=CלK�j�=�:r�&׽{���+H�����_™ͽ�� ������5�r�9ν= w��'��=9��|$׽D�증�߽�) 0��"�;�+��bA�J���� �>�\�\>68�j�p�=.�oq>9�<�Ћ�=j��`���=W ���>-a ���=�c�&=��=����}�=uˮ͎do���ٽ���4���:�i ��=|@��q�=�F=VսzZl�"���2:�����ٌ����=I+��WHk@�8���p��vO;#�����������wJLa/��� ~F���^�.H�p�C�@���I%��5��VT-x��w�ǫ����sHB4ֽ�,�C��b���w߽��U��� >i�+1� > 7�u��%>zN�v> ,P�?}>K���� >�4v��|>S�]4X>��d���>�NH\+@>n˫�>@C1��>�é���>� �A~�>v�,��>r �@��>n�N+(H>1["�">(6�1e>��8�o�>���D>H�k��K>��>�i[/!M>mO���h>Q[ �V,>W���*>�U��~>�P|��M >�Qh�|)>N �]�(>\�A�j�>�öL*� >�� (� >���C[, >�ɠ,�� >��& > Іhی >�n~xCo >[����[ >���� >���0� >��#%� >�0�|� >W�*�3� >���z � >�W#��� >��2�)b >�]�� >�a��(� >�H�>q��H��>��)&�S>R��r��>��㱔 >�y���* >���� >��m �>�w6��>�b����=�1>���U>���A��=b؞3���=���y�=-HTyQo�=S�Α��=$�~���=�!wD�H�=2U&���==�y����=�$c�w��=�W���=~���~A�= {�/�(�=�SP����= E�]��=*n-��d�= ����ս�':�\������;ͽM��U���9�0�Zsʽ�oUM�ܽ�md��P�׀�ӽ���ӭDؽ ��v��彘���:=������ܽc�A\#$ངv��N�>��X �4�=W�r��>�¥,m��= b '���=�V��\(�=�=j��N�=�l�:W��u��<�=x[����=������=�iߕ�u�<���h�� ҭ��)��/`omɽ��]�ད�E�'Ὦ^����=d/��t���R-OUٽ|�(��n��ˢ;�->x]�(B > �@+Z>^���[ >:�vyiH>��6�ck>��)�x�>Ő��,�>�x^'��>Ϸ�89�>i7zX�c>�J��� >}�bځ>a���>�����>"!#MS>��O��f>��wdP�>ns[R>Qe��>�ŵ�f>�4-g�V>� �>�4�l�1>��;��>Wx�W�?>�{h���>X�5�A�>lR4#\>��W&� >������>�m?��� >� D� >U-� ի >���E�� >�^��2� >�x��� >Pؚh� >��G� >Y a� >�4G�V>��WaL�>�c��y*>��l��/ >�+�� >{�P�)�>�V�˻�>�I��O:>#%Ix�l>H ��h>�k�}f>�a/pt)>���"&�>�VO�ۿ>}�IT��=8 �3��=�A�� !>��̳[�=�oR����=��>�^�=4�jȓ��=�sl�1u�=�ĵ���=�5��r��=�EM� �=��? �i�=��RN��=�j,����=���ς�=k�3�6��=��U5�ͽ�/Ff�з���e��Ž�t͑���A�)ߕ�������ѽ�ݰӽu�FFZcý���0ýZ�kX(ҽD��Р�̽$�� �Z��%h׬A�ۮ�f��=t����P�=��D�v�>�� |��=y�G&���=Lo ʫ��'�]�S��=jOZYk&�=��w�Y�=L�D��T�=��R���=��S7 >��~�>pn�e� >J�5[K�> ��c�>V�_����=q�S�>x��Fn>0�'">Q���>��Βw(>G�D���>�[�&d >jHu�>��Jv'�> � >pc-�p:>��C+ >��@��< >���`��>=U\�!>�i_]r>�3n> >,a�]�>���I�� >�kM� >�HJH�� >���(� >�`y�>�^5<� >CC���o>]WOȪ�>�6R �>`Fi��>t�o>PY�hC>��8>�����>�P���>D�]z�>���{�>�����9>8��ᥪ�=�X�tO>���2L�=��� �=�W�����=L�I���=M�:RaA�=������=)�䩻�=�t����=��ż���=(��ף\�=%��ϯ�=އB�(��=5O/G�<�=�3�������h ���%��а�k��Ž̐����ԉ�^�x�u������u�=[� V��=<���+i�=�` ��=8��>��=� Ҕ~�=�sb28 �=,]�R8R�=qC� ���=[��=��=<�/�{�= ;%�^P�=[���B��=��W��C�=�b{� �>��!�>�J��;>�cd9�*>��H���=M�#e2>F5�k�>TH9�:T>�( �Ɨ >lLFVb >׺eE� >�f�|�B >�� �ǣ>�1j!J>��%���>�MB�=>�y�&�K >B��R�[>�8'K�>9���>B�6���>��� �>U�?˜g>�Q�1�>V��Q�>�!�C� >���> )���7>:����?>��2S�=}F m��>��N���=�c�KO�=M�s���=�JC�%�=54�����=4�����=���ߜ�=�qC7�5�=�h �=��̞��=�^V�2f�=��<_��=b}[u�<�=�$ȇ���=j2p ��=a]\!G�=�R����=&1�� �=����lt�=��3�;��=)�(j���=�� 0��=z�y�ב�=�!o'���=��\����=�b#q+��=���ۅ0�=���?�>�q_�=��&�n�>���Zc�=W�/ȝ[�=Tfq�=A.���>Z�[up>�.y���=tMz�r>�͕��>Xk�s�>�H�� >��&-�c><�%��>��"(�>�0��#>�4��8 >5�]U�>��\��>�[���G>O)�u�>p:RH��>�j�� N>}�>r�J�=����m�=Z�NB��=��qU��=� �a��=V�3]b��=Ԧ�P��=?bE� $�=5��ݏ.�=�� �7�=�lu���=hg�C��==�[�x�=���a§�=�M�|'w�=�����={��JMF�=���wr�=�R�&�=>� 0g%��=M�;�>���v}�=8ё��L�=o�*F��=N��\��=�������=~L��<��=gT�hb�=��Tc��=��~:��=��_�.��=�v�Z��=��T��=˴E1!~�=� |q�=>&�4��=��J�5��=2?~�$�=����^�=��.��;�=��]�=EK�@Q`�=��(O�= =7N��=��h�?�= ��>�t�=���:�=���=��5�}S�=- �y�9�=Zdg���=��e�=���V���=gaSrg�=�/'j�U�=��4�=>P*�I�=�c�G=o�=���֎�=�۸�h��= ����=�ؓ%��=Di;>T�=�������=ˉ��]��=v!�3���=�O�l+��=r*���o�=���!�=}�WSE��=��#����=A0 ֋�= h\ĭ%�=��c�#�=�+���=a8�W�=#�Wł��=�}���=��n|;o�=�R�~�_�=��ſٗ�=�a7J� �=dg��=7�B��=��Q�3��=�}�����=��6�=�N�|Ӥ�=&�ͮ\p�=ZF|�y�=<@�}���=����_R�=���K5O�=��We���=����B�=�4�c*�=��1����=���t��=��*M �=�� ���=��0 ��=�� �M�=ԥ����=,��)��=G��� �=��MP�=�\6+t�=t^ ��G�=+*am)f�=�as���=�s]L��=t!����=�vb��O�=c�#�J��=2�� �]�=tA�u�t�=A��.��=+�~^�g�=)1��m�=� ����=C`9O+�= �i=�=#�x� ��=UI��#�=4�9�>�=/^}� �=t�g廵�=��� �=��JL ��=�U/�c�= �j���=�E�_��=R�~?)��=�X��=�[L(R�=�Q���=�A|�=���[���=3�M�C�=�RP�o�=��$���=�.[[�=l��AK@�=]ޫGQլ=�y���=R��%�C�=�c��е=$S�}��=��� q�=� ��q�=��@'�c�=x��ܕp>�V[>��=�4`�~�p>�鋿Hop>M0v-�"�>�f�p>���J��>��!NL>Ԝ�V��>|���|�>#���X�>}�Qv%,�>��s��>T��i�Z�>;���:�>[�)� C�>w��(xg�>^���>�×���>:�m>f�>R�p/�ɐ>�g��@�>�9[K�>1��Lx>����+ry>ɾ�J�q�>C�*�e�>pA%� >:z�u^y�`G ��>O�qL*�>~B���x�p�wY[����Y�)�>��k�e�>��jK����`8:+�$s�>��tE{�>����.A�>�zN�>��1Kw���Qʈtݚ�F[��ľ�>@�Ĝ:�>�J�F2Z�>:��X�>� �������^G���.��nʅ�W�FJB���TVB��z�>@���7��>��<�1�p>?\�`�p>D���2�~�� r�a����t^so�d��G5�o� ���������Öp> ���Ȗ=XL�$�o��F��'ip>�c�XC)�>�|�w�o�/P�:��ĩ�#�F>�6����>(C���/������h���"&j&�>p���!��>��_�����C+NԜ���1�h=�>��HhIj�>p��N�p��!�e9P�� #[_�>q5���̐>���2����脊m��ۥ�GDx>���h�xy>�6�7j����.���c������'�>�fxD]ay����z痾j�� ��ܘv���x����5Ñ��z�旾/��n%d��s}�{���Ќj������]��� �5.n���N�QĞ�����ۚ�FI��#����O��P��L�o��X��D��^F3R�o���2��Ԝ�7e���΅�r��˿����ҳ������L#h�������~����^��r ��Z0��HDFtD��@9�uz���c:��o��Ӱ�A�o�v�DPzo��[�̞o�xsrcom.femlab.xmesh.Xmesh��[�{ω�I dofVersionZ initializedZuseInteriorBndLelemIndtLcom/femlab/util/FlIntList;Lelementsq~[geomMapt[ILgeomNumq~�L initElemIndq~�L initElementsq~[mcasesq~�[meGrpst[Lcom/femlab/xmesh/MEGrp;[meshNumt[[I[sorderq~�[ unitsystemst#[Lcom/femlab/api/client/UnitSystem;Lversionq~xpwq~ur[IM�`&v겥xpuq~ t�struct('elem',{'elmesh'},'g',{{'1'}},'frame',{{'ref'}},'geomdim',{{{struct('qualname',{'qual'},'dvolname',{'dvol'},'emetric2name',{'emetric2'},'meshtypename',{'meshtype'},'meshelemname',{'meshelement'},'sshape',{{{'vtx',struct('type',{'fixed'},'sorder',{'2'},'sdimdofs',{{'x$2','y$2'}}),'lvtx',struct('type',{'fixed'},'sorder',{'2'},'sdimdofs',{{'x$2','y$2'}})}}},'ind',{{{'1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19','20'}}}),struct('qualname',{'qual'},'dvolname',{'dvol'},'emetric2name',{'emetric2'},'meshtypename',{'meshtype'},'meshelemname',{'meshelement'},'sshape',{{{'edg',struct('type',{'fixed'},'sorder',{'2'},'sdimdofs',{{'x$2','y$2'}}),'ledg',struct('type',{'fixed'},'sorder',{'2'},'sdimdofs',{{'x$2','y$2'}}),'edg2',struct('type',{'fixed'},'sorder',{'2'},'sdimdofs',{{'x$2','y$2'}})}}},'ind',{{{'1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19','20'}}}),struct('qualname',{'qual'},'sizename',{'h'},'dvolname',{'dvol'},'detjacname',{'detjac'},'reldetjacname',{'reldetjac'},'reldetjacminname',{'reldetjacmin'},'emetric2name',{'emetric2'},'meshtypename',{'meshtype'},'meshelemname',{'meshelement'},'sshape',{{{'tri',struct('type',{'fixed'},'sorder',{'2'},'sdimdofs',{{'x$2','y$2'}}),'ltri',struct('type',{'fixed'},'sorder',{'2'},'sdimdofs',{{'x$2','y$2'}}),'quad',struct('type',{'fixed'},'sorder',{'2'},'sdimdofs',{{'x$2','y$2'}}),'lquad',struct('type',{'fixed'},'sorder',{'2'},'sdimdofs',{{'x$2','y$2'}}),'tri2',struct('type',{'fixed'},'sorder',{'2'},'sdimdofs',{{'x$2','y$2'}}),'quad2',struct('type',{'fixed'},'sorder',{'2'},'sdimdofs',{{'x$2','y$2'}})}}},'ind',{{{'1','2','3','4','5'}}})}}})tstruct('elem',{'elmesh'},'g',{{'0'}},'frame',{{'ref'}},'geomdim',{{{struct('qualname',{'qual'},'dvolname',{'dvol0'},'ind',{{{'1'}}},'sshape',{{{'vtx',struct('type',{'fixed'},'sorder',{'1'},'sdimdofs',{{}}),'lvtx',struct('type',{'fixed'},'sorder',{'1'},'sdimdofs',{{}})}}})}}})t�struct('elem',{'elshape'},'g',{{'1'}},'tvars',{'on'},'geomdim',{{{struct('shelem',{struct('default',{{{'vtx','shlag',struct('order',{'2'},'basename',{'Az'},'frame',{'ref'}),'lvtx','shlag',struct('order',{'2'},'basename',{'Az'},'frame',{'ref'})}}},'case',{{{}}},'mind',{{}})},'ind',{{{'1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19','20'}}}),struct('shelem',{struct('default',{{{'edg','shlag',struct('order',{'2'},'basename',{'Az'},'frame',{'ref'}),'ledg','shlag',struct('order',{'2'},'basename',{'Az'},'frame',{'ref'})}}},'case',{{{}}},'mind',{{}})},'ind',{{{'1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19','20'}}}),struct('shelem',{struct('default',{{{'tri','shlag',struct('order',{'2'},'basename',{'Az'},'frame',{'ref'}),'ltri','shlag',struct('order',{'2'},'basename',{'Az'},'frame',{'ref'})}}},'case',{{{}}},'mind',{{}})},'ind',{{{'1','2','3','4','5'}}})}}})t�struct('elem',{'elvar'},'g',{{'1'}},'geomdim',{{{struct('var',{{'I0_emqa',{'0'}}},'ind',{{{'1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19','20'}}}),struct('var',{{'dVolbnd_emqa',{'1'},'murbnd_emqa',{'murbndxx_emqa'},'Jsz_emqa',{'unx*(Hy_emqa_down-Hy_emqa_up)-uny*(Hx_emqa_down-Hx_emqa_up)'},'unTx_emqa',{'-0.5*(Bx_emqa_up*Hx_emqa_up+By_emqa_up*Hy_emqa_up)*dnx+(dnx*Hx_emqa_up+dny*Hy_emqa_up)*Bx_emqa_up'},'dnTx_emqa',{'-0.5*(Bx_emqa_down*Hx_emqa_down+By_emqa_down*Hy_emqa_down)*unx+(unx*Hx_emqa_down+uny*Hy_emqa_down)*Bx_emqa_down'},'unTy_emqa',{'-0.5*(Bx_emqa_up*Hx_emqa_up+By_emqa_up*Hy_emqa_up)*dny+(dnx*Hx_emqa_up+dny*Hy_emqa_up)*By_emqa_up'},'dnTy_emqa',{'-0.5*(Bx_emqa_down*Hx_emqa_down+By_emqa_down*Hy_emqa_down)*uny+(unx*Hx_emqa_down+uny*Hy_emqa_down)*By_emqa_down'},'Qs_emqa',{'Jsz_emqa*Ez_emqa'},'nPo_emqa',{'nx_emqa*Pox_emqa+ny_emqa*Poy_emqa'},'FsLtzx_emqa',{'-Jsz_emqa*By_emqa'},'FsLtzy_emqa',{'Jsz_emqa*Bx_emqa'},'normFsLtz_emqa',{'sqrt(abs(FsLtzx_emqa)^2+abs(FsLtzy_emqa)^2)'},'Js0z_emqa',{'0'},'A0z_emqa',{'0'},'murext_emqa',{'1'},'epsilonrbnd_emqa',{'1'},'sigmabnd_emqa',{'0'},'eta_emqa',{'1'},'Esz_emqa',{'0'},'d_emqa',{'0'},'index_emqa',{'0'},'nsect_emqa',{'2'},'nx_emqa',{'nx'},'ny_emqa',{'ny'},'murbndxx_emqa',{'1'},'murbndxy_emqa',{'0'},'murbndyx_emqa',{'0'},'murbndyy_emqa',{'1'},'H0x_emqa',{'0'},'H0y_emqa',{'0'}}},'ind',{{{'1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19','20'}}}),struct('var',{{'dr_guess_emqa',{'0','0','0'},'R0_guess_emqa',{'0','0','0'},'Sx_emqa',{'x','x','x'},'S0x_guess_emqa',{'0','0','0'},'Sdx_guess_emqa',{'0','0','0'},'Sy_emqa',{'y','y','y'},'S0y_guess_emqa',{'0','0','0'},'Sdy_guess_emqa',{'0','0','0'},'curlAx_emqa',{'Azy','Azy','Azy'},'curlAy_emqa',{'-Azx','-Azx','-Azx'},'dVol_emqa',{'detJ_emqa','detJ_emqa','detJ_emqa'},'Bx_emqa',{'curlAx_emqa','curlAx_emqa','curlAx_emqa'},'By_emqa',{'curlAy_emqa','curlAy_emqa','curlAy_emqa'},'Hx_emqa',{'Bx_emqa/(mur_emqa*mu0_emqa)','Bx_emqa/(mur_emqa*mu0_emqa)','Bx_emqa/(mur_emqa*mu0_emqa)'},'Hy_emqa',{'By_emqa/(mur_emqa*mu0_emqa)','By_emqa/(mur_emqa*mu0_emqa)','By_emqa/(mur_emqa*mu0_emqa)'},'mu_emqa',{'mu0_emqa*mur_emqa','mu0_emqa*mur_emqa','mu0_emqa*mur_emqa'},'muxx_emqa',{'mu0_emqa*murxx_emqa','mu0_emqa*murxx_emqa','mu0_emqa*murxx_emqa'},'muxy_emqa',{'mu0_emqa*murxy_emqa','mu0_emqa*murxy_emqa','mu0_emqa*murxy_emqa'},'muyx_emqa',{'mu0_emqa*muryx_emqa','mu0_emqa*muryx_emqa','mu0_emqa*muryx_emqa'},'muyy_emqa',{'mu0_emqa*muryy_emqa','mu0_emqa*muryy_emqa','mu0_emqa*muryy_emqa'},'Jpz_emqa',{'sigma_emqa*deltaV_emqa/L_emqa','sigma_emqa*deltaV_emqa/L_emqa','sigma_emqa*deltaV_emqa/L_emqa'},'Ez_emqa',{'-diff(Az,t)','-diff(Az,t)','-diff(Az,t)'},'Jz_emqa',{'Jpz_emqa+Jiz_emqa+Jez_emqa','Jpz_emqa+Jiz_emqa+Jez_emqa','Jpz_emqa+Jiz_emqa+Jez_emqa'},'Pox_emqa',{'-Ez_emqa*Hy_emqa','-Ez_emqa*Hy_emqa','-Ez_emqa*Hy_emqa'},'Poy_emqa',{'Ez_emqa*Hx_emqa','Ez_emqa*Hx_emqa','Ez_emqa*Hx_emqa'},'normE_emqa',{'abs(Ez_emqa)','abs(Ez_emqa)','abs(Ez_emqa)'},'Jiz_emqa',{'sigma_emqa*Ez_emqa','sigma_emqa*Ez_emqa','sigma_emqa*Ez_emqa'},'Q_emqa',{'Jz_emqa*(Ez_emqa+deltaV_emqa/L_emqa+Jez_emqa/sigma_emqa)','Jz_emqa*(Ez_emqa+deltaV_emqa/L_emqa+Jez_emqa/sigma_emqa)','Jz_emqa*(Ez_emqa+deltaV_emqa/L_emqa+Jez_emqa/sigma_emqa)'},'W_emqa',{'Wm_emqa','Wm_emqa','Wm_emqa'},'dW_emqa',{'dVol_emqa*W_emqa','dVol_emqa*W_emqa','dVol_emqa*W_emqa'},'Wm_emqa',{'0.5*(Hx_emqa*Bx_emqa+Hy_emqa*By_emqa)','0.5*(Hx_emqa*Bx_emqa+Hy_emqa*By_emqa)','0.5*(Hx_emqa*Bx_emqa+Hy_emqa*By_emqa)'},'FLtzx_emqa',{'-Jz_emqa*By_emqa','-Jz_emqa*By_emqa','-Jz_emqa*By_emqa'},'FLtzy_emqa',{'Jz_emqa*Bx_emqa','Jz_emqa*Bx_emqa','Jz_emqa*Bx_emqa'},'normFLtz_emqa',{'sqrt(abs(FLtzx_emqa)^2+abs(FLtzy_emqa)^2)','sqrt(abs(FLtzx_emqa)^2+abs(FLtzy_emqa)^2)','sqrt(abs(FLtzx_emqa)^2+abs(FLtzy_emqa)^2)'},'normM_emqa',{'sqrt(abs(Mx_emqa)^2+abs(My_emqa)^2)','sqrt(abs(Mx_emqa)^2+abs(My_emqa)^2)','sqrt(abs(Mx_emqa)^2+abs(My_emqa)^2)'},'normBr_emqa',{'sqrt(abs(Brx_emqa)^2+abs(Bry_emqa)^2)','sqrt(abs(Brx_emqa)^2+abs(Bry_emqa)^2)','sqrt(abs(Brx_emqa)^2+abs(Bry_emqa)^2)'},'normH_emqa',{'sqrt(abs(Hx_emqa)^2+abs(Hy_emqa)^2)','sqrt(abs(Hx_emqa)^2+abs(Hy_emqa)^2)','sqrt(abs(Hx_emqa)^2+abs(Hy_emqa)^2)'},'normB_emqa',{'sqrt(abs(Bx_emqa)^2+abs(By_emqa)^2)','sqrt(abs(Bx_emqa)^2+abs(By_emqa)^2)','sqrt(abs(Bx_emqa)^2+abs(By_emqa)^2)'},'normJ_emqa',{'abs(Jz_emqa)','abs(Jz_emqa)','abs(Jz_emqa)'},'Evz_emqa',{'diff(x,t)*By_emqa-diff(y,t)*Bx_emqa','diff(x,t)*By_emqa-diff(y,t)*Bx_emqa','diff(x,t)*By_emqa-diff(y,t)*Bx_emqa'},'normEv_emqa',{'abs(Evz_emqa)','abs(Evz_emqa)','abs(Evz_emqa)'},'normPo_emqa',{'sqrt(abs(Pox_emqa)^2+abs(Poy_emqa)^2)','sqrt(abs(Pox_emqa)^2+abs(Poy_emqa)^2)','sqrt(abs(Pox_emqa)^2+abs(Poy_emqa)^2)'},'Pz_emqa',{'0','0','0'},'Drz_emqa',{'0','0','0'},'normfH_emqa',{'normB_emqa/mu0_emqa','normB_emqa/mu0_emqa','normB_emqa/mu0_emqa'},'epsilonr_emqa',{'1','mat5_epsilonr','mat5_epsilonr'},'sigma_emqa',{'mat2_sigma','mat5_sigma','mat5_sigma'},'Jez_emqa',{'0','(1-flc2hs(-0.2+t,0.1))*R','(-1+flc2hs(-0.2+t,0.1))*R'},'deltaV_emqa',{'0','0','0'},'L_emqa',{'1','1','1'},'dr_emqa',{'dr_guess_emqa','dr_guess_emqa','dr_guess_emqa'},'R0_emqa',{'R0_guess_emqa','R0_guess_emqa','R0_guess_emqa'},'ispml_emqa',{'0','0','0'},'srcpntx_emqa',{'0','0','0'},'srcpnty_emqa',{'0','0','0'},'userx_emqa',{'0','0','0'},'usery_emqa',{'0','0','0'},'Sdx_emqa',{'Sdx_guess_emqa','Sdx_guess_emqa','Sdx_guess_emqa'},'Sdy_emqa',{'Sdy_guess_emqa','Sdy_guess_emqa','Sdy_guess_emqa'},'S0x_emqa',{'S0x_guess_emqa','S0x_guess_emqa','S0x_guess_emqa'},'S0y_emqa',{'S0y_guess_emqa','S0y_guess_emqa','S0y_guess_emqa'},'SRcoord_emqa',{'','',''},'rCylx_emqa',{'','',''},'rCyly_emqa',{'','',''},'detJ_emqa',{'1','1','1'},'Jxx_emqa',{'1','1','1'},'invJxx_emqa',{'1','1','1'},'Jxy_emqa',{'0','0','0'},'invJxy_emqa',{'0','0','0'},'Jyx_emqa',{'0','0','0'},'invJyx_emqa',{'0','0','0'},'Jyy_emqa',{'1','1','1'},'invJyy_emqa',{'1','1','1'},'depAz_emqa',{'Az','Az','Az'},'mur_emqa',{'murxx_emqa','murxx_emqa','murxx_emqa'},'Mx_emqa',{'Bx_emqa/mu0_emqa-Hx_emqa','Bx_emqa/mu0_emqa-Hx_emqa','Bx_emqa/mu0_emqa-Hx_emqa'},'Brx_emqa',{'0','0','0'},'My_emqa',{'By_emqa/mu0_emqa-Hy_emqa','By_emqa/mu0_emqa-Hy_emqa','By_emqa/mu0_emqa-Hy_emqa'},'Bry_emqa',{'0','0','0'},'murxx_emqa',{'1','mat5_mur','mat5_mur'},'murxy_emqa',{'0','0','0'},'muryx_emqa',{'0','0','0'},'muryy_emqa',{'1','mat5_mur','mat5_mur'},'murinvxx_emqa',{'1/mur_emqa','1/mur_emqa','1/mur_emqa'},'murinvxy_emqa',{'0','0','0'},'murinvyx_emqa',{'0','0','0'},'murinvyy_emqa',{'1/mur_emqa','1/mur_emqa','1/mur_emqa'}}},'ind',{{{'1'},{'2','4'},{'3','5'}}})}}})t�struct('elem',{'elvar'},'g',{{'1'}},'geomdim',{{{struct('var',{{'epsilon0_emqa',{'8.854187817000001e-012'},'mu0_emqa',{'4e-007*pi'},'mat4_C',{'385*unit_J_cf/(unit_kg_cf*unit_K_cf)'},'mat4_T0',{'273.15*unit_K_cf'},'mat4_alphares',{'0.0039/unit_K_cf'},'mat4_epsilon',{'0.5'},'mat4_epsilonr',{'1'},'mat4_k',{'400*unit_W_cf/(unit_m_cf*unit_K_cf)'},'mat4_mur',{'1'},'mat4_res0',{'1.72e-008*unit_ohm_cf*unit_m_cf'},'mat4_rho',{'8700*unit_kg_cf/unit_m_cf^3'},'mat4_sigma',{'59980000*unit_S_cf/unit_m_cf'},'mat5_C',{'1200*unit_J_cf/(unit_kg_cf*unit_K_cf)'},'mat5_epsilon',{'0.5'},'mat5_epsilonr',{'10'},'mat5_k',{'450*unit_W_cf*(300*unit_K_cf/T)^0.75/(unit_m_cf*unit_K_cf)'},'mat5_mur',{'1'},'mat5_rho',{'3200*unit_kg_cf/unit_m_cf^3'},'mat5_sigma',{'1000*unit_S_cf/unit_m_cf'},'mat2_C',{'mat2_Cp(T/unit_K_cf)*unit_J_cf/(unit_kg_cf*unit_K_cf)'},'mat2_cs',{'mat2_cs(T/unit_K_cf)*unit_m_cf/unit_s_cf'},'mat2_eta',{'mat2_eta(T/unit_K_cf)*unit_Pa_cf*unit_s_cf'},'mat2_gamma',{'1.4'},'mat2_k',{'mat2_k(T/unit_K_cf)*unit_W_cf/(unit_m_cf*unit_K_cf)'},'mat2_nu0',{'mat2_nu0(T/unit_K_cf)*unit_m_cf^2/unit_s_cf'},'mat2_rho',{'mat2_rho(p/unit_Pa_cf,T/unit_K_cf)*unit_kg_cf/unit_m_cf^3'},'mat2_sigma',{'0'},'mat3_epsilonr',{'1'},'mat3_mur',{'mat3_MUR(normB/unit_T_cf)'},'mat3_normfB',{'mat3_BH(normH*unit_m_cf/unit_A_cf)*unit_T_cf'},'mat3_normfH',{'mat3_HB(normB/unit_T_cf)*unit_A_cf/unit_m_cf'},'mat3_sigma',{'0'},'mat1_C',{'440*unit_J_cf/(unit_kg_cf*unit_K_cf)'},'mat1_E',{'200000000000*unit_Pa_cf'},'mat1_alpha',{'1.22e-005/unit_K_cf'},'mat1_epsilonr',{'1'},'mat1_k',{'76.2*unit_W_cf/(unit_m_cf*unit_K_cf)'},'mat1_mur',{'4000'},'mat1_nu',{'0.29'},'mat1_rho',{'7870*unit_kg_cf/unit_m_cf^3'},'mat1_sigma',{'11200000*unit_S_cf/unit_m_cf'}}},'ind',{{{'1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19','20'}}}),struct('var',{{'epsilon0_emqa',{'8.854187817000001e-012'},'mu0_emqa',{'4e-007*pi'},'mat4_C',{'385*unit_J_cf/(unit_kg_cf*unit_K_cf)'},'mat4_T0',{'273.15*unit_K_cf'},'mat4_alphares',{'0.0039/unit_K_cf'},'mat4_epsilon',{'0.5'},'mat4_epsilonr',{'1'},'mat4_k',{'400*unit_W_cf/(unit_m_cf*unit_K_cf)'},'mat4_mur',{'1'},'mat4_res0',{'1.72e-008*unit_ohm_cf*unit_m_cf'},'mat4_rho',{'8700*unit_kg_cf/unit_m_cf^3'},'mat4_sigma',{'59980000*unit_S_cf/unit_m_cf'},'mat5_C',{'1200*unit_J_cf/(unit_kg_cf*unit_K_cf)'},'mat5_epsilon',{'0.5'},'mat5_epsilonr',{'10'},'mat5_k',{'450*unit_W_cf*(300*unit_K_cf/T)^0.75/(unit_m_cf*unit_K_cf)'},'mat5_mur',{'1'},'mat5_rho',{'3200*unit_kg_cf/unit_m_cf^3'},'mat5_sigma',{'1000*unit_S_cf/unit_m_cf'},'mat2_C',{'mat2_Cp(T/unit_K_cf)*unit_J_cf/(unit_kg_cf*unit_K_cf)'},'mat2_cs',{'mat2_cs(T/unit_K_cf)*unit_m_cf/unit_s_cf'},'mat2_eta',{'mat2_eta(T/unit_K_cf)*unit_Pa_cf*unit_s_cf'},'mat2_gamma',{'1.4'},'mat2_k',{'mat2_k(T/unit_K_cf)*unit_W_cf/(unit_m_cf*unit_K_cf)'},'mat2_nu0',{'mat2_nu0(T/unit_K_cf)*unit_m_cf^2/unit_s_cf'},'mat2_rho',{'mat2_rho(p/unit_Pa_cf,T/unit_K_cf)*unit_kg_cf/unit_m_cf^3'},'mat2_sigma',{'0'},'mat3_epsilonr',{'1'},'mat3_mur',{'mat3_MUR(normB/unit_T_cf)'},'mat3_normfB',{'mat3_BH(normH*unit_m_cf/unit_A_cf)*unit_T_cf'},'mat3_normfH',{'mat3_HB(normB/unit_T_cf)*unit_A_cf/unit_m_cf'},'mat3_sigma',{'0'},'mat1_C',{'440*unit_J_cf/(unit_kg_cf*unit_K_cf)'},'mat1_E',{'200000000000*unit_Pa_cf'},'mat1_alpha',{'1.22e-005/unit_K_cf'},'mat1_epsilonr',{'1'},'mat1_k',{'76.2*unit_W_cf/(unit_m_cf*unit_K_cf)'},'mat1_mur',{'4000'},'mat1_nu',{'0.29'},'mat1_rho',{'7870*unit_kg_cf/unit_m_cf^3'},'mat1_sigma',{'11200000*unit_S_cf/unit_m_cf'}}},'ind',{{{'1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19','20'}}}),struct('var',{{'epsilon0_emqa',{'8.854187817000001e-012'},'mu0_emqa',{'4e-007*pi'},'mat4_C',{'385*unit_J_cf/(unit_kg_cf*unit_K_cf)'},'mat4_T0',{'273.15*unit_K_cf'},'mat4_alphares',{'0.0039/unit_K_cf'},'mat4_epsilon',{'0.5'},'mat4_epsilonr',{'1'},'mat4_k',{'400*unit_W_cf/(unit_m_cf*unit_K_cf)'},'mat4_mur',{'1'},'mat4_res0',{'1.72e-008*unit_ohm_cf*unit_m_cf'},'mat4_rho',{'8700*unit_kg_cf/unit_m_cf^3'},'mat4_sigma',{'59980000*unit_S_cf/unit_m_cf'},'mat5_C',{'1200*unit_J_cf/(unit_kg_cf*unit_K_cf)'},'mat5_epsilon',{'0.5'},'mat5_epsilonr',{'10'},'mat5_k',{'450*unit_W_cf*(300*unit_K_cf/T)^0.75/(unit_m_cf*unit_K_cf)'},'mat5_mur',{'1'},'mat5_rho',{'3200*unit_kg_cf/unit_m_cf^3'},'mat5_sigma',{'1000*unit_S_cf/unit_m_cf'},'mat2_C',{'mat2_Cp(T/unit_K_cf)*unit_J_cf/(unit_kg_cf*unit_K_cf)'},'mat2_cs',{'mat2_cs(T/unit_K_cf)*unit_m_cf/unit_s_cf'},'mat2_eta',{'mat2_eta(T/unit_K_cf)*unit_Pa_cf*unit_s_cf'},'mat2_gamma',{'1.4'},'mat2_k',{'mat2_k(T/unit_K_cf)*unit_W_cf/(unit_m_cf*unit_K_cf)'},'mat2_nu0',{'mat2_nu0(T/unit_K_cf)*unit_m_cf^2/unit_s_cf'},'mat2_rho',{'mat2_rho(p/unit_Pa_cf,T/unit_K_cf)*unit_kg_cf/unit_m_cf^3'},'mat2_sigma',{'0'},'mat3_epsilonr',{'1'},'mat3_mur',{'mat3_MUR(normB/unit_T_cf)'},'mat3_normfB',{'mat3_BH(normH*unit_m_cf/unit_A_cf)*unit_T_cf'},'mat3_normfH',{'mat3_HB(normB/unit_T_cf)*unit_A_cf/unit_m_cf'},'mat3_sigma',{'0'},'mat1_C',{'440*unit_J_cf/(unit_kg_cf*unit_K_cf)'},'mat1_E',{'200000000000*unit_Pa_cf'},'mat1_alpha',{'1.22e-005/unit_K_cf'},'mat1_epsilonr',{'1'},'mat1_k',{'76.2*unit_W_cf/(unit_m_cf*unit_K_cf)'},'mat1_mur',{'4000'},'mat1_nu',{'0.29'},'mat1_rho',{'7870*unit_kg_cf/unit_m_cf^3'},'mat1_sigma',{'11200000*unit_S_cf/unit_m_cf'}}},'ind',{{{'1','2','3','4','5'}}})}}})t,struct('elem',{'elconst'},'var',{{'R','1'}})tHstruct('elem',{'elgeom'},'g',{{'1'}},'frame',{{'ref'}},'sorder',{{'2'}})tKstruct('elem',{'elepspec'},'g',{{'1'}},'geom',{{struct('ep',{{'2','1'}})}})tKstruct('elem',{'elgpspec'},'g',{{'1'}},'geom',{{struct('ep',{{'4','0'}})}})t�struct('elem',{'eleqw'},'g',{{'1'}},'geomdim',{{{struct('coeff',{{{'0'}}},'tcoeff',{{{'0'}}},'ipoints',{{'2'}},'dvolname',{{{'dvol'}}},'ind',{{{'1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19','20'}}}),struct('coeff',{{{'0'}}},'tcoeff',{{{'0'}}},'ipoints',{{{'1'}}},'dvolname',{{{'dvol'}}},'ind',{{{'1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19','20'}}}),struct('coeff',{{{'dVol_emqa*(Jz_emqa*test(depAz_emqa)-Hx_emqa*test(curlAx_emqa)-Hy_emqa*test(curlAy_emqa))'}}},'tcoeff',{{{'0'}}},'ipoints',{{{'1'}}},'dvolname',{{{'dvol'}}},'ind',{{{'1','2','3','4','5'}}})}}},'nonlintest',{{'off'}})t�struct('elem',{'elpconstr'},'g',{{'1'}},'geomdim',{{{{},struct('constr',{{{'-Az'}}},'constrf',{{{'test(-Az)'}}},'cpoints',{{{'1'}}},'ind',{{{'1','2','3','20'}}}),{}}}})tlstruct('elem',{'elcplextr'},'var',{{'dVol_emqa'}},'g',{{'1'}},'src',{{{{},{},struct('expr',{{{'dVol_emqa'}}},'map',{{{'1'}}},'ind',{{{'1','2','3','4','5'}}})}}},'geomdim',{{{struct('map',{{{'1'}}},'ind',{{{'1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19','20'}}}),{},{}}}},'map',{{struct('type',{'local'},'expr',{{'x','y'}})}})tistruct('elem',{'elcplscalar'},'var',{{}},'g',{{'1'}},'src',{{{{},{},{}}}},'geomdim',{{{}}},'global',{{}})tistruct('elem',{'elcplscalar'},'var',{{}},'g',{{'1'}},'src',{{{{},{},{}}}},'geomdim',{{{}}},'global',{{}})tistruct('elem',{'elcplscalar'},'var',{{}},'g',{{'1'}},'src',{{{{},{},{}}}},'geomdim',{{{}}},'global',{{}})tlstruct('elem',{'elcplextr'},'var',{{}},'g',{{'1'}},'src',{{{{},{},{}}}},'geomdim',{{{{},{},{}}}},'map',{{}})t�struct('elem',{'elinline'},'name',{'mat2_cs'},'args',{{'T'}},'expr',{'sqrt(1.4*287*T)'},'dexpr',{{'diff(sqrt(1.4*287*T),T)'}},'complex',{'false'},'linear',{'false'})t�struct('elem',{'elinline'},'name',{'mat2_rho'},'args',{{'p','T'}},'expr',{'p*0.02897/8.314/T'},'dexpr',{{'diff(p*0.02897/8.314/T,p)','diff(p*0.02897/8.314/T,T)'}},'complex',{'false'},'linear',{'false'})tstruct('elem',{'elpiecewise'},'name',{'mat2_Cp'},'args',{{'T'}},'subtype',{'poly'},'expr',{{{'0','1.04763657E+03','1','-3.72589265E-01','2','9.45304214E-04','3','-6.02409443E-07','4','1.28589610E-10'}}},'intervals',{{'200','1600'}},'extmethod',{'const'},);tstruct('elem',{'elpiecewise'},'name',{'mat2_eta'},'args',{{'T'}},'subtype',{'poly'},'expr',{{{'0','-8.38278000E-07','1','8.35717342E-08','2','-7.69429583E-11','3','4.64372660E-14','4','-1.06585607E-17'}}},'intervals',{{'200','1600'}},'extmethod',{'const'},);tstruct('elem',{'elpiecewise'},'name',{'mat2_nu0'},'args',{{'T'}},'subtype',{'poly'},'expr',{{{'0','-5.86912450E-06','1','5.01274491E-08','2','7.50108343E-11','3','1.80336823E-15','4','-2.91688030E-18'}}},'intervals',{{'200','1600'}},'extmethod',{'const'},);tstruct('elem',{'elpiecewise'},'name',{'mat2_k'},'args',{{'T'}},'subtype',{'poly'},'expr',{{{'0','-2.27583562E-03','1','1.15480022E-04','2','-7.90252856E-08','3','4.11702505E-11','4','-7.43864331E-15'}}},'intervals',{{'200','1600'}},'extmethod',{'const'},);t�struct('elem',{'elinterp'},'name',{'mat3_MUR'},'x',{'1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4'},'data',{'1200 820 560 420 290 220 160 110 70 47 26 15 10 7 6'},'method',{'linear'},'extmethod',{'const'});tstruct('elem',{'elinterp'},'name',{'mat3_HB'},'x',{'0 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4'},'data',{'0 663.146 1067.5 1705.23 2463.11 3841.67 5425.74 7957.75 12298.3 20462.8 32169.6 61213.4 111408 175070 261469 318310'},'method',{'linear'},'extmethod',{'extrap'});tstruct('elem',{'elinterp'},'name',{'mat3_BH'},'x',{'0 663.146 1067.5 1705.23 2463.11 3841.67 5425.74 7957.75 12298.3 20462.8 32169.6 61213.4 111408 175070 261469 318310'},'data',{'0 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4'},'method',{'linear'},'extmethod',{'extrap'});t�struct('elem',{'elvar'},'g',{{'0','1'}},'geomdim',{{{struct('var',{{'geomnum',{'0'}}},'ind',{{{'1'}}})},{struct('var',{{'unit_J_cf',{'1.0'},'unit_kg_cf',{'1.0'},'unit_K_cf',{'1.0'},'unit_K_off1',{'0.0'},'unit_K_off2',{'0.0'},'unit_W_cf',{'1.0'},'unit_m_cf',{'1.0'},'unit_ohm_cf',{'1.0'},'unit_S_cf',{'1.0'},'unit_s_cf',{'1.0'},'unit_Pa_cf',{'1.0'},'unit_T_cf',{'1.0'},'unit_A_cf',{'1.0'}}},'ind',{{{'1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19','20'}}}),struct('var',{{'unit_J_cf',{'1.0'},'unit_kg_cf',{'1.0'},'unit_K_cf',{'1.0'},'unit_K_off1',{'0.0'},'unit_K_off2',{'0.0'},'unit_W_cf',{'1.0'},'unit_m_cf',{'1.0'},'unit_ohm_cf',{'1.0'},'unit_S_cf',{'1.0'},'unit_s_cf',{'1.0'},'unit_Pa_cf',{'1.0'},'unit_T_cf',{'1.0'},'unit_A_cf',{'1.0'}}},'ind',{{{'1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19','20'}}}),struct('var',{{'unit_J_cf',{'1.0'},'unit_kg_cf',{'1.0'},'unit_K_cf',{'1.0'},'unit_K_off1',{'0.0'},'unit_K_off2',{'0.0'},'unit_W_cf',{'1.0'},'unit_m_cf',{'1.0'},'unit_ohm_cf',{'1.0'},'unit_S_cf',{'1.0'},'unit_s_cf',{'1.0'},'unit_Pa_cf',{'1.0'},'unit_T_cf',{'1.0'},'unit_A_cf',{'1.0'}}},'ind',{{{'1','2','3','4','5'}}})}}})uq~� uq~ t�struct('elem',{'elvar'},'g',{{'1'}},'geomdim',{{{struct('var',{{'x$2',{'xg'},'y$2',{'yg'}}},'ind',{{{'1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19','20'}}}),struct('var',{{'x$2',{'xg'},'y$2',{'yg'}}},'ind',{{{'1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19','20'}}}),struct('var',{{'x$2',{'xg'},'y$2',{'yg'}}},'ind',{{{'1','2','3','4','5'}}})}}})t�struct('elem',{'elvar'},'g',{{'1'}},'geomdim',{{{struct('var',{{'Az',{''},'Azt',{''}}},'ind',{{{'1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19','20'}}}),struct('var',{{'Az',{''},'Azt',{''}}},'ind',{{{'1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19','20'}}}),struct('var',{{'Az',{'0'},'Azt',{'0'}}},'ind',{{{'1','2','3','4','5'}}})}}})uq~�uq~�ur[Lcom.femlab.xmesh.MEGrp;5q�|Y�xpsrcom.femlab.xmesh.MEGrp�f�����I bmTypeIndIeDimIgeomNumImeshCaseL bmTypeStrq~[coordst[[D[domainsq~�[namest[Ljava/lang/String;xpwtls(0)uq~�uq~ ur[[Dǭ �dg�Expxsq~�wtls(0)uq~� uq~ tAzuq~�xsq~�wts(1)uq~� uq~ tAztAztAztx$2ty$2uq~�uq~;?�?�?�?�xsq~�wts(2)uq~�uq~ tAztAztAztAztAztAztx$2tx$2tx$2ty$2ty$2ty$2uq~�uq~; ?�?�?�?�?�?�?�uq~; ?�?�?�?�?�?�?�xsq~�wtls(2)uq~�uq~ tAztAztAztAztAztAzuq~�uq~;?�?�?�uq~;?�?�?�xuq~�wxq~}q~�q~�q~�srcom.femlab.api.client.MFileInfo��3$�$LfemNameq~[historyq~�[mfileTagsAndTypest[[Ljava/lang/String;[ resetHistoryq~�[ storedNamesq~�Lversionq~xpwsq~wq~q~q~ q~t COMSOL 3.5tw�t $Name: $t$Date: 2008/09/19 16:09:48 $xuq~ t�`% COMSOL Multiphysics Model M-file % Generated by COMSOL 3.5 (COMSOL 3.5.0.494, $Date: 2008/09/19 16:09:48 $) flclear fem % COMSOL version clear vrsn vrsn.name = 'COMSOL 3.5'; vrsn.ext = ''; vrsn.major = 0; vrsn.build = 494; vrsn.rcs = '$Name: $'; vrsn.date = '$Date: 2008/09/19 16:09:48 $'; fem.version = vrsn; % Geometry g1=square2('0.1','base','center','pos',{'-0.5','-0.5'},'rot','0'); % Analyzed geometry clear s s.objs={g1}; s.name={'SQ1'}; s.tags={'g1'}; fem.draw=struct('s',s); fem.geom=geomcsg(fem); % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'PerpendicularCurrents'; appl.module = 'ACDC'; appl.sshape = 2; appl.assignsuffix = '_emqa'; clear prop prop.analysis='transient'; appl.prop = prop; clear bnd bnd.type = 'A0'; bnd.ind = [1,1,1,1]; appl.bnd = bnd; clear equ equ.Jez = 'flsmsign(t-0.5,0.25)'; equ.ind = [1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; fem.ode=ode; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femtime(fem, ... 'solcomp',{'Az'}, ... 'outcomp',{'Az','Azt'}, ... 'blocksize','auto', ... 'tlist',[0:0.1:1], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'normB_emqa','cont','internal','unit','T'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=1 Surface: Magnetic flux density, norm [T]', ... 'axis',[-1.6912669126691267,1.6912669126691267,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'Jez_emqa','cont','internal','unit','A/m^2'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=1 Surface: External current density [A/m^2]', ... 'axis',[-1.6912669126691267,1.6912669126691267,-1.052606679912953,1.052606679912953]); % Plot solution postplot(fem, ... 'tridata',{'Jez_emqa','cont','internal','unit','A/m^2'}, ... 'trimap','jet(1024)', ... 'solnum',2, ... 'title','Time=0.1 Surface: External current density [A/m^2]', ... 'axis',[-1.6912669126691267,1.6912669126691267,-1.0294668164072944,1.0294668164072944]); % Plot solution postplot(fem, ... 'tridata',{'Jez_emqa','cont','internal','unit','A/m^2'}, ... 'trimap','jet(1024)', ... 'solnum',2, ... 'title','Time=0.1 Surface: External current density [A/m^2]', ... 'axis',[-1.6912669126691267,1.6912669126691267,-1.032617441706169,1.032617441706169]); % Geometry g2=square2('0.1','base','center','pos',{'-0.5','0.5'},'rot','0'); g3=square2('0.1','base','center','pos',{'0.5','0.5'},'rot','0'); g4=square2('0.1','base','center','pos',{'0.5','-0.5'},'rot','0'); % Analyzed geometry clear s s.objs={g1,g2,g3,g4}; s.name={'SQ1','SQ2','SQ3','SQ4'}; s.tags={'g1','g2','g3','g4'}; fem.draw=struct('s',s); fem.geom=geomcsg(fem); % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'PerpendicularCurrents'; appl.module = 'ACDC'; appl.sshape = 2; appl.assignsuffix = '_emqa'; clear prop prop.analysis='transient'; appl.prop = prop; clear bnd bnd.type = 'A0'; bnd.ind = [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]; appl.bnd = bnd; clear equ equ.Jez = {'flsmsign(t-0.5,0.25)','-flsmsign(t-0.5,0.25)'}; equ.sigma = 'mat1_sigma'; equ.epsilonr = 'mat1_epsilonr'; equ.mur = 'mat1_mur'; equ.ind = [1,2,1,2]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Library materials clear lib lib.mat{1}.name='Iron'; lib.mat{1}.varname='mat1'; lib.mat{1}.variables.nu='0.29'; lib.mat{1}.variables.E='200e9[Pa]'; lib.mat{1}.variables.mur='4000'; lib.mat{1}.variables.sigma='1.12e7[S/m]'; lib.mat{1}.variables.epsilonr='1'; lib.mat{1}.variables.alpha='12.2e-6[1/K]'; lib.mat{1}.variables.C='440[J/(kg*K)]'; lib.mat{1}.variables.rho='7870[kg/m^3]'; lib.mat{1}.variables.k='76.2[W/(m*K)]'; lib.matgroups{1}.name='Resistivity'; lib.matgroups{1}.variables={'alphares','T0','res0'}; lib.matgroups{1}.descr={'Temperature coefficient','Reference temperature','Resistivity at reference temperature'}; fem.lib = lib; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; fem.ode=ode; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femtime(fem, ... 'solcomp',{'Az'}, ... 'outcomp',{'Az','Azt'}, ... 'blocksize','auto', ... 'tlist',[0:0.1:1], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'Jez_emqa','cont','internal','unit','A/m^2'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=1 Surface: External current density [A/m^2]', ... 'axis',[-1.7230576441102756,1.7230576441102756,-1,1]); % Geometry g5=square2('1','base','center','pos',{'0','0'},'rot','0'); g6=square2('2','base','center','pos',{'0','0'},'rot','0'); g7=square2('4','base','center','pos',{'0','0'},'rot','0'); % Analyzed geometry clear s s.objs={g1,g2,g3,g4,g7}; s.name={'SQ1','SQ2','SQ3','SQ4','SQ5'}; s.tags={'g1','g2','g3','g4','g7'}; fem.draw=struct('s',s); fem.geom=geomcsg(fem); % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5); % Refine mesh fem.mesh=meshrefine(fem, ... 'mcase',0, ... 'rmethod','regular'); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'PerpendicularCurrents'; appl.module = 'ACDC'; appl.sshape = 2; appl.assignsuffix = '_emqa'; clear prop prop.analysis='transient'; appl.prop = prop; clear bnd bnd.type = 'A0'; bnd.ind = [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]; appl.bnd = bnd; clear equ equ.Jez = {0,'flsmsign(t-0.5,0.25)','-flsmsign(t-0.5,0.25)'}; equ.sigma = {'mat2_sigma','mat1_sigma','mat1_sigma'}; equ.epsilonr = {1,'mat1_epsilonr','mat1_epsilonr'}; equ.mur = {1,'mat1_mur','mat1_mur'}; equ.ind = [1,2,3,2,3]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Library materials clear lib lib.mat{1}.name='Iron'; lib.mat{1}.varname='mat1'; lib.mat{1}.variables.nu='0.29'; lib.mat{1}.variables.E='200e9[Pa]'; lib.mat{1}.variables.mur='4000'; lib.mat{1}.variables.sigma='1.12e7[S/m]'; lib.mat{1}.variables.epsilonr='1'; lib.mat{1}.variables.alpha='12.2e-6[1/K]'; lib.mat{1}.variables.C='440[J/(kg*K)]'; lib.mat{1}.variables.rho='7870[kg/m^3]'; lib.mat{1}.variables.k='76.2[W/(m*K)]'; lib.mat{2}.name='Air'; lib.mat{2}.varname='mat2'; lib.mat{2}.variables.nu0='nu0(T[1/K])[m^2/s]'; lib.mat{2}.variables.eta='eta(T[1/K])[Pa*s]'; lib.mat{2}.variables.gamma='1.4'; lib.mat{2}.variables.sigma='0[S/m]'; lib.mat{2}.variables.C='Cp(T[1/K])[J/(kg*K)]'; lib.mat{2}.variables.rho='rho(p[1/Pa],T[1/K])[kg/m^3]'; lib.mat{2}.variables.k='k(T[1/K])[W/(m*K)]'; lib.mat{2}.variables.cs='cs(T[1/K])[m/s]'; clear fcns fcns{1}.type='inline'; fcns{1}.name='cs(T)'; fcns{1}.expr='sqrt(1.4*287*T)'; fcns{1}.dexpr={'diff(sqrt(1.4*287*T),T)'}; fcns{2}.type='inline'; fcns{2}.name='rho(p,T)'; fcns{2}.expr='p*0.02897/8.314/T'; fcns{2}.dexpr={'diff(p*0.02897/8.314/T,p)','diff(p*0.02897/8.314/T,T)'}; fcns{3}.type='piecewise'; fcns{3}.name='Cp(T)'; fcns{3}.extmethod='const'; fcns{3}.subtype='poly'; fcns{3}.expr={{'0','1.04763657E+03','1','-3.72589265E-01','2', ... '9.45304214E-04','3','-6.02409443E-07','4','1.28589610E-10'}}; fcns{3}.intervals={'200','1600'}; fcns{4}.type='piecewise'; fcns{4}.name='eta(T)'; fcns{4}.extmethod='const'; fcns{4}.subtype='poly'; fcns{4}.expr={{'0','-8.38278000E-07','1','8.35717342E-08','2', ... '-7.69429583E-11','3','4.64372660E-14','4','-1.06585607E-17'}}; fcns{4}.intervals={'200','1600'}; fcns{5}.type='piecewise'; fcns{5}.name='nu0(T)'; fcns{5}.extmethod='const'; fcns{5}.subtype='poly'; fcns{5}.expr={{'0','-5.86912450E-06','1','5.01274491E-08','2', ... '7.50108343E-11','3','1.80336823E-15','4','-2.91688030E-18'}}; fcns{5}.intervals={'200','1600'}; fcns{6}.type='piecewise'; fcns{6}.name='k(T)'; fcns{6}.extmethod='const'; fcns{6}.subtype='poly'; fcns{6}.expr={{'0','-2.27583562E-03','1','1.15480022E-04','2', ... '-7.90252856E-08','3','4.11702505E-11','4','-7.43864331E-15'}}; fcns{6}.intervals={'200','1600'}; lib.mat{2}.functions = fcns; lib.matgroups{1}.name='Resistivity'; lib.matgroups{1}.variables={'alphares','T0','res0'}; lib.matgroups{1}.descr={'Temperature coefficient','Reference temperature','Resistivity at reference temperature'}; fem.lib = lib; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; fem.ode=ode; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femtime(fem, ... 'solcomp',{'Az'}, ... 'outcomp',{'Az','Azt'}, ... 'blocksize','auto', ... 'tlist',[0:0.1:1], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'Jez_emqa','cont','internal','unit','A/m^2'}, ... 'trimap','jet(1024)', ... 'solnum','end', ... 'title','Time=1 Surface: External current density [A/m^2]', ... 'axis',[-1.6912669126691267,1.6912669126691267,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'Jez_emqa','cont','internal','unit','A/m^2'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Hx_emqa','Hy_emqa'}, ... 'arrowxspacing',15, ... 'arrowyspacing',15, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1 Surface: External current density [A/m^2] Arrow: Magnetic field', ... 'axis',[-1.6912669126691267,1.6912669126691267,-1.0294668164072944,1.0294668164072944]); % Plot solution postplot(fem, ... 'tridata',{'Jez_emqa','cont','internal','unit','A/m^2'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Hx_emqa','Hy_emqa'}, ... 'arrowxspacing',60, ... 'arrowyspacing',60, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1 Surface: External current density [A/m^2] Arrow: Magnetic field', ... 'axis',[-1.6912669126691267,1.6912669126691267,-1.0294668164072944,1.0294668164072944]); % Plot solution postplot(fem, ... 'tridata',{'Jez_emqa','cont','internal','unit','A/m^2'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Hx_emqa','Hy_emqa'}, ... 'arrowxspacing',60, ... 'arrowyspacing',60, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1 Surface: External current density [A/m^2] Arrow: Magnetic field', ... 'axis',[-1.6912669126691267,1.6912669126691267,-1.0294668164072944,1.0294668164072944]); % Geometry g8=rect2('0.2','0.2','base','corner','pos',{'0','0'},'rot','0'); g9=rect2('0.2','0.2','base','center','pos',{'0','0'},'rot','0'); % Analyzed geometry clear s s.objs={g1,g2,g3,g4,g7,g9}; s.name={'SQ1','SQ2','SQ3','SQ4','SQ5','R1'}; s.tags={'g1','g2','g3','g4','g7','g9'}; fem.draw=struct('s',s); fem.geom=geomcsg(fem); % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5); % Refine mesh fem.mesh=meshrefine(fem, ... 'mcase',0, ... 'rmethod','regular'); % Refine mesh fem.mesh=meshrefine(fem, ... 'mcase',0, ... 'rmethod','regular'); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'PerpendicularCurrents'; appl.module = 'ACDC'; appl.sshape = 2; appl.assignsuffix = '_emqa'; clear prop prop.analysis='transient'; appl.prop = prop; clear bnd bnd.type = {'A0','cont'}; bnd.ind = [1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,1,1,1]; appl.bnd = bnd; clear equ equ.Jez = {0,'flsmsign(t-0.5,0.25)','-flsmsign(t-0.5,0.25)',0}; equ.sigma = {'mat2_sigma','mat1_sigma','mat1_sigma','mat1_sigma'}; equ.epsilonr = {1,'mat1_epsilonr','mat1_epsilonr','mat1_epsilonr'}; equ.mur = {1,'mat1_mur','mat1_mur','mat1_mur'}; equ.ind = [1,2,3,4,2,3]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Library materials clear lib lib.mat{1}.name='Iron'; lib.mat{1}.varname='mat1'; lib.mat{1}.variables.nu='0.29'; lib.mat{1}.variables.E='200e9[Pa]'; lib.mat{1}.variables.mur='4000'; lib.mat{1}.variables.sigma='1.12e7[S/m]'; lib.mat{1}.variables.epsilonr='1'; lib.mat{1}.variables.alpha='12.2e-6[1/K]'; lib.mat{1}.variables.C='440[J/(kg*K)]'; lib.mat{1}.variables.rho='7870[kg/m^3]'; lib.mat{1}.variables.k='76.2[W/(m*K)]'; lib.mat{2}.name='Air'; lib.mat{2}.varname='mat2'; lib.mat{2}.variables.nu0='nu0(T[1/K])[m^2/s]'; lib.mat{2}.variables.eta='eta(T[1/K])[Pa*s]'; lib.mat{2}.variables.gamma='1.4'; lib.mat{2}.variables.sigma='0[S/m]'; lib.mat{2}.variables.C='Cp(T[1/K])[J/(kg*K)]'; lib.mat{2}.variables.rho='rho(p[1/Pa],T[1/K])[kg/m^3]'; lib.mat{2}.variables.k='k(T[1/K])[W/(m*K)]'; lib.mat{2}.variables.cs='cs(T[1/K])[m/s]'; clear fcns fcns{1}.type='inline'; fcns{1}.name='cs(T)'; fcns{1}.expr='sqrt(1.4*287*T)'; fcns{1}.dexpr={'diff(sqrt(1.4*287*T),T)'}; fcns{2}.type='inline'; fcns{2}.name='rho(p,T)'; fcns{2}.expr='p*0.02897/8.314/T'; fcns{2}.dexpr={'diff(p*0.02897/8.314/T,p)','diff(p*0.02897/8.314/T,T)'}; fcns{3}.type='piecewise'; fcns{3}.name='Cp(T)'; fcns{3}.extmethod='const'; fcns{3}.subtype='poly'; fcns{3}.expr={{'0','1.04763657E+03','1','-3.72589265E-01','2', ... '9.45304214E-04','3','-6.02409443E-07','4','1.28589610E-10'}}; fcns{3}.intervals={'200','1600'}; fcns{4}.type='piecewise'; fcns{4}.name='eta(T)'; fcns{4}.extmethod='const'; fcns{4}.subtype='poly'; fcns{4}.expr={{'0','-8.38278000E-07','1','8.35717342E-08','2', ... '-7.69429583E-11','3','4.64372660E-14','4','-1.06585607E-17'}}; fcns{4}.intervals={'200','1600'}; fcns{5}.type='piecewise'; fcns{5}.name='nu0(T)'; fcns{5}.extmethod='const'; fcns{5}.subtype='poly'; fcns{5}.expr={{'0','-5.86912450E-06','1','5.01274491E-08','2', ... '7.50108343E-11','3','1.80336823E-15','4','-2.91688030E-18'}}; fcns{5}.intervals={'200','1600'}; fcns{6}.type='piecewise'; fcns{6}.name='k(T)'; fcns{6}.extmethod='const'; fcns{6}.subtype='poly'; fcns{6}.expr={{'0','-2.27583562E-03','1','1.15480022E-04','2', ... '-7.90252856E-08','3','4.11702505E-11','4','-7.43864331E-15'}}; fcns{6}.intervals={'200','1600'}; lib.mat{2}.functions = fcns; lib.matgroups{1}.name='Resistivity'; lib.matgroups{1}.variables={'alphares','T0','res0'}; lib.matgroups{1}.descr={'Temperature coefficient','Reference temperature','Resistivity at reference temperature'}; fem.lib = lib; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; fem.ode=ode; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femtime(fem, ... 'solcomp',{'Az'}, ... 'outcomp',{'Az','Azt'}, ... 'blocksize','auto', ... 'tlist',[0:0.1:1], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'Jez_emqa','cont','internal','unit','A/m^2'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Hx_emqa','Hy_emqa'}, ... 'arrowxspacing',60, ... 'arrowyspacing',60, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1 Surface: External current density [A/m^2] Arrow: Magnetic field', ... 'axis',[-1.6912669126691267,1.6912669126691267,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'Jez_emqa','cont','internal','unit','A/m^2'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',60, ... 'arrowyspacing',60, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1 Surface: External current density [A/m^2] Arrow: Magnetization', ... 'axis',[-1.6912669126691267,1.6912669126691267,-1.0294668164072944,1.0294668164072944]); % Plot solution postplot(fem, ... 'tridata',{'Jez_emqa','cont','internal','unit','A/m^2'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',60, ... 'arrowyspacing',60, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1 Surface: External current density [A/m^2] Arrow: Magnetization', ... 'axis',[-1.6912669126691267,1.6912669126691267,-1.0294668164072944,1.0294668164072944]); % Plot solution postplot(fem, ... 'tridata',{'Jez_emqa','cont','internal','unit','A/m^2'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',600, ... 'arrowyspacing',600, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1 Surface: External current density [A/m^2] Arrow: Magnetization', ... 'axis',[-1.6912669126691267,1.6912669126691267,-1.0294668164072944,1.0294668164072944]); % Plot solution postplot(fem, ... 'tridata',{'Jez_emqa','cont','internal','unit','A/m^2'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',120, ... 'arrowyspacing',120, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1 Surface: External current density [A/m^2] Arrow: Magnetization', ... 'axis',[-1.6912669126691267,1.6912669126691267,-1.0294668164072944,1.0294668164072944]); % Plot solution postplot(fem, ... 'tridata',{'Jez_emqa','cont','internal','unit','A/m^2'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',120, ... 'arrowyspacing',120, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1 Surface: External current density [A/m^2] Arrow: Magnetization', ... 'axis',[-1.6912669126691267,1.6912669126691267,-1.0294668164072944,1.0294668164072944]); % Geometry g10=rect2(0.8,0.2,'base','center','pos',[0,0]); % Analyzed geometry clear s s.objs={g1,g2,g3,g4,g7,g10}; s.name={'SQ1','SQ2','SQ3','SQ4','SQ5','R1'}; s.tags={'g1','g2','g3','g4','g7','g10'}; fem.draw=struct('s',s); fem.geom=geomcsg(fem); % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5); % Refine mesh fem.mesh=meshrefine(fem, ... 'mcase',0, ... 'rmethod','regular'); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'PerpendicularCurrents'; appl.module = 'ACDC'; appl.sshape = 2; appl.assignsuffix = '_emqa'; clear prop prop.analysis='transient'; appl.prop = prop; clear bnd bnd.type = {'A0','cont'}; bnd.ind = [1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,1,1,1]; appl.bnd = bnd; clear equ equ.Jez = {0,'flsmsign(t-0.5,0.25)','-flsmsign(t-0.5,0.25)',0}; equ.sigma = {'mat2_sigma','mat1_sigma','mat1_sigma','mat1_sigma'}; equ.epsilonr = {1,'mat1_epsilonr','mat1_epsilonr','mat1_epsilonr'}; equ.mur = {1,'mat1_mur','mat1_mur','mat1_mur'}; equ.ind = [1,2,3,4,2,3]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Library materials clear lib lib.mat{1}.name='Iron'; lib.mat{1}.varname='mat1'; lib.mat{1}.variables.nu='0.29'; lib.mat{1}.variables.E='200e9[Pa]'; lib.mat{1}.variables.mur='4000'; lib.mat{1}.variables.sigma='1.12e7[S/m]'; lib.mat{1}.variables.epsilonr='1'; lib.mat{1}.variables.alpha='12.2e-6[1/K]'; lib.mat{1}.variables.C='440[J/(kg*K)]'; lib.mat{1}.variables.rho='7870[kg/m^3]'; lib.mat{1}.variables.k='76.2[W/(m*K)]'; lib.mat{2}.name='Air'; lib.mat{2}.varname='mat2'; lib.mat{2}.variables.nu0='nu0(T[1/K])[m^2/s]'; lib.mat{2}.variables.eta='eta(T[1/K])[Pa*s]'; lib.mat{2}.variables.gamma='1.4'; lib.mat{2}.variables.sigma='0[S/m]'; lib.mat{2}.variables.C='Cp(T[1/K])[J/(kg*K)]'; lib.mat{2}.variables.rho='rho(p[1/Pa],T[1/K])[kg/m^3]'; lib.mat{2}.variables.k='k(T[1/K])[W/(m*K)]'; lib.mat{2}.variables.cs='cs(T[1/K])[m/s]'; clear fcns fcns{1}.type='inline'; fcns{1}.name='cs(T)'; fcns{1}.expr='sqrt(1.4*287*T)'; fcns{1}.dexpr={'diff(sqrt(1.4*287*T),T)'}; fcns{2}.type='inline'; fcns{2}.name='rho(p,T)'; fcns{2}.expr='p*0.02897/8.314/T'; fcns{2}.dexpr={'diff(p*0.02897/8.314/T,p)','diff(p*0.02897/8.314/T,T)'}; fcns{3}.type='piecewise'; fcns{3}.name='Cp(T)'; fcns{3}.extmethod='const'; fcns{3}.subtype='poly'; fcns{3}.expr={{'0','1.04763657E+03','1','-3.72589265E-01','2', ... '9.45304214E-04','3','-6.02409443E-07','4','1.28589610E-10'}}; fcns{3}.intervals={'200','1600'}; fcns{4}.type='piecewise'; fcns{4}.name='eta(T)'; fcns{4}.extmethod='const'; fcns{4}.subtype='poly'; fcns{4}.expr={{'0','-8.38278000E-07','1','8.35717342E-08','2', ... '-7.69429583E-11','3','4.64372660E-14','4','-1.06585607E-17'}}; fcns{4}.intervals={'200','1600'}; fcns{5}.type='piecewise'; fcns{5}.name='nu0(T)'; fcns{5}.extmethod='const'; fcns{5}.subtype='poly'; fcns{5}.expr={{'0','-5.86912450E-06','1','5.01274491E-08','2', ... '7.50108343E-11','3','1.80336823E-15','4','-2.91688030E-18'}}; fcns{5}.intervals={'200','1600'}; fcns{6}.type='piecewise'; fcns{6}.name='k(T)'; fcns{6}.extmethod='const'; fcns{6}.subtype='poly'; fcns{6}.expr={{'0','-2.27583562E-03','1','1.15480022E-04','2', ... '-7.90252856E-08','3','4.11702505E-11','4','-7.43864331E-15'}}; fcns{6}.intervals={'200','1600'}; lib.mat{2}.functions = fcns; lib.matgroups{1}.name='Resistivity'; lib.matgroups{1}.variables={'alphares','T0','res0'}; lib.matgroups{1}.descr={'Temperature coefficient','Reference temperature','Resistivity at reference temperature'}; fem.lib = lib; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; fem.ode=ode; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femtime(fem, ... 'solcomp',{'Az'}, ... 'outcomp',{'Az','Azt'}, ... 'blocksize','auto', ... 'tlist',[0:0.1:1], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'Jez_emqa','cont','internal','unit','A/m^2'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',120, ... 'arrowyspacing',120, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1 Surface: External current density [A/m^2] Arrow: Magnetization', ... 'axis',[-1.6912669126691267,1.6912669126691267,-1,1]); % Plot solution postplot(fem, ... 'tridata',{'Jez_emqa','cont','internal','unit','A/m^2'}, ... 'trimap','jet(1024)', ... 'contdata',{'normB_emqa','cont','internal','unit','T'}, ... 'contlevels',20, ... 'contlabel','off', ... 'contmap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',120, ... 'arrowyspacing',120, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1 Surface: External current density [A/m^2] Contour: Magnetic flux density, norm [T] Arrow: Magnetization', ... 'axis',[-1.6912669126691267,1.6912669126691267,-1.0294668164072944,1.0294668164072944]); % Plot solution postplot(fem, ... 'tridata',{'Jez_emqa','cont','internal','unit','A/m^2'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',120, ... 'arrowyspacing',120, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1 Surface: External current density [A/m^2] Arrow: Magnetization', ... 'axis',[-1.6912669126691267,1.6912669126691267,-1.1017395888244597,1.1017395888244597]); % Plot solution postplot(fem, ... 'tridata',{'Jez_emqa','cont','internal','unit','A/m^2'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',120, ... 'arrowyspacing',120, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1 Surface: External current density [A/m^2] Arrow: Magnetization', ... 'axis',[-1.6912669126691267,1.6912669126691267,-1.0294668164072944,1.0294668164072944]); % COMSOL Multiphysics Model M-file % Generated by COMSOL 3.5 (COMSOL 3.5.0.494, $Date: 2008/09/19 16:09:48 $) % Plot in cross-section or along domain postcrossplot(fem,1,[-1 1;0 0], ... 'lindata','Mx_emqa', ... 'linxdata','x', ... 'solnum',[2,6,10], ... 'title','Magnetization, x component [A/m]', ... 'axislabel',{'x','Magnetization',' x component [A/m]'}); % Plot in cross-section or along domain postcrossplot(fem,1,[-1 1;0 0], ... 'lindata','Hx_emqa', ... 'linxdata','x', ... 'solnum',[2,6,10], ... 'title','Magnetic field, x component [A/m]', ... 'axislabel',{'x','Magnetic field',' x component [A/m]'}); % Plot in cross-section or along domain postcrossplot(fem,1,[-1 1;0 0], ... 'lindata','Hx_emqa', ... 'linxdata','x', ... 'solnum',[2,6,10], ... 'title','Magnetic field, x component [A/m]', ... 'axislabel',{'x','Magnetic field',' x component [A/m]'}); % Geometry g10=move(g10,[-0.6000000000000001,0]); [g5]=geomcopy({g10}); [g6]=geomcopy({g5}); g6=move(g6,[0.4,0]); g6=move(g6,[0.6000000000000001,0]); g6=move(g6,[0.20000000000000007,0]); % Analyzed geometry clear s s.objs={g10,g7,g2,g1,g4,g3,g6}; s.name={'R1','SQ5','SQ2','SQ1','SQ4','SQ3','R2'}; s.tags={'g10','g7','g2','g1','g4','g3','g6'}; fem.draw=struct('s',s); fem.geom=geomcsg(fem); % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5); % Refine mesh fem.mesh=meshrefine(fem, ... 'mcase',0, ... 'rmethod','regular'); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'PerpendicularCurrents'; appl.module = 'ACDC'; appl.sshape = 2; appl.assignsuffix = '_emqa'; clear prop prop.analysis='transient'; appl.prop = prop; clear bnd bnd.type = {'A0','cont'}; bnd.ind = [1,1,1,2,2,2,1,1,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,1,1,2,1]; appl.bnd = bnd; clear equ equ.sigma = {'mat2_sigma','mat1_sigma'}; equ.epsilonr = {1,'mat1_epsilonr'}; equ.mur = {1,'mat1_mur'}; equ.ind = [1,2,1,1,2,1,1]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Library materials clear lib lib.mat{1}.name='Iron'; lib.mat{1}.varname='mat1'; lib.mat{1}.variables.nu='0.29'; lib.mat{1}.variables.E='200e9[Pa]'; lib.mat{1}.variables.mur='4000'; lib.mat{1}.variables.sigma='1.12e7[S/m]'; lib.mat{1}.variables.epsilonr='1'; lib.mat{1}.variables.alpha='12.2e-6[1/K]'; lib.mat{1}.variables.C='440[J/(kg*K)]'; lib.mat{1}.variables.rho='7870[kg/m^3]'; lib.mat{1}.variables.k='76.2[W/(m*K)]'; lib.mat{2}.name='Air'; lib.mat{2}.varname='mat2'; lib.mat{2}.variables.nu0='nu0(T[1/K])[m^2/s]'; lib.mat{2}.variables.eta='eta(T[1/K])[Pa*s]'; lib.mat{2}.variables.gamma='1.4'; lib.mat{2}.variables.sigma='0[S/m]'; lib.mat{2}.variables.C='Cp(T[1/K])[J/(kg*K)]'; lib.mat{2}.variables.rho='rho(p[1/Pa],T[1/K])[kg/m^3]'; lib.mat{2}.variables.k='k(T[1/K])[W/(m*K)]'; lib.mat{2}.variables.cs='cs(T[1/K])[m/s]'; clear fcns fcns{1}.type='inline'; fcns{1}.name='cs(T)'; fcns{1}.expr='sqrt(1.4*287*T)'; fcns{1}.dexpr={'diff(sqrt(1.4*287*T),T)'}; fcns{2}.type='inline'; fcns{2}.name='rho(p,T)'; fcns{2}.expr='p*0.02897/8.314/T'; fcns{2}.dexpr={'diff(p*0.02897/8.314/T,p)','diff(p*0.02897/8.314/T,T)'}; fcns{3}.type='piecewise'; fcns{3}.name='Cp(T)'; fcns{3}.extmethod='const'; fcns{3}.subtype='poly'; fcns{3}.expr={{'0','1.04763657E+03','1','-3.72589265E-01','2', ... '9.45304214E-04','3','-6.02409443E-07','4','1.28589610E-10'}}; fcns{3}.intervals={'200','1600'}; fcns{4}.type='piecewise'; fcns{4}.name='eta(T)'; fcns{4}.extmethod='const'; fcns{4}.subtype='poly'; fcns{4}.expr={{'0','-8.38278000E-07','1','8.35717342E-08','2', ... '-7.69429583E-11','3','4.64372660E-14','4','-1.06585607E-17'}}; fcns{4}.intervals={'200','1600'}; fcns{5}.type='piecewise'; fcns{5}.name='nu0(T)'; fcns{5}.extmethod='const'; fcns{5}.subtype='poly'; fcns{5}.expr={{'0','-5.86912450E-06','1','5.01274491E-08','2', ... '7.50108343E-11','3','1.80336823E-15','4','-2.91688030E-18'}}; fcns{5}.intervals={'200','1600'}; fcns{6}.type='piecewise'; fcns{6}.name='k(T)'; fcns{6}.extmethod='const'; fcns{6}.subtype='poly'; fcns{6}.expr={{'0','-2.27583562E-03','1','1.15480022E-04','2', ... '-7.90252856E-08','3','4.11702505E-11','4','-7.43864331E-15'}}; fcns{6}.intervals={'200','1600'}; lib.mat{2}.functions = fcns; lib.matgroups{1}.name='Resistivity'; lib.matgroups{1}.variables={'alphares','T0','res0'}; lib.matgroups{1}.descr={'Temperature coefficient','Reference temperature','Resistivity at reference temperature'}; fem.lib = lib; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; fem.ode=ode; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femtime(fem, ... 'solcomp',{'Az'}, ... 'outcomp',{'Az','Azt'}, ... 'blocksize','auto', ... 'tlist',[0:0.1:1], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'Jez_emqa','cont','internal','unit','A/m^2'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',120, ... 'arrowyspacing',120, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1 Surface: External current density [A/m^2] Arrow: Magnetization', ... 'axis',[-1.7411031642804795,1.7411031642804795,-1.0294668164072944,1.0294668164072944]); % Plot solution postplot(fem, ... 'tridata',{'Jez_emqa','cont','internal','unit','A/m^2'}, ... 'trimap','jet(1024)', ... 'contdata',{'normB_emqa','cont','internal','unit','T'}, ... 'contlevels',20, ... 'contlabel','off', ... 'contmap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',120, ... 'arrowyspacing',120, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1 Surface: External current density [A/m^2] Contour: Magnetic flux density, norm [T] Arrow: Magnetization', ... 'axis',[-1.70287744067372,1.70287744067372,-1.0294668164072944,1.0294668164072944]); % Plot solution postplot(fem, ... 'tridata',{'Jez_emqa','cont','internal','unit','A/m^2'}, ... 'trimap','jet(1024)', ... 'contdata',{'normB_emqa','cont','internal','unit','T'}, ... 'contlevels',20, ... 'contlabel','off', ... 'contmap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',120, ... 'arrowyspacing',120, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1 Surface: External current density [A/m^2] Contour: Magnetic flux density, norm [T] Arrow: Magnetization', ... 'axis',[-1.70287744067372,1.70287744067372,-1.0294668164072944,1.0294668164072944]); % COMSOL Multiphysics Model M-file % Generated by COMSOL 3.5 (COMSOL 3.5.0.494, $Date: 2008/09/19 16:09:48 $) % Plot solution postplot(fem, ... 'tridata',{'Jez_emqa','cont','internal','unit','A/m^2'}, ... 'trimap','jet(1024)', ... 'contdata',{'normB_emqa','cont','internal','unit','T'}, ... 'contlevels',20, ... 'contlabel','off', ... 'contmap','jet(1024)', ... 'arrowdata',{'Hx_emqa','Hy_emqa'}, ... 'arrowxspacing',120, ... 'arrowyspacing',120, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1 Surface: External current density [A/m^2] Contour: Magnetic flux density, norm [T] Arrow: Magnetic field', ... 'axis',[-1.79060143004176,1.79060143004176,-1.0294668164072944,1.0294668164072944]); % Plot solution postplot(fem, ... 'tridata',{'Jez_emqa','cont','internal','unit','A/m^2'}, ... 'trimap','jet(1024)', ... 'contdata',{'normB_emqa','cont','internal','unit','T'}, ... 'contlevels',20, ... 'contlabel','off', ... 'contmap','jet(1024)', ... 'arrowdata',{'Hx_emqa','Hy_emqa'}, ... 'arrowxspacing',120, ... 'arrowyspacing',120, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',8, ... 'title','Time=0.7 Surface: External current density [A/m^2] Contour: Magnetic flux density, norm [T] Arrow: Magnetic field', ... 'axis',[-1.79060143004176,1.79060143004176,-1.0294668164072944,1.0294668164072944]); % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5); % Refine mesh fem.mesh=meshrefine(fem, ... 'mcase',0, ... 'rmethod','regular'); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'PerpendicularCurrents'; appl.module = 'ACDC'; appl.sshape = 2; appl.assignsuffix = '_emqa'; clear prop prop.analysis='transient'; appl.prop = prop; clear bnd bnd.type = {'A0','cont'}; bnd.ind = [1,1,1,2,2,2,1,1,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,1,1,2,1]; appl.bnd = bnd; clear equ equ.Jez = {0,0,'flc2hs(t-0.5,0.25)','-flc2hs(t-0.5,0.25)'}; equ.sigma = {'mat2_sigma','mat1_sigma','mat2_sigma','mat2_sigma'}; equ.epsilonr = {1,'mat1_epsilonr',1,1}; equ.mur = {1,'mat1_mur',1,1}; equ.ind = [1,2,3,4,2,3,4]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Library materials clear lib lib.mat{1}.name='Iron'; lib.mat{1}.varname='mat1'; lib.mat{1}.variables.nu='0.29'; lib.mat{1}.variables.E='200e9[Pa]'; lib.mat{1}.variables.mur='4000'; lib.mat{1}.variables.sigma='1.12e7[S/m]'; lib.mat{1}.variables.epsilonr='1'; lib.mat{1}.variables.alpha='12.2e-6[1/K]'; lib.mat{1}.variables.C='440[J/(kg*K)]'; lib.mat{1}.variables.rho='7870[kg/m^3]'; lib.mat{1}.variables.k='76.2[W/(m*K)]'; lib.mat{2}.name='Air'; lib.mat{2}.varname='mat2'; lib.mat{2}.variables.nu0='nu0(T[1/K])[m^2/s]'; lib.mat{2}.variables.eta='eta(T[1/K])[Pa*s]'; lib.mat{2}.variables.gamma='1.4'; lib.mat{2}.variables.sigma='0[S/m]'; lib.mat{2}.variables.C='Cp(T[1/K])[J/(kg*K)]'; lib.mat{2}.variables.rho='rho(p[1/Pa],T[1/K])[kg/m^3]'; lib.mat{2}.variables.k='k(T[1/K])[W/(m*K)]'; lib.mat{2}.variables.cs='cs(T[1/K])[m/s]'; clear fcns fcns{1}.type='inline'; fcns{1}.name='cs(T)'; fcns{1}.expr='sqrt(1.4*287*T)'; fcns{1}.dexpr={'diff(sqrt(1.4*287*T),T)'}; fcns{2}.type='inline'; fcns{2}.name='rho(p,T)'; fcns{2}.expr='p*0.02897/8.314/T'; fcns{2}.dexpr={'diff(p*0.02897/8.314/T,p)','diff(p*0.02897/8.314/T,T)'}; fcns{3}.type='piecewise'; fcns{3}.name='Cp(T)'; fcns{3}.extmethod='const'; fcns{3}.subtype='poly'; fcns{3}.expr={{'0','1.04763657E+03','1','-3.72589265E-01','2', ... '9.45304214E-04','3','-6.02409443E-07','4','1.28589610E-10'}}; fcns{3}.intervals={'200','1600'}; fcns{4}.type='piecewise'; fcns{4}.name='eta(T)'; fcns{4}.extmethod='const'; fcns{4}.subtype='poly'; fcns{4}.expr={{'0','-8.38278000E-07','1','8.35717342E-08','2', ... '-7.69429583E-11','3','4.64372660E-14','4','-1.06585607E-17'}}; fcns{4}.intervals={'200','1600'}; fcns{5}.type='piecewise'; fcns{5}.name='nu0(T)'; fcns{5}.extmethod='const'; fcns{5}.subtype='poly'; fcns{5}.expr={{'0','-5.86912450E-06','1','5.01274491E-08','2', ... '7.50108343E-11','3','1.80336823E-15','4','-2.91688030E-18'}}; fcns{5}.intervals={'200','1600'}; fcns{6}.type='piecewise'; fcns{6}.name='k(T)'; fcns{6}.extmethod='const'; fcns{6}.subtype='poly'; fcns{6}.expr={{'0','-2.27583562E-03','1','1.15480022E-04','2', ... '-7.90252856E-08','3','4.11702505E-11','4','-7.43864331E-15'}}; fcns{6}.intervals={'200','1600'}; lib.mat{2}.functions = fcns; lib.matgroups{1}.name='Resistivity'; lib.matgroups{1}.variables={'alphares','T0','res0'}; lib.matgroups{1}.descr={'Temperature coefficient','Reference temperature','Resistivity at reference temperature'}; fem.lib = lib; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; fem.ode=ode; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femtime(fem, ... 'solcomp',{'Az'}, ... 'outcomp',{'Az','Azt'}, ... 'blocksize','auto', ... 'tlist',[0:0.1:1], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'Jez_emqa','cont','internal','unit','A/m^2'}, ... 'trimap','jet(1024)', ... 'contdata',{'normB_emqa','cont','internal','unit','T'}, ... 'contlevels',20, ... 'contlabel','off', ... 'contmap','jet(1024)', ... 'arrowdata',{'Hx_emqa','Hy_emqa'}, ... 'arrowxspacing',120, ... 'arrowyspacing',120, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1 Surface: External current density [A/m^2] Contour: Magnetic flux density, norm [T] Arrow: Magnetic field', ... 'axis',[-1.8272086298594412,1.8272086298594412,-1.0294668164072944,1.0294668164072944]); % Plot solution postplot(fem, ... 'tridata',{'Jez_emqa','cont','internal','unit','A/m^2'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Hx_emqa','Hy_emqa'}, ... 'arrowxspacing',120, ... 'arrowyspacing',120, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1 Surface: External current density [A/m^2] Arrow: Magnetic field', ... 'axis',[-1.70287744067372,1.70287744067372,-1.0509638032928297,1.0509638032928297]); % Plot solution postplot(fem, ... 'tridata',{'Az','cont','internal','unit','Wb/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Hx_emqa','Hy_emqa'}, ... 'arrowxspacing',120, ... 'arrowyspacing',120, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1 Surface: Magnetic potential, z component [Wb/m] Arrow: Magnetic field', ... 'axis',[-1.7789909020371666,1.7789909020371666,-1.0294668164072944,1.0294668164072944]); % Plot solution postplot(fem, ... 'tridata',{'Wm_emqa','cont','internal','unit','J/m^3'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Hx_emqa','Hy_emqa'}, ... 'arrowxspacing',120, ... 'arrowyspacing',120, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1 Surface: Magnetic energy density [J/m^3] Arrow: Magnetic field', ... 'axis',[-1.7440530210545548,1.7440530210545548,-1.0294668164072944,1.0294668164072944]); % Plot solution postplot(fem, ... 'tridata',{'Hx_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Hx_emqa','Hy_emqa'}, ... 'arrowxspacing',120, ... 'arrowyspacing',120, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1 Surface: Magnetic field, x component [A/m] Arrow: Magnetic field', ... 'axis',[-1.7506096113592713,1.7506096113592713,-1.0294668164072944,1.0294668164072944]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Hx_emqa','Hy_emqa'}, ... 'arrowxspacing',120, ... 'arrowyspacing',120, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1 Surface: Magnetic field, norm [A/m] Arrow: Magnetic field', ... 'axis',[-1.7569052909223113,1.7569052909223113,-1.0294668164072944,1.0294668164072944]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Hx_emqa','Hy_emqa'}, ... 'arrowxspacing',120, ... 'arrowyspacing',120, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1 Surface: Magnetic field, norm [A/m] Arrow: Magnetic field', ... 'axis',[-1.7491939290016576,1.7491939290016576,-1.0294668164072944,1.0294668164072944]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Hx_emqa','Hy_emqa'}, ... 'arrowxspacing',120, ... 'arrowyspacing',120, ... 'arrowscale',5, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1 Surface: Magnetic field, norm [A/m] Arrow: Magnetic field', ... 'axis',[-1.7491939290016576,1.7491939290016576,-1.0294668164072944,1.0294668164072944]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Hx_emqa','Hy_emqa'}, ... 'arrowxspacing',60, ... 'arrowyspacing',60, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1 Surface: Magnetic field, norm [A/m] Arrow: Magnetic field', ... 'axis',[-1.7491939290016576,1.7491939290016576,-1.0294668164072944,1.0294668164072944]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Hx_emqa','Hy_emqa'}, ... 'arrowxspacing',60, ... 'arrowyspacing',60, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1 Surface: Magnetic field, norm [A/m] Arrow: Magnetic field', ... 'axis',[-1.7491939290016576,1.7491939290016576,-1.0294668164072944,1.0294668164072944]); % COMSOL Multiphysics Model M-file % Generated by COMSOL 3.5 (COMSOL 3.5.0.494, $Date: 2008/09/19 16:09:48 $) % Geometry g5=rect2(1.1,0.2,'base','center','pos',[-0.6,0]); g8=rect2(1.1,0.2,'base','center','pos',[0.6,0]); % Analyzed geometry clear s s.objs={g7,g2,g1,g4,g3,g5,g8}; s.name={'SQ5','SQ2','SQ1','SQ4','SQ3','R1','R2'}; s.tags={'g7','g2','g1','g4','g3','g5','g8'}; fem.draw=struct('s',s); fem.geom=geomcsg(fem); % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5); % Refine mesh fem.mesh=meshrefine(fem, ... 'mcase',0, ... 'rmethod','regular'); % Refine mesh fem.mesh=meshrefine(fem, ... 'mcase',0, ... 'rmethod','regular'); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'PerpendicularCurrents'; appl.module = 'ACDC'; appl.assignsuffix = '_emqa'; clear prop prop.analysis='transient'; appl.prop = prop; clear bnd bnd.type = {'A0','cont'}; bnd.ind = [1,1,1,2,2,2,1,1,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,1,1,2,1]; appl.bnd = bnd; clear equ equ.Jez = {0,0,'flc2hs(t-0.5,0.25)','-flc2hs(t-0.5,0.25)'}; equ.sigma = {'mat2_sigma','mat1_sigma','mat2_sigma','mat2_sigma'}; equ.epsilonr = {1,'mat1_epsilonr',1,1}; equ.mur = {1,'mat1_mur',1,1}; equ.ind = [1,2,3,4,2,3,4]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Library materials clear lib lib.mat{1}.name='Iron'; lib.mat{1}.varname='mat1'; lib.mat{1}.variables.nu='0.29'; lib.mat{1}.variables.E='200e9[Pa]'; lib.mat{1}.variables.mur='4000'; lib.mat{1}.variables.sigma='1.12e7[S/m]'; lib.mat{1}.variables.epsilonr='1'; lib.mat{1}.variables.alpha='12.2e-6[1/K]'; lib.mat{1}.variables.C='440[J/(kg*K)]'; lib.mat{1}.variables.rho='7870[kg/m^3]'; lib.mat{1}.variables.k='76.2[W/(m*K)]'; lib.mat{2}.name='Air'; lib.mat{2}.varname='mat2'; lib.mat{2}.variables.nu0='nu0(T[1/K])[m^2/s]'; lib.mat{2}.variables.eta='eta(T[1/K])[Pa*s]'; lib.mat{2}.variables.gamma='1.4'; lib.mat{2}.variables.sigma='0[S/m]'; lib.mat{2}.variables.C='Cp(T[1/K])[J/(kg*K)]'; lib.mat{2}.variables.rho='rho(p[1/Pa],T[1/K])[kg/m^3]'; lib.mat{2}.variables.k='k(T[1/K])[W/(m*K)]'; lib.mat{2}.variables.cs='cs(T[1/K])[m/s]'; clear fcns fcns{1}.type='inline'; fcns{1}.name='cs(T)'; fcns{1}.expr='sqrt(1.4*287*T)'; fcns{1}.dexpr={'diff(sqrt(1.4*287*T),T)'}; fcns{2}.type='inline'; fcns{2}.name='rho(p,T)'; fcns{2}.expr='p*0.02897/8.314/T'; fcns{2}.dexpr={'diff(p*0.02897/8.314/T,p)','diff(p*0.02897/8.314/T,T)'}; fcns{3}.type='piecewise'; fcns{3}.name='Cp(T)'; fcns{3}.extmethod='const'; fcns{3}.subtype='poly'; fcns{3}.expr={{'0','1.04763657E+03','1','-3.72589265E-01','2', ... '9.45304214E-04','3','-6.02409443E-07','4','1.28589610E-10'}}; fcns{3}.intervals={'200','1600'}; fcns{4}.type='piecewise'; fcns{4}.name='eta(T)'; fcns{4}.extmethod='const'; fcns{4}.subtype='poly'; fcns{4}.expr={{'0','-8.38278000E-07','1','8.35717342E-08','2', ... '-7.69429583E-11','3','4.64372660E-14','4','-1.06585607E-17'}}; fcns{4}.intervals={'200','1600'}; fcns{5}.type='piecewise'; fcns{5}.name='nu0(T)'; fcns{5}.extmethod='const'; fcns{5}.subtype='poly'; fcns{5}.expr={{'0','-5.86912450E-06','1','5.01274491E-08','2', ... '7.50108343E-11','3','1.80336823E-15','4','-2.91688030E-18'}}; fcns{5}.intervals={'200','1600'}; fcns{6}.type='piecewise'; fcns{6}.name='k(T)'; fcns{6}.extmethod='const'; fcns{6}.subtype='poly'; fcns{6}.expr={{'0','-2.27583562E-03','1','1.15480022E-04','2', ... '-7.90252856E-08','3','4.11702505E-11','4','-7.43864331E-15'}}; fcns{6}.intervals={'200','1600'}; lib.mat{2}.functions = fcns; lib.matgroups{1}.name='Resistivity'; lib.matgroups{1}.variables={'alphares','T0','res0'}; lib.matgroups{1}.descr={'Temperature coefficient','Reference temperature','Resistivity at reference temperature'}; fem.lib = lib; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; fem.ode=ode; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femtime(fem, ... 'solcomp',{'Az'}, ... 'outcomp',{'Az','Azt'}, ... 'blocksize','auto', ... 'tlist',[0:0.1:1], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Hx_emqa','Hy_emqa'}, ... 'arrowxspacing',60, ... 'arrowyspacing',60, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1 Surface: Magnetic field, norm [A/m] Arrow: Magnetic field', ... 'axis',[-1.827209,1.827209,-1.0294670249480251,1.0294670249480251]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'PerpendicularCurrents'; appl.module = 'ACDC'; appl.sshape = 2; appl.assignsuffix = '_emqa'; clear prop prop.analysis='transient'; appl.prop = prop; clear bnd bnd.type = {'A0','cont'}; bnd.ind = [1,1,1,2,2,2,1,1,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,1,1,2,1]; appl.bnd = bnd; clear equ equ.Jez = {0,0,'1-flc2hs(t-0.5,0.25)','-(1-flc2hs(t-0.5,0.25))'}; equ.sigma = {'mat2_sigma','mat1_sigma','mat2_sigma','mat2_sigma'}; equ.epsilonr = {1,'mat1_epsilonr',1,1}; equ.mur = {1,'mat1_mur',1,1}; equ.ind = [1,2,3,4,2,3,4]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Library materials clear lib lib.mat{1}.name='Iron'; lib.mat{1}.varname='mat1'; lib.mat{1}.variables.nu='0.29'; lib.mat{1}.variables.E='200e9[Pa]'; lib.mat{1}.variables.mur='4000'; lib.mat{1}.variables.sigma='1.12e7[S/m]'; lib.mat{1}.variables.epsilonr='1'; lib.mat{1}.variables.alpha='12.2e-6[1/K]'; lib.mat{1}.variables.C='440[J/(kg*K)]'; lib.mat{1}.variables.rho='7870[kg/m^3]'; lib.mat{1}.variables.k='76.2[W/(m*K)]'; lib.mat{2}.name='Air'; lib.mat{2}.varname='mat2'; lib.mat{2}.variables.nu0='nu0(T[1/K])[m^2/s]'; lib.mat{2}.variables.eta='eta(T[1/K])[Pa*s]'; lib.mat{2}.variables.gamma='1.4'; lib.mat{2}.variables.sigma='0[S/m]'; lib.mat{2}.variables.C='Cp(T[1/K])[J/(kg*K)]'; lib.mat{2}.variables.rho='rho(p[1/Pa],T[1/K])[kg/m^3]'; lib.mat{2}.variables.k='k(T[1/K])[W/(m*K)]'; lib.mat{2}.variables.cs='cs(T[1/K])[m/s]'; clear fcns fcns{1}.type='inline'; fcns{1}.name='cs(T)'; fcns{1}.expr='sqrt(1.4*287*T)'; fcns{1}.dexpr={'diff(sqrt(1.4*287*T),T)'}; fcns{2}.type='inline'; fcns{2}.name='rho(p,T)'; fcns{2}.expr='p*0.02897/8.314/T'; fcns{2}.dexpr={'diff(p*0.02897/8.314/T,p)','diff(p*0.02897/8.314/T,T)'}; fcns{3}.type='piecewise'; fcns{3}.name='Cp(T)'; fcns{3}.extmethod='const'; fcns{3}.subtype='poly'; fcns{3}.expr={{'0','1.04763657E+03','1','-3.72589265E-01','2', ... '9.45304214E-04','3','-6.02409443E-07','4','1.28589610E-10'}}; fcns{3}.intervals={'200','1600'}; fcns{4}.type='piecewise'; fcns{4}.name='eta(T)'; fcns{4}.extmethod='const'; fcns{4}.subtype='poly'; fcns{4}.expr={{'0','-8.38278000E-07','1','8.35717342E-08','2', ... '-7.69429583E-11','3','4.64372660E-14','4','-1.06585607E-17'}}; fcns{4}.intervals={'200','1600'}; fcns{5}.type='piecewise'; fcns{5}.name='nu0(T)'; fcns{5}.extmethod='const'; fcns{5}.subtype='poly'; fcns{5}.expr={{'0','-5.86912450E-06','1','5.01274491E-08','2', ... '7.50108343E-11','3','1.80336823E-15','4','-2.91688030E-18'}}; fcns{5}.intervals={'200','1600'}; fcns{6}.type='piecewise'; fcns{6}.name='k(T)'; fcns{6}.extmethod='const'; fcns{6}.subtype='poly'; fcns{6}.expr={{'0','-2.27583562E-03','1','1.15480022E-04','2', ... '-7.90252856E-08','3','4.11702505E-11','4','-7.43864331E-15'}}; fcns{6}.intervals={'200','1600'}; lib.mat{2}.functions = fcns; lib.matgroups{1}.name='Resistivity'; lib.matgroups{1}.variables={'alphares','T0','res0'}; lib.matgroups{1}.descr={'Temperature coefficient','Reference temperature','Resistivity at reference temperature'}; fem.lib = lib; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; fem.ode=ode; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femtime(fem, ... 'solcomp',{'Az'}, ... 'outcomp',{'Az','Azt'}, ... 'blocksize','auto', ... 'tlist',[0:0.1:1], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Hx_emqa','Hy_emqa'}, ... 'arrowxspacing',60, ... 'arrowyspacing',60, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1 Surface: Magnetic field, norm [A/m] Arrow: Magnetic field', ... 'axis',[-1.8545828726591755,1.8545828726591755,-1.029467,1.029467]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Hx_emqa','Hy_emqa'}, ... 'arrowxspacing',60, ... 'arrowyspacing',60, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',2, ... 'title','Time=0.1 Surface: Magnetic field, norm [A/m] Arrow: Magnetic field', ... 'axis',[-1.827209,1.827209,-1.080143475276753,1.080143475276753]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Hx_emqa','Hy_emqa'}, ... 'arrowxspacing',60, ... 'arrowyspacing',60, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',10, ... 'title','Time=0.9 Surface: Magnetic field, norm [A/m] Arrow: Magnetic field', ... 'axis',[-1.827209,1.827209,-1.080143475276753,1.080143475276753]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Hx_emqa','Hy_emqa'}, ... 'arrowxspacing',60, ... 'arrowyspacing',60, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',10, ... 'title','Time=0.9 Surface: Magnetic field, norm [A/m] Arrow: Magnetic field', ... 'axis',[-1.827209,1.827209,-1.080143475276753,1.080143475276753]); % Plot in cross-section or along domain postcrossplot(fem,0,[0;0], ... 'pointdata',{'normH_emqa','unit','A/m'}, ... 'title','Magnetic field, norm [A/m]', ... 'axislabel',{'Time','Magnetic field',' norm [A/m]'}); % Plot in cross-section or along domain postcrossplot(fem,0,[0;0], ... 'pointdata',{'normH_emqa','unit','A/m'}, ... 'title','Magnetic field, norm [A/m]', ... 'axislabel',{'Time','Magnetic field',' norm [A/m]'}); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',60, ... 'arrowyspacing',60, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',10, ... 'title','Time=0.9 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-1.827209,1.827209,-1.080143475276753,1.080143475276753]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',60, ... 'arrowyspacing',60, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',10, ... 'title','Time=0.9 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-1.827209,1.827209,-1.080143475276753,1.080143475276753]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',60, ... 'arrowyspacing',60, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',10, ... 'title','Time=0.9 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-1.827209,1.827209,-1.080143475276753,1.080143475276753]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',60, ... 'arrowyspacing',60, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',10, ... 'title','Time=0.9 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'sdl',{[2,3,4,5,6,7]}, ... 'axis',[-1.8545828726591755,1.8545828726591755,-1.029467,1.029467]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',60, ... 'arrowyspacing',60, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',10, ... 'title','Time=0.9 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'sdl',{[2,3,4,5,6,7]}, ... 'axis',[-1.8545828726591755,1.8545828726591755,-1.029467,1.029467]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',60, ... 'arrowyspacing',60, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',2, ... 'title','Time=0.1 Sut�`rface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'sdl',{[2,3,4,5,6,7]}, ... 'axis',[-1.827209,1.827209,-1.0785515173176126,1.0785515173176126]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',60, ... 'arrowyspacing',60, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',5, ... 'title','Time=0.4 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'sdl',{[2,3,4,5,6,7]}, ... 'axis',[-1.827209,1.827209,-1.0753816377663485,1.0753816377663485]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',60, ... 'arrowyspacing',60, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',6, ... 'title','Time=0.5 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'sdl',{[2,3,4,5,6,7]}, ... 'axis',[-1.827209,1.827209,-1.080143475276753,1.080143475276753]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',60, ... 'arrowyspacing',60, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',10, ... 'title','Time=0.9 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'sdl',{[2,3,4,5,6,7]}, ... 'axis',[-1.827209,1.827209,-1.0753816377663485,1.0753816377663485]); % COMSOL Multiphysics Model M-file % Generated by COMSOL 3.5 (COMSOL 3.5.0.494, $Date: 2008/09/19 16:09:48 $) % Geometry [g10]=geomcopy({g5}); [g11]=geomcopy({g10}); g11=move(g11,[0.045,0]); [g12]=geomcopy({g8}); [g13]=geomcopy({g12}); g13=move(g13,[-0.045,0]); % Analyzed geometry clear s s.objs={g7,g2,g1,g4,g3,g11,g13}; s.name={'SQ5','SQ2','SQ1','SQ4','SQ3','R1','R2'}; s.tags={'g7','g2','g1','g4','g3','g11','g13'}; fem.draw=struct('s',s); fem.geom=geomcsg(fem); % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5); % COMSOL Multiphysics Model M-file % Generated by COMSOL 3.5 (COMSOL 3.5.0.494, $Date: 2008/09/19 16:09:48 $) % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'PerpendicularCurrents'; appl.module = 'ACDC'; appl.assignsuffix = '_emqa'; clear prop prop.analysis='transient'; appl.prop = prop; clear bnd bnd.type = {'A0','cont'}; bnd.ind = [1,1,1,2,2,2,1,1,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,1,1,2,1]; appl.bnd = bnd; clear equ equ.Jez = {0,0,'1-flc2hs(t-0.5,0.25)','-(1-flc2hs(t-0.5,0.25))'}; equ.sigma = {'mat2_sigma','mat1_sigma','mat2_sigma','mat2_sigma'}; equ.epsilonr = {1,'mat1_epsilonr',1,1}; equ.mur = {1,'mat1_mur',1,1}; equ.ind = [1,2,3,4,2,3,4]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Library materials clear lib lib.mat{1}.name='Iron'; lib.mat{1}.varname='mat1'; lib.mat{1}.variables.nu='0.29'; lib.mat{1}.variables.E='200e9[Pa]'; lib.mat{1}.variables.mur='4000'; lib.mat{1}.variables.sigma='1.12e7[S/m]'; lib.mat{1}.variables.epsilonr='1'; lib.mat{1}.variables.alpha='12.2e-6[1/K]'; lib.mat{1}.variables.C='440[J/(kg*K)]'; lib.mat{1}.variables.rho='7870[kg/m^3]'; lib.mat{1}.variables.k='76.2[W/(m*K)]'; lib.mat{2}.name='Air'; lib.mat{2}.varname='mat2'; lib.mat{2}.variables.nu0='nu0(T[1/K])[m^2/s]'; lib.mat{2}.variables.eta='eta(T[1/K])[Pa*s]'; lib.mat{2}.variables.gamma='1.4'; lib.mat{2}.variables.sigma='0[S/m]'; lib.mat{2}.variables.C='Cp(T[1/K])[J/(kg*K)]'; lib.mat{2}.variables.rho='rho(p[1/Pa],T[1/K])[kg/m^3]'; lib.mat{2}.variables.k='k(T[1/K])[W/(m*K)]'; lib.mat{2}.variables.cs='cs(T[1/K])[m/s]'; clear fcns fcns{1}.type='inline'; fcns{1}.name='cs(T)'; fcns{1}.expr='sqrt(1.4*287*T)'; fcns{1}.dexpr={'diff(sqrt(1.4*287*T),T)'}; fcns{2}.type='inline'; fcns{2}.name='rho(p,T)'; fcns{2}.expr='p*0.02897/8.314/T'; fcns{2}.dexpr={'diff(p*0.02897/8.314/T,p)','diff(p*0.02897/8.314/T,T)'}; fcns{3}.type='piecewise'; fcns{3}.name='Cp(T)'; fcns{3}.extmethod='const'; fcns{3}.subtype='poly'; fcns{3}.expr={{'0','1.04763657E+03','1','-3.72589265E-01','2', ... '9.45304214E-04','3','-6.02409443E-07','4','1.28589610E-10'}}; fcns{3}.intervals={'200','1600'}; fcns{4}.type='piecewise'; fcns{4}.name='eta(T)'; fcns{4}.extmethod='const'; fcns{4}.subtype='poly'; fcns{4}.expr={{'0','-8.38278000E-07','1','8.35717342E-08','2', ... '-7.69429583E-11','3','4.64372660E-14','4','-1.06585607E-17'}}; fcns{4}.intervals={'200','1600'}; fcns{5}.type='piecewise'; fcns{5}.name='nu0(T)'; fcns{5}.extmethod='const'; fcns{5}.subtype='poly'; fcns{5}.expr={{'0','-5.86912450E-06','1','5.01274491E-08','2', ... '7.50108343E-11','3','1.80336823E-15','4','-2.91688030E-18'}}; fcns{5}.intervals={'200','1600'}; fcns{6}.type='piecewise'; fcns{6}.name='k(T)'; fcns{6}.extmethod='const'; fcns{6}.subtype='poly'; fcns{6}.expr={{'0','-2.27583562E-03','1','1.15480022E-04','2', ... '-7.90252856E-08','3','4.11702505E-11','4','-7.43864331E-15'}}; fcns{6}.intervals={'200','1600'}; lib.mat{2}.functions = fcns; lib.matgroups{1}.name='Resistivity'; lib.matgroups{1}.variables={'alphares','T0','res0'}; lib.matgroups{1}.descr={'Temperature coefficient','Reference temperature','Resistivity at reference temperature'}; fem.lib = lib; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; fem.ode=ode; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femtime(fem, ... 'solcomp',{'Az'}, ... 'outcomp',{'Az','Azt'}, ... 'blocksize','auto', ... 'tlist',[0:0.1:1], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',60, ... 'arrowyspacing',60, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-1.9143294458663163,1.9143294458663163,-1.0785515173176126,1.0785515173176126]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'PerpendicularCurrents'; appl.module = 'ACDC'; appl.sshape = 2; appl.assignsuffix = '_emqa'; clear prop prop.analysis='transient'; appl.prop = prop; clear bnd bnd.type = {'A0','cont'}; bnd.ind = [1,1,1,2,2,2,1,1,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,1,1,2,1]; appl.bnd = bnd; clear equ equ.Jez = {0,0,'1-flc2hs(t-0.5,0.25)','-(1-flc2hs(t-0.5,0.25))'}; equ.sigma = {'mat2_sigma','mat3_sigma','mat2_sigma','mat2_sigma'}; equ.epsilonr = {1,'mat3_epsilonr',1,1}; equ.mur = {1,'mat3_MUR(normB_emqa[1/T])',1,1}; equ.normfH = {'1/mu0_emqa*normB_emqa','mat3_HB(normB_emqa[1/T])[A/m]','1/mu0_emqa*normB_emqa', ... '1/mu0_emqa*normB_emqa'}; equ.ind = [1,2,3,4,2,3,4]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Library materials clear lib lib.mat{1}.name='Iron'; lib.mat{1}.varname='mat1'; lib.mat{1}.variables.nu='0.29'; lib.mat{1}.variables.E='200e9[Pa]'; lib.mat{1}.variables.mur='4000'; lib.mat{1}.variables.sigma='1.12e7[S/m]'; lib.mat{1}.variables.epsilonr='1'; lib.mat{1}.variables.alpha='12.2e-6[1/K]'; lib.mat{1}.variables.C='440[J/(kg*K)]'; lib.mat{1}.variables.rho='7870[kg/m^3]'; lib.mat{1}.variables.k='76.2[W/(m*K)]'; lib.mat{2}.name='Air'; lib.mat{2}.varname='mat2'; lib.mat{2}.variables.nu0='nu0(T[1/K])[m^2/s]'; lib.mat{2}.variables.eta='eta(T[1/K])[Pa*s]'; lib.mat{2}.variables.gamma='1.4'; lib.mat{2}.variables.sigma='0[S/m]'; lib.mat{2}.variables.C='Cp(T[1/K])[J/(kg*K)]'; lib.mat{2}.variables.rho='rho(p[1/Pa],T[1/K])[kg/m^3]'; lib.mat{2}.variables.k='k(T[1/K])[W/(m*K)]'; lib.mat{2}.variables.cs='cs(T[1/K])[m/s]'; clear fcns fcns{1}.type='inline'; fcns{1}.name='cs(T)'; fcns{1}.expr='sqrt(1.4*287*T)'; fcns{1}.dexpr={'diff(sqrt(1.4*287*T),T)'}; fcns{2}.type='inline'; fcns{2}.name='rho(p,T)'; fcns{2}.expr='p*0.02897/8.314/T'; fcns{2}.dexpr={'diff(p*0.02897/8.314/T,p)','diff(p*0.02897/8.314/T,T)'}; fcns{3}.type='piecewise'; fcns{3}.name='Cp(T)'; fcns{3}.extmethod='const'; fcns{3}.subtype='poly'; fcns{3}.expr={{'0','1.04763657E+03','1','-3.72589265E-01','2', ... '9.45304214E-04','3','-6.02409443E-07','4','1.28589610E-10'}}; fcns{3}.intervals={'200','1600'}; fcns{4}.type='piecewise'; fcns{4}.name='eta(T)'; fcns{4}.extmethod='const'; fcns{4}.subtype='poly'; fcns{4}.expr={{'0','-8.38278000E-07','1','8.35717342E-08','2', ... '-7.69429583E-11','3','4.64372660E-14','4','-1.06585607E-17'}}; fcns{4}.intervals={'200','1600'}; fcns{5}.type='piecewise'; fcns{5}.name='nu0(T)'; fcns{5}.extmethod='const'; fcns{5}.subtype='poly'; fcns{5}.expr={{'0','-5.86912450E-06','1','5.01274491E-08','2', ... '7.50108343E-11','3','1.80336823E-15','4','-2.91688030E-18'}}; fcns{5}.intervals={'200','1600'}; fcns{6}.type='piecewise'; fcns{6}.name='k(T)'; fcns{6}.extmethod='const'; fcns{6}.subtype='poly'; fcns{6}.expr={{'0','-2.27583562E-03','1','1.15480022E-04','2', ... '-7.90252856E-08','3','4.11702505E-11','4','-7.43864331E-15'}}; fcns{6}.intervals={'200','1600'}; lib.mat{2}.functions = fcns; lib.mat{3}.name='Soft Iron (without losses)'; lib.mat{3}.varname='mat3'; lib.mat{3}.variables.normfB='BH(normH[m/A])[T]'; lib.mat{3}.variables.mur='MUR(normB[1/T])'; lib.mat{3}.variables.sigma='0[S/m]'; lib.mat{3}.variables.normfH='HB(normB[1/T])[A/m]'; lib.mat{3}.variables.epsilonr='1'; clear fcns fcns{1}.type='interp'; fcns{1}.name='MUR'; fcns{1}.method='linear'; fcns{1}.extmethod='const'; fcns{1}.x={'1','1.1','1.2','1.3','1.4','1.5','1.6','1.7','1.8','1.9', ... '2.0','2.1','2.2','2.3','2.4'}; fcns{1}.data={'1200','820','560','420','290','220','160','110','70','47', ... '26','15','10','7','6'}; fcns{2}.type='interp'; fcns{2}.name='HB'; fcns{2}.method='linear'; fcns{2}.extmethod='extrap'; fcns{2}.x={'0','1','1.1','1.2','1.3','1.4','1.5','1.6','1.7','1.8', ... '1.9','2.0','2.1','2.2','2.3','2.4'}; fcns{2}.data={'0','663.146','1067.5','1705.23','2463.11','3841.67', ... '5425.74','7957.75','12298.3','20462.8','32169.6','61213.4','111408', ... '175070','261469','318310'}; fcns{3}.type='interp'; fcns{3}.name='BH'; fcns{3}.method='linear'; fcns{3}.extmethod='extrap'; fcns{3}.x={'0','663.146','1067.5','1705.23','2463.11','3841.67', ... '5425.74','7957.75','12298.3','20462.8','32169.6','61213.4','111408', ... '175070','261469','318310'}; fcns{3}.data={'0','1','1.1','1.2','1.3','1.4','1.5','1.6','1.7','1.8', ... '1.9','2.0','2.1','2.2','2.3','2.4'}; lib.mat{3}.functions = fcns; lib.matgroups{1}.name='Resistivity'; lib.matgroups{1}.variables={'alphares','T0','res0'}; lib.matgroups{1}.descr={'Temperature coefficient','Reference temperature','Resistivity at reference temperature'}; lib.matgroups{2}.name='Electromagnetic (AC/DC)'; lib.matgroups{2}.variables={'alphares','T0','res0','Br','normfH','fH','normfB','fB'}; lib.matgroups{2}.descr={'Temperature coefficient','Reference temperature','Resistivity at reference temperature','Remanent flux density','Nonlinear magnetic field, norm','Nonlinear magnetic field','Nonlinear magnetic flux density, norm','Nonlinear magnetic flux density'}; fem.lib = lib; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; fem.ode=ode; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femtime(fem, ... 'solcomp',{'Az'}, ... 'outcomp',{'Az','Azt'}, ... 'blocksize','auto', ... 'tlist',[0:0.1:1], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',60, ... 'arrowyspacing',60, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-1.9430085386882836,1.9430085386882836,-1.0785515173176126,1.0785515173176126]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',60, ... 'arrowyspacing',60, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',10, ... 'title','Time=0.9 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-1.9143294458663158,1.9143294458663158,-1.1316441964124861,1.1316441964124861]); % Plot in cross-section or along domain postcrossplot(fem,0,[0;0], ... 'pointdata',{'normH_emqa','unit','A/m'}, ... 'title','Magnetic field, norm [A/m]', ... 'axislabel',{'Time','Magnetic field',' norm [A/m]'}); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'PerpendicularCurrents'; appl.module = 'ACDC'; appl.sshape = 2; appl.assignsuffix = '_emqa'; clear prop prop.analysis='transient'; appl.prop = prop; clear bnd bnd.type = {'A0','cont'}; bnd.ind = [1,1,1,2,2,2,1,1,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,1,1,2,1]; appl.bnd = bnd; clear equ equ.magconstrel = {'M','mur','mur','mur'}; equ.Jez = {0,0,'1-flc2hs(t-0.5,0.25)','-(1-flc2hs(t-0.5,0.25))'}; equ.sigma = {'mat2_sigma','mat3_sigma','mat2_sigma','mat2_sigma'}; equ.epsilonr = {1,'mat3_epsilonr',1,1}; equ.mur = {1,'mat3_MUR(normB_emqa[1/T])',1,1}; equ.normfH = {'1/mu0_emqa*normB_emqa','mat3_HB(normB_emqa[1/T])[A/m]','1/mu0_emqa*normB_emqa', ... '1/mu0_emqa*normB_emqa'}; equ.ind = [1,2,3,4,2,3,4]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Library materials clear lib lib.mat{1}.name='Iron'; lib.mat{1}.varname='mat1'; lib.mat{1}.variables.nu='0.29'; lib.mat{1}.variables.E='200e9[Pa]'; lib.mat{1}.variables.mur='4000'; lib.mat{1}.variables.sigma='1.12e7[S/m]'; lib.mat{1}.variables.epsilonr='1'; lib.mat{1}.variables.alpha='12.2e-6[1/K]'; lib.mat{1}.variables.C='440[J/(kg*K)]'; lib.mat{1}.variables.rho='7870[kg/m^3]'; lib.mat{1}.variables.k='76.2[W/(m*K)]'; lib.mat{2}.name='Air'; lib.mat{2}.varname='mat2'; lib.mat{2}.variables.nu0='nu0(T[1/K])[m^2/s]'; lib.mat{2}.variables.eta='eta(T[1/K])[Pa*s]'; lib.mat{2}.variables.gamma='1.4'; lib.mat{2}.variables.sigma='0[S/m]'; lib.mat{2}.variables.C='Cp(T[1/K])[J/(kg*K)]'; lib.mat{2}.variables.rho='rho(p[1/Pa],T[1/K])[kg/m^3]'; lib.mat{2}.variables.k='k(T[1/K])[W/(m*K)]'; lib.mat{2}.variables.cs='cs(T[1/K])[m/s]'; clear fcns fcns{1}.type='inline'; fcns{1}.name='cs(T)'; fcns{1}.expr='sqrt(1.4*287*T)'; fcns{1}.dexpr={'diff(sqrt(1.4*287*T),T)'}; fcns{2}.type='inline'; fcns{2}.name='rho(p,T)'; fcns{2}.expr='p*0.02897/8.314/T'; fcns{2}.dexpr={'diff(p*0.02897/8.314/T,p)','diff(p*0.02897/8.314/T,T)'}; fcns{3}.type='piecewise'; fcns{3}.name='Cp(T)'; fcns{3}.extmethod='const'; fcns{3}.subtype='poly'; fcns{3}.expr={{'0','1.04763657E+03','1','-3.72589265E-01','2', ... '9.45304214E-04','3','-6.02409443E-07','4','1.28589610E-10'}}; fcns{3}.intervals={'200','1600'}; fcns{4}.type='piecewise'; fcns{4}.name='eta(T)'; fcns{4}.extmethod='const'; fcns{4}.subtype='poly'; fcns{4}.expr={{'0','-8.38278000E-07','1','8.35717342E-08','2', ... '-7.69429583E-11','3','4.64372660E-14','4','-1.06585607E-17'}}; fcns{4}.intervals={'200','1600'}; fcns{5}.type='piecewise'; fcns{5}.name='nu0(T)'; fcns{5}.extmethod='const'; fcns{5}.subtype='poly'; fcns{5}.expr={{'0','-5.86912450E-06','1','5.01274491E-08','2', ... '7.50108343E-11','3','1.80336823E-15','4','-2.91688030E-18'}}; fcns{5}.intervals={'200','1600'}; fcns{6}.type='piecewise'; fcns{6}.name='k(T)'; fcns{6}.extmethod='const'; fcns{6}.subtype='poly'; fcns{6}.expr={{'0','-2.27583562E-03','1','1.15480022E-04','2', ... '-7.90252856E-08','3','4.11702505E-11','4','-7.43864331E-15'}}; fcns{6}.intervals={'200','1600'}; lib.mat{2}.functions = fcns; lib.mat{3}.name='Soft Iron (without losses)'; lib.mat{3}.varname='mat3'; lib.mat{3}.variables.normfB='BH(normH[m/A])[T]'; lib.mat{3}.variables.mur='MUR(normB[1/T])'; lib.mat{3}.variables.sigma='0[S/m]'; lib.mat{3}.variables.normfH='HB(normB[1/T])[A/m]'; lib.mat{3}.variables.epsilonr='1'; clear fcns fcns{1}.type='interp'; fcns{1}.name='MUR'; fcns{1}.method='linear'; fcns{1}.extmethod='const'; fcns{1}.x={'1','1.1','1.2','1.3','1.4','1.5','1.6','1.7','1.8','1.9', ... '2.0','2.1','2.2','2.3','2.4'}; fcns{1}.data={'1200','820','560','420','290','220','160','110','70','47', ... '26','15','10','7','6'}; fcns{2}.type='interp'; fcns{2}.name='HB'; fcns{2}.method='linear'; fcns{2}.extmethod='extrap'; fcns{2}.x={'0','1','1.1','1.2','1.3','1.4','1.5','1.6','1.7','1.8', ... '1.9','2.0','2.1','2.2','2.3','2.4'}; fcns{2}.data={'0','663.146','1067.5','1705.23','2463.11','3841.67', ... '5425.74','7957.75','12298.3','20462.8','32169.6','61213.4','111408', ... '175070','261469','318310'}; fcns{3}.type='interp'; fcns{3}.name='BH'; fcns{3}.method='linear'; fcns{3}.extmethod='extrap'; fcns{3}.x={'0','663.146','1067.5','1705.23','2463.11','3841.67', ... '5425.74','7957.75','12298.3','20462.8','32169.6','61213.4','111408', ... '175070','261469','318310'}; fcns{3}.data={'0','1','1.1','1.2','1.3','1.4','1.5','1.6','1.7','1.8', ... '1.9','2.0','2.1','2.2','2.3','2.4'}; lib.mat{3}.functions = fcns; lib.matgroups{1}.name='Resistivity'; lib.matgroups{1}.variables={'alphares','T0','res0'}; lib.matgroups{1}.descr={'Temperature coefficient','Reference temperature','Resistivity at reference temperature'}; lib.matgroups{2}.name='Electromagnetic (AC/DC)'; lib.matgroups{2}.variables={'alphares','T0','res0','Br','normfH','fH','normfB','fB'}; lib.matgroups{2}.descr={'Temperature coefficient','Reference temperature','Resistivity at reference temperature','Remanent flux density','Nonlinear magnetic field, norm','Nonlinear magnetic field','Nonlinear magnetic flux density, norm','Nonlinear magnetic flux density'}; fem.lib = lib; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; fem.ode=ode; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femtime(fem, ... 'solcomp',{'Az'}, ... 'outcomp',{'Az','Azt'}, ... 'blocksize','auto', ... 'tlist',[0:0.1:1], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',60, ... 'arrowyspacing',60, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-1.9430085386882836,1.9430085386882836,-1.0785515173176126,1.0785515173176126]); % Plot in cross-section or along domain postcrossplot(fem,0,[0;0], ... 'pointdata',{'normH_emqa','unit','A/m'}, ... 'title','Magnetic field, norm [A/m]', ... 'axislabel',{'Time','Magnetic field',' norm [A/m]'}); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'PerpendicularCurrents'; appl.module = 'ACDC'; appl.sshape = 2; appl.assignsuffix = '_emqa'; clear prop prop.analysis='transient'; appl.prop = prop; clear bnd bnd.type = {'A0','cont'}; bnd.ind = [1,1,1,2,2,2,1,1,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,1,1,2,1]; appl.bnd = bnd; clear equ equ.magconstrel = {'Br','mur','mur','mur'}; equ.Jez = {0,0,'1-flc2hs(t-0.5,0.25)','-(1-flc2hs(t-0.5,0.25))'}; equ.sigma = {'mat2_sigma','mat3_sigma','mat2_sigma','mat2_sigma'}; equ.epsilonr = {1,'mat3_epsilonr',1,1}; equ.mur = {1,'mat3_MUR(normB_emqa[1/T])',1,1}; equ.normfH = {'1/mu0_emqa*normB_emqa','mat3_HB(normB_emqa[1/T])[A/m]','1/mu0_emqa*normB_emqa', ... '1/mu0_emqa*normB_emqa'}; equ.ind = [1,2,3,4,2,3,4]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Library materials clear lib lib.mat{1}.name='Iron'; lib.mat{1}.varname='mat1'; lib.mat{1}.variables.nu='0.29'; lib.mat{1}.variables.E='200e9[Pa]'; lib.mat{1}.variables.mur='4000'; lib.mat{1}.variables.sigma='1.12e7[S/m]'; lib.mat{1}.variables.epsilonr='1'; lib.mat{1}.variables.alpha='12.2e-6[1/K]'; lib.mat{1}.variables.C='440[J/(kg*K)]'; lib.mat{1}.variables.rho='7870[kg/m^3]'; lib.mat{1}.variables.k='76.2[W/(m*K)]'; lib.mat{2}.name='Air'; lib.mat{2}.varname='mat2'; lib.mat{2}.variables.nu0='nu0(T[1/K])[m^2/s]'; lib.mat{2}.variables.eta='eta(T[1/K])[Pa*s]'; lib.mat{2}.variables.gamma='1.4'; lib.mat{2}.variables.sigma='0[S/m]'; lib.mat{2}.variables.C='Cp(T[1/K])[J/(kg*K)]'; lib.mat{2}.variables.rho='rho(p[1/Pa],T[1/K])[kg/m^3]'; lib.mat{2}.variables.k='k(T[1/K])[W/(m*K)]'; lib.mat{2}.variables.cs='cs(T[1/K])[m/s]'; clear fcns fcns{1}.type='inline'; fcns{1}.name='cs(T)'; fcns{1}.expr='sqrt(1.4*287*T)'; fcns{1}.dexpr={'diff(sqrt(1.4*287*T),T)'}; fcns{2}.type='inline'; fcns{2}.name='rho(p,T)'; fcns{2}.expr='p*0.02897/8.314/T'; fcns{2}.dexpr={'diff(p*0.02897/8.314/T,p)','diff(p*0.02897/8.314/T,T)'}; fcns{3}.type='piecewise'; fcns{3}.name='Cp(T)'; fcns{3}.extmethod='const'; fcns{3}.subtype='poly'; fcns{3}.expr={{'0','1.04763657E+03','1','-3.72589265E-01','2', ... '9.45304214E-04','3','-6.02409443E-07','4','1.28589610E-10'}}; fcns{3}.intervals={'200','1600'}; fcns{4}.type='piecewise'; fcns{4}.name='eta(T)'; fcns{4}.extmethod='const'; fcns{4}.subtype='poly'; fcns{4}.expr={{'0','-8.38278000E-07','1','8.35717342E-08','2', ... '-7.69429583E-11','3','4.64372660E-14','4','-1.06585607E-17'}}; fcns{4}.intervals={'200','1600'}; fcns{5}.type='piecewise'; fcns{5}.name='nu0(T)'; fcns{5}.extmethod='const'; fcns{5}.subtype='poly'; fcns{5}.expr={{'0','-5.86912450E-06','1','5.01274491E-08','2', ... '7.50108343E-11','3','1.80336823E-15','4','-2.91688030E-18'}}; fcns{5}.intervals={'200','1600'}; fcns{6}.type='piecewise'; fcns{6}.name='k(T)'; fcns{6}.extmethod='const'; fcns{6}.subtype='poly'; fcns{6}.expr={{'0','-2.27583562E-03','1','1.15480022E-04','2', ... '-7.90252856E-08','3','4.11702505E-11','4','-7.43864331E-15'}}; fcns{6}.intervals={'200','1600'}; lib.mat{2}.functions = fcns; lib.mat{3}.name='Soft Iron (without losses)'; lib.mat{3}.varname='mat3'; lib.mat{3}.variables.normfB='BH(normH[m/A])[T]'; lib.mat{3}.variables.mur='MUR(normB[1/T])'; lib.mat{3}.variables.sigma='0[S/m]'; lib.mat{3}.variables.normfH='HB(normB[1/T])[A/m]'; lib.mat{3}.variables.epsilonr='1'; clear fcns fcns{1}.type='interp'; fcns{1}.name='MUR'; fcns{1}.method='linear'; fcns{1}.extmethod='const'; fcns{1}.x={'1','1.1','1.2','1.3','1.4','1.5','1.6','1.7','1.8','1.9', ... '2.0','2.1','2.2','2.3','2.4'}; fcns{1}.data={'1200','820','560','420','290','220','160','110','70','47', ... '26','15','10','7','6'}; fcns{2}.type='interp'; fcns{2}.name='HB'; fcns{2}.method='linear'; fcns{2}.extmethod='extrap'; fcns{2}.x={'0','1','1.1','1.2','1.3','1.4','1.5','1.6','1.7','1.8', ... '1.9','2.0','2.1','2.2','2.3','2.4'}; fcns{2}.data={'0','663.146','1067.5','1705.23','2463.11','3841.67', ... '5425.74','7957.75','12298.3','20462.8','32169.6','61213.4','111408', ... '175070','261469','318310'}; fcns{3}.type='interp'; fcns{3}.name='BH'; fcns{3}.method='linear'; fcns{3}.extmethod='extrap'; fcns{3}.x={'0','663.146','1067.5','1705.23','2463.11','3841.67', ... '5425.74','7957.75','12298.3','20462.8','32169.6','61213.4','111408', ... '175070','261469','318310'}; fcns{3}.data={'0','1','1.1','1.2','1.3','1.4','1.5','1.6','1.7','1.8', ... '1.9','2.0','2.1','2.2','2.3','2.4'}; lib.mat{3}.functions = fcns; lib.matgroups{1}.name='Resistivity'; lib.matgroups{1}.variables={'alphares','T0','res0'}; lib.matgroups{1}.descr={'Temperature coefficient','Reference temperature','Resistivity at reference temperature'}; lib.matgroups{2}.name='Electromagnetic (AC/DC)'; lib.matgroups{2}.variables={'alphares','T0','res0','Br','normfH','fH','normfB','fB'}; lib.matgroups{2}.descr={'Temperature coefficient','Reference temperature','Resistivity at reference temperature','Remanent flux density','Nonlinear magnetic field, norm','Nonlinear magnetic field','Nonlinear magnetic flux density, norm','Nonlinear magnetic flux density'}; fem.lib = lib; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; fem.ode=ode; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femtime(fem, ... 'solcomp',{'Az'}, ... 'outcomp',{'Az','Azt'}, ... 'blocksize','auto', ... 'tlist',[0:0.1:1], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',60, ... 'arrowyspacing',60, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-1.9430085386882836,1.9430085386882836,-1.0785515173176126,1.0785515173176126]); % Plot in cross-section or along domain postcrossplot(fem,0,[0;0], ... 'pointdata',{'normH_emqa','unit','A/m'}, ... 'title','Magnetic field, norm [A/m]', ... 'axislabel',{'Time','Magnetic field',' norm [A/m]'}); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'PerpendicularCurrents'; appl.module = 'ACDC'; appl.sshape = 2; appl.assignsuffix = '_emqa'; clear prop prop.analysis='transient'; appl.prop = prop; clear bnd bnd.type = {'A0','cont'}; bnd.ind = [1,1,1,2,2,2,1,1,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,1,1,2,1]; appl.bnd = bnd; clear equ equ.magconstrel = {'fH','mur','mur','mur'}; equ.Jez = {0,0,'1-flc2hs(t-0.5,0.25)','-(1-flc2hs(t-0.5,0.25))'}; equ.sigma = {'mat2_sigma','mat3_sigma','mat2_sigma','mat2_sigma'}; equ.epsilonr = {1,'mat3_epsilonr',1,1}; equ.mur = {1,'mat3_MUR(normB_emqa[1/T])',1,1}; equ.normfH = {'1/mu0_emqa*normB_emqa','mat3_HB(normB_emqa[1/T])[A/m]','1/mu0_emqa*normB_emqa', ... '1/mu0_emqa*normB_emqa'}; equ.ind = [1,2,3,4,2,3,4]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Library materials clear lib lib.mat{1}.name='Iron'; lib.mat{1}.varname='mat1'; lib.mat{1}.variables.nu='0.29'; lib.mat{1}.variables.E='200e9[Pa]'; lib.mat{1}.variables.mur='4000'; lib.mat{1}.variables.sigma='1.12e7[S/m]'; lib.mat{1}.variables.epsilonr='1'; lib.mat{1}.variables.alpha='12.2e-6[1/K]'; lib.mat{1}.variables.C='440[J/(kg*K)]'; lib.mat{1}.variables.rho='7870[kg/m^3]'; lib.mat{1}.variables.k='76.2[W/(m*K)]'; lib.mat{2}.name='Air'; lib.mat{2}.varname='mat2'; lib.mat{2}.variables.nu0='nu0(T[1/K])[m^2/s]'; lib.mat{2}.variables.eta='eta(T[1/K])[Pa*s]'; lib.mat{2}.variables.gamma='1.4'; lib.mat{2}.variables.sigma='0[S/m]'; lib.mat{2}.variables.C='Cp(T[1/K])[J/(kg*K)]'; lib.mat{2}.variables.rho='rho(p[1/Pa],T[1/K])[kg/m^3]'; lib.mat{2}.variables.k='k(T[1/K])[W/(m*K)]'; lib.mat{2}.variables.cs='cs(T[1/K])[m/s]'; clear fcns fcns{1}.type='inline'; fcns{1}.name='cs(T)'; fcns{1}.expr='sqrt(1.4*287*T)'; fcns{1}.dexpr={'diff(sqrt(1.4*287*T),T)'}; fcns{2}.type='inline'; fcns{2}.name='rho(p,T)'; fcns{2}.expr='p*0.02897/8.314/T'; fcns{2}.dexpr={'diff(p*0.02897/8.314/T,p)','diff(p*0.02897/8.314/T,T)'}; fcns{3}.type='piecewise'; fcns{3}.name='Cp(T)'; fcns{3}.extmethod='const'; fcns{3}.subtype='poly'; fcns{3}.expr={{'0','1.04763657E+03','1','-3.72589265E-01','2', ... '9.45304214E-04','3','-6.02409443E-07','4','1.28589610E-10'}}; fcns{3}.intervals={'200','1600'}; fcns{4}.type='piecewise'; fcns{4}.name='eta(T)'; fcns{4}.extmethod='const'; fcns{4}.subtype='poly'; fcns{4}.expr={{'0','-8.38278000E-07','1','8.35717342E-08','2', ... '-7.69429583E-11','3','4.64372660E-14','4','-1.06585607E-17'}}; fcns{4}.intervals={'200','1600'}; fcns{5}.type='piecewise'; fcns{5}.name='nu0(T)'; fcns{5}.extmethod='const'; fcns{5}.subtype='poly'; fcns{5}.expr={{'0','-5.86912450E-06','1','5.01274491E-08','2', ... '7.50108343E-11','3','1.80336823E-15','4','-2.91688030E-18'}}; fcns{5}.intervals={'200','1600'}; fcns{6}.type='piecewise'; fcns{6}.name='k(T)'; fcns{6}.extmethod='const'; fcns{6}.subtype='poly'; fcns{6}.expr={{'0','-2.27583562E-03','1','1.15480022E-04','2', ... '-7.90252856E-08','3','4.11702505E-11','4','-7.43864331E-15'}}; fcns{6}.intervals={'200','1600'}; lib.mat{2}.functions = fcns; lib.mat{3}.name='Soft Iron (without losses)'; lib.mat{3}.varname='mat3'; lib.mat{3}.variables.normfB='BH(normH[m/A])[T]'; lib.mat{3}.variables.mur='MUR(normB[1/T])'; lib.mat{3}.variables.sigma='0[S/m]'; lib.mat{3}.variables.normfH='HB(normB[1/T])[A/m]'; lib.mat{3}.variables.epsilonr='1'; clear fcns fcns{1}.type='interp'; fcns{1}.name='MUR'; fcns{1}.method='linear'; fcns{1}.extmethod='const'; fcns{1}.x={'1','1.1','1.2','1.3','1.4','1.5','1.6','1.7','1.8','1.9', ... '2.0','2.1','2.2','2.3','2.4'}; fcns{1}.data={'1200','820','560','420','290','220','160','110','70','47', ... '26','15','10','7','6'}; fcns{2}.type='interp'; fcns{2}.name='HB'; fcns{2}.method='linear'; fcns{2}.extmethod='extrap'; fcns{2}.x={'0','1','1.1','1.2','1.3','1.4','1.5','1.6','1.7','1.8', ... '1.9','2.0','2.1','2.2','2.3','2.4'}; fcns{2}.data={'0','663.146','1067.5','1705.23','2463.11','3841.67', ... '5425.74','7957.75','12298.3','20462.8','32169.6','61213.4','111408', ... '175070','261469','318310'}; fcns{3}.type='interp'; fcns{3}.name='BH'; fcns{3}.method='linear'; fcns{3}.extmethod='extrap'; fcns{3}.x={'0','663.146','1067.5','1705.23','2463.11','3841.67', ... '5425.74','7957.75','12298.3','20462.8','32169.6','61213.4','111408', ... '175070','261469','318310'}; fcns{3}.data={'0','1','1.1','1.2','1.3','1.4','1.5','1.6','1.7','1.8', ... '1.9','2.0','2.1','2.2','2.3','2.4'}; lib.mat{3}.functions = fcns; lib.matgroups{1}.name='Resistivity'; lib.matgroups{1}.variables={'alphares','T0','res0'}; lib.matgroups{1}.descr={'Temperature coefficient','Reference temperature','Resistivity at reference temperature'}; lib.matgroups{2}.name='Electromagnetic (AC/DC)'; lib.matgroups{2}.variables={'alphares','T0','res0','Br','normfH','fH','normfB','fB'}; lib.matgroups{2}.descr={'Temperature coefficient','Reference temperature','Resistivity at reference temperature','Remanent flux density','Nonlinear magnetic field, norm','Nonlinear magnetic field','Nonlinear magnetic flux density, norm','Nonlinear magnetic flux density'}; fem.lib = lib; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; fem.ode=ode; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femtime(fem, ... 'solcomp',{'Az'}, ... 'outcomp',{'Az','Azt'}, ... 'blocksize','auto', ... 'tlist',[0:0.1:1], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',60, ... 'arrowyspacing',60, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-1.9430085386882836,1.9430085386882836,-1.0785515173176126,1.0785515173176126]); % Plot in cross-section or along domain postcrossplot(fem,0,[0;0], ... 'pointdata',{'normH_emqa','unit','A/m'}, ... 'title','Magnetic field, norm [A/m]', ... 'axislabel',{'Time','Magnetic field',' norm [A/m]'}); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'PerpendicularCurrents'; appl.module = 'ACDC'; appl.sshape = 2; appl.assignsuffix = '_emqa'; clear prop prop.analysis='transient'; appl.prop = prop; clear bnd bnd.type = {'A0','cont'}; bnd.ind = [1,1,1,2,2,2,1,1,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,1,1,2,1]; appl.bnd = bnd; clear equ equ.magconstrel = {'aniso_fH','mur','mur','mur'}; equ.Jez = {0,0,'1-flc2hs(t-0.5,0.25)','-(1-flc2hs(t-0.5,0.25))'}; equ.sigma = {'mat2_sigma','mat3_sigma','mat2_sigma','mat2_sigma'}; equ.epsilonr = {1,'mat3_epsilonr',1,1}; equ.mur = {1,'mat3_MUR(normB_emqa[1/T])',1,1}; equ.normfH = {'1/mu0_emqa*normB_emqa','mat3_HB(normB_emqa[1/T])[A/m]','1/mu0_emqa*normB_emqa', ... '1/mu0_emqa*normB_emqa'}; equ.ind = [1,2,3,4,2,3,4]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Library materials clear lib lib.mat{1}.name='Iron'; lib.mat{1}.varname='mat1'; lib.mat{1}.variables.nu='0.29'; lib.mat{1}.variables.E='200e9[Pa]'; lib.mat{1}.variables.mur='4000'; lib.mat{1}.variables.sigma='1.12e7[S/m]'; lib.mat{1}.variables.epsilonr='1'; lib.mat{1}.variables.alpha='12.2e-6[1/K]'; lib.mat{1}.variables.C='440[J/(kg*K)]'; lib.mat{1}.variables.rho='7870[kg/m^3]'; lib.mat{1}.variables.k='76.2[W/(m*K)]'; lib.mat{2}.name='Air'; lib.mat{2}.varname='mat2'; lib.mat{2}.variables.nu0='nu0(T[1/K])[m^2/s]'; lib.mat{2}.variables.eta='eta(T[1/K])[Pa*s]'; lib.mat{2}.variables.gamma='1.4'; lib.mat{2}.variables.sigma='0[S/m]'; lib.mat{2}.variables.C='Cp(T[1/K])[J/(kg*K)]'; lib.mat{2}.variables.rho='rho(p[1/Pa],T[1/K])[kg/m^3]'; lib.mat{2}.variables.k='k(T[1/K])[W/(m*K)]'; lib.mat{2}.variables.cs='cs(T[1/K])[m/s]'; clear fcns fcns{1}.type='inline'; fcns{1}.name='cs(T)'; fcns{1}.expr='sqrt(1.4*287*T)'; fcns{1}.dexpr={'diff(sqrt(1.4*287*T),T)'}; fcns{2}.type='inline'; fcns{2}.name='rho(p,T)'; fcns{2}.expr='p*0.02897/8.314/T'; fcns{2}.dexpr={'diff(p*0.02897/8.314/T,p)','diff(p*0.02897/8.314/T,T)'}; fcns{3}.type='piecewise'; fcns{3}.name='Cp(T)'; fcns{3}.extmethod='const'; fcns{3}.subtype='poly'; fcns{3}.expr={{'0','1.04763657E+03','1','-3.72589265E-01','2', ... '9.45304214E-04','3','-6.02409443E-07','4','1.28589610E-10'}}; fcns{3}.intervals={'200','1600'}; fcns{4}.type='piecewise'; fcns{4}.name='eta(T)'; fcns{4}.extmethod='const'; fcns{4}.subtype='poly'; fcns{4}.expr={{'0','-8.38278000E-07','1','8.35717342E-08','2', ... '-7.69429583E-11','3','4.64372660E-14','4','-1.06585607E-17'}}; fcns{4}.intervals={'200','1600'}; fcns{5}.type='piecewise'; fcns{5}.name='nu0(T)'; fcns{5}.extmethod='const'; fcns{5}.subtype='poly'; fcns{5}.expr={{'0','-5.86912450E-06','1','5.01274491E-08','2', ... '7.50108343E-11','3','1.80336823E-15','4','-2.91688030E-18'}}; fcns{5}.intervals={'200','1600'}; fcns{6}.type='piecewise'; fcns{6}.name='k(T)'; fcns{6}.extmethod='const'; fcns{6}.subtype='poly'; fcns{6}.expr={{'0','-2.27583562E-03','1','1.15480022E-04','2', ... '-7.90252856E-08','3','4.11702505E-11','4','-7.43864331E-15'}}; fcns{6}.intervals={'200','1600'}; lib.mat{2}.functions = fcns; lib.mat{3}.name='Soft Iron (without losses)'; lib.mat{3}.varname='mat3'; lib.mat{3}.variables.normfB='BH(normH[m/A])[T]'; lib.mat{3}.variables.mur='MUR(normB[1/T])'; lib.mat{3}.variables.sigma='0[S/m]'; lib.mat{3}.variables.normfH='HB(normB[1/T])[A/m]'; lib.mat{3}.variables.epsilonr='1'; clear fcns fcns{1}.type='interp'; fcns{1}.name='MUR'; fcns{1}.method='linear'; fcns{1}.extmethod='const'; fcns{1}.x={'1','1.1','1.2','1.3','1.4','1.5','1.6','1.7','1.8','1.9', ... '2.0','2.1','2.2','2.3','2.4'}; fcns{1}.data={'1200','820','560','420','290','220','160','110','70','47', ... '26','15','10','7','6'}; fcns{2}.type='interp'; fcns{2}.name='HB'; fcns{2}.method='linear'; fcns{2}.extmethod='extrap'; fcns{2}.x={'0','1','1.1','1.2','1.3','1.4','1.5','1.6','1.7','1.8', ... '1.9','2.0','2.1','2.2','2.3','2.4'}; fcns{2}.data={'0','663.146','1067.5','1705.23','2463.11','3841.67', ... '5425.74','7957.75','12298.3','20462.8','32169.6','61213.4','111408', ... '175070','261469','318310'}; fcns{3}.type='interp'; fcns{3}.name='BH'; fcns{3}.method='linear'; fcns{3}.extmethod='extrap'; fcns{3}.x={'0','663.146','1067.5','1705.23','2463.11','3841.67', ... '5425.74','7957.75','12298.3','20462.8','32169.6','61213.4','111408', ... '175070','261469','318310'}; fcns{3}.data={'0','1','1.1','1.2','1.3','1.4','1.5','1.6','1.7','1.8', ... '1.9','2.0','2.1','2.2','2.3','2.4'}; lib.mat{3}.functions = fcns; lib.matgroups{1}.name='Resistivity'; lib.matgroups{1}.variables={'alphares','T0','res0'}; lib.matgroups{1}.descr={'Temperature coefficient','Reference temperature','Resistivity at reference temperature'}; lib.matgroups{2}.name='Electromagnetic (AC/DC)'; lib.matgroups{2}.variables={'alphares','T0','res0','Br','normfH','fH','normfB','fB'}; lib.matgroups{2}.descr={'Temperature coefficient','Reference temperature','Resistivity at reference temperature','Remanent flux density','Nonlinear magnetic field, norm','Nonlinear magnetic field','Nonlinear magnetic flux density, norm','Nonlinear magnetic flux density'}; fem.lib = lib; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; fem.ode=ode; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femtime(fem, ... 'solcomp',{'Az'}, ... 'outcomp',{'Az','Azt'}, ... 'blocksize','auto', ... 'tlist',[0:0.1:1], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',60, ... 'arrowyspacing',60, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-1.9430085386882836,1.9430085386882836,-1.0785515173176126,1.0785515173176126]); % Plot in cross-section or along domain postcrossplot(fem,0,[0;0], ... 'pointdata',{'normH_emqa','unit','A/m'}, ... 'title','Magnetic field, norm [A/m]', ... 'axislabel',{'Time','Magnetic field',' norm [A/m]'}); % COMSOL Multiphysics Model M-file % Generated by COMSOL 3.5 (COMSOL 3.5.0.494, $Date: 2008/09/19 16:09:48 $) % Constants fem.const = {'R','10000'}; % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'PerpendicularCurrents'; appl.module = 'ACDC'; appl.sshape = 2; appl.assignsuffix = '_emqa'; clear prop prop.analysis='transient'; appl.prop = prop; clear bnd bnd.type = {'A0','cont'}; bnd.ind = [1,1,1,2,2,2,1,1,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,1,1,2,1]; appl.bnd = bnd; clear equ equ.magconstrel = {'aniso_fH','mur','mur','mur'}; equ.Jez = {0,0,'(1-flc2hs(t-0.5,0.25))*R','(-(1-flc2hs(t-0.5,0.25)))*R'}; equ.sigma = {'mat2_sigma','mat3_sigma','mat2_sigma','mat2_sigma'}; equ.epsilonr = {1,'mat3_epsilonr',1,1}; equ.mur = {1,'mat3_MUR(normB_emqa[1/T])',1,1}; equ.normfH = {'1/mu0_emqa*normB_emqa','mat3_HB(normB_emqa[1/T])[A/m]','1/mu0_emqa*normB_emqa', ... '1/mu0_emqa*normB_emqa'}; equ.ind = [1,2,3,4,2,3,4]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Library materials clear lib lib.mat{1}.name='Iron'; lib.mat{1}.varname='mat1'; lib.mat{1}.variables.nu='0.29'; lib.mat{1}.variables.E='200e9[Pa]'; lib.mat{1}.variables.mur='4000'; lib.mat{1}.variables.sigma='1.12e7[S/m]'; lib.mat{1}.variables.epsilonr='1'; lib.mat{1}.variables.alpha='12.2e-6[1/K]'; lib.mat{1}.variables.C='440[J/(kg*K)]'; lib.mat{1}.variables.rho='7870[kg/m^3]'; lib.mat{1}.variables.k='76.2[W/(m*K)]'; lib.mat{2}.name='Air'; lib.mat{2}.varname='mat2'; lib.mat{2}.variables.nu0='nu0(T[1/K])[m^2/s]'; lib.mat{2}.variables.eta='eta(T[1/K])[Pa*s]'; lib.mat{2}.variables.gamma='1.4'; lib.mat{2}.variables.sigma='0[S/m]'; lib.mat{2}.variables.C='Cp(T[1/K])[J/(kg*K)]'; lib.mat{2}.variables.rho='rho(p[1/Pa],T[1/K])[kg/m^3]'; lib.mat{2}.variables.k='k(T[1/K])[W/(m*K)]'; lib.mat{2}.variables.cs='cs(T[1/K])[m/s]'; clear fcns fcns{1}.type='inline'; fcns{1}.name='cs(T)'; fcns{1}.expr='sqrt(1.4*287*T)'; fcns{1}.dexpr={'diff(sqrt(1.4*287*T),T)'}; fcns{2}.type='inline'; fcns{2}.name='rho(p,T)'; fcns{2}.expr='p*0.02897/8.314/T'; fcns{2}.dexpr={'diff(p*0.02897/8.314/T,p)','diff(p*0.02897/8.314/T,T)'}; fcns{3}.type='piecewise'; fcns{3}.name='Cp(T)'; fcns{3}.extmethod='const'; fcns{3}.subtype='poly'; fcns{3}.expr={{'0','1.04763657E+03','1','-3.72589265E-01','2', ... '9.45304214E-04','3','-6.02409443E-07','4','1.28589610E-10'}}; fcns{3}.intervals={'200','1600'}; fcns{4}.type='piecewise'; fcns{4}.name='eta(T)'; fcns{4}.extmethod='const'; fcns{4}.subtype='poly'; fcns{4}.expr={{'0','-8.38278000E-07','1','8.35717342E-08','2', ... '-7.69429583E-11','3','4.64372660E-14','4','-1.06585607E-17'}}; fcns{4}.intervals={'200','1600'}; fcns{5}.type='piecewise'; fcns{5}.name='nu0(T)'; fcns{5}.extmethod='const'; fcns{5}.subtype='poly'; fcns{5}.expr={{'0','-5.86912450E-06','1','5.01274491E-08','2', ... '7.50108343E-11','3','1.80336823E-15','4','-2.91688030E-18'}}; fcns{5}.intervals={'200','1600'}; fcns{6}.type='piecewise'; fcns{6}.name='k(T)'; fcns{6}.extmethod='const'; fcns{6}.subtype='poly'; fcns{6}.expr={{'0','-2.27583562E-03','1','1.15480022E-04','2', ... '-7.90252856E-08','3','4.11702505E-11','4','-7.43864331E-15'}}; fcns{6}.intervals={'200','1600'}; lib.mat{2}.functions = fcns; lib.mat{3}.name='Soft Iron (without losses)'; lib.mat{3}.varname='mat3'; lib.mat{3}.variables.normfB='BH(normH[m/A])[T]'; lib.mat{3}.variables.mur='MUR(normB[1/T])'; lib.mat{3}.variables.sigma='0[S/m]'; lib.mat{3}.variables.normfH='HB(normB[1/T])[A/m]'; lib.mat{3}.variables.epsilonr='1'; clear fcns fcns{1}.type='interp'; fcns{1}.name='MUR'; fcns{1}.method='linear'; fcns{1}.extmethod='const'; fcns{1}.x={'1','1.1','1.2','1.3','1.4','1.5','1.6','1.7','1.8','1.9', ... '2.0','2.1','2.2','2.3','2.4'}; fcns{1}.data={'1200','820','560','420','290','220','160','110','70','47', ... '26','15','10','7','6'}; fcns{2}.type='interp'; fcns{2}.name='HB'; fcns{2}.method='linear'; fcns{2}.extmethod='extrap'; fcns{2}.x={'0','1','1.1','1.2','1.3','1.4','1.5','1.6','1.7','1.8', ... '1.9','2.0','2.1','2.2','2.3','2.4'}; fcns{2}.data={'0','663.146','1067.5','1705.23','2463.11','3841.67', ... '5425.74','7957.75','12298.3','20462.8','32169.6','61213.4','111408', ... '175070','261469','318310'}; fcns{3}.type='interp'; fcns{3}.name='BH'; fcns{3}.method='linear'; fcns{3}.extmethod='extrap'; fcns{3}.x={'0','663.146','1067.5','1705.23','2463.11','3841.67', ... '5425.74','7957.75','12298.3','20462.8','32169.6','61213.4','111408', ... '175070','261469','318310'}; fcns{3}.data={'0','1','1.1','1.2','1.3','1.4','1.5','1.6','1.7','1.8', ... '1.9','2.0','2.1','2.2','2.3','2.4'}; lib.mat{3}.functions = fcns; lib.matgroups{1}.name='Resistivity'; lib.matgroups{1}.variables={'alphares','T0','res0'}; lib.matgroups{1}.descr={'Temperature coefficient','Reference temperature','Resistivity at reference temperature'}; fem.lib = lib; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; fem.ode=ode; % Multiphysics fem=multiphysics(fem); % COMSOL Multiphysics Model M-file % Generated by COMSOL 3.5 (COMSOL 3.5.0.494, $Date: 2008/09/19 16:09:48 $) % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'PerpendicularCurrents'; appl.module = 'ACDC'; appl.sshape = 2; appl.assignsuffix = '_emqa'; clear prop prop.analysis='transient'; appl.prop = prop; clear bnd bnd.type = {'A0','cont'}; bnd.ind = [1,1,1,2,2,2,1,1,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,1,1,2,1]; appl.bnd = bnd; clear equ equ.Jez = {0,0,'(1-flc2hs(t-0.5,0.25))*R','(flc2hs(t-0.5,0.25)-1)*R'}; equ.sigma = {'mat2_sigma','mat3_sigma','mat4_sigma','mat4_sigma'}; equ.epsilonr = {1,'mat3_epsilonr','mat4_epsilonr','mat4_epsilonr'}; equ.mur = {1,'mat3_MUR(normB_emqa[1/T])','mat4_mur','mat4_mur'}; equ.normfH = {'1/mu0_emqa*normB_emqa','mat3_HB(normB_emqa[1/T])[A/m]','1/mu0_emqa*normB_emqa', ... '1/mu0_emqa*normB_emqa'}; equ.ind = [1,2,3,4,2,3,4]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Library materials clear lib lib.mat{1}.name='Iron'; lib.mat{1}.varname='mat1'; lib.mat{1}.variables.nu='0.29'; lib.mat{1}.variables.E='200e9[Pa]'; lib.mat{1}.variables.mur='4000'; lib.mat{1}.variables.sigma='1.12e7[S/m]'; lib.mat{1}.variables.epsilonr='1'; lib.mat{1}.variables.alpha='12.2e-6[1/K]'; lib.mat{1}.variables.C='440[J/(kg*K)]'; lib.mat{1}.variables.rho='7870[kg/m^3]'; lib.mat{1}.variables.k='76.2[W/(m*K)]'; lib.mat{2}.name='Air'; lib.mat{2}.varname='mat2'; lib.mat{2}.variables.nu0='nu0(T[1/K])[m^2/s]'; lib.mat{2}.variables.eta='eta(T[1/K])[Pa*s]'; lib.mat{2}.variables.gamma='1.4'; lib.mat{2}.variables.sigma='0[S/m]'; lib.mat{2}.variables.C='Cp(T[1/K])[J/(kg*K)]'; lib.mat{2}.variables.rho='rho(p[1/Pa],T[1/K])[kg/m^3]'; lib.mat{2}.variables.k='k(T[1/K])[W/(m*K)]'; lib.mat{2}.variables.cs='cs(T[1/K])[m/s]'; clear fcns fcns{1}.type='inline'; fcns{1}.name='cs(T)'; fcns{1}.expr='sqrt(1.4*287*T)'; fcns{1}.dexpr={'diff(sqrt(1.4*287*T),T)'}; fcns{2}.type='inline'; fcns{2}.name='rho(p,T)'; fcns{2}.expr='p*0.02897/8.314/T'; fcns{2}.dexpr={'diff(p*0.02897/8.314/T,p)','diff(p*0.02897/8.314/T,T)'}; fcns{3}.type='piecewise'; fcns{3}.name='Cp(T)'; fcns{3}.extmethod='const'; fcns{3}.subtype='poly'; fcns{3}.expr={{'0','1.04763657E+03','1','-3.72589265E-01','2', ... '9.45304214E-04','3','-6.02409443E-07','4','1.28589610E-10'}}; fcns{3}.intervals={'200','1600'}; fcns{4}.type='piecewise'; fcns{4}.name='eta(T)'; fcns{4}.extmethod='const'; fcns{4}.subtype='poly'; fcns{4}.expr={{'0','-8.38278000E-07','1','8.35717342E-08','2', ... '-7.69429583E-11','3','4.64372660E-14','4','-1.06585607E-17'}}; fcns{4}.intervals={'200','1600'}; fcns{5}.type='piecewise'; fcns{5}.name='nu0(T)'; fcns{5}.extmethod='const'; fcns{5}.subtype='poly'; fcns{5}.expr={{'0','-5.86912450E-06','1','5.01274491E-08','2', ... '7.50108343E-11','3','1.80336823E-15','4','-2.91688030E-18'}}; fcns{5}.intervals={'200','1600'}; fcns{6}.type='piecewise'; fcns{6}.name='k(T)'; fcns{6}.extmethod='const'; fcns{6}.subtype='poly'; fcns{6}.expr={{'0','-2.27583562E-03','1','1.15480022E-04','2', ... '-7.90252856E-08','3','4.11702505E-11','4','-7.43864331E-15'}}; fcns{6}.intervals={'200','1600'}; lib.mat{2}.functions = fcns; lib.mat{3}.name='Soft Iron (without losses)'; lib.mat{3}.varname='mat3'; lib.mat{3}.variables.normfB='BH(normH[m/A])[T]'; lib.mat{3}.variables.mur='MUR(normB[1/T])'; lib.mat{3}.variables.sigma='0[S/m]'; lib.mat{3}.variables.normfH='HB(normB[1/T])[A/m]'; lib.mat{3}.variables.epsilonr='1'; clear fcns fcns{1}.type='interp'; fcns{1}.name='MUR'; fcns{1}.method='linear'; fcns{1}.extmethod='const'; fcns{1}.x={'1','1.1','1.2','1.3','1.4','1.5','1.6','1.7','1.8','1.9', ... '2.0','2.1','2.2','2.3','2.4'}; fcns{1}.data={'1200','820','560','420','290','220','160','110','70','47', ... '26','15','10','7','6'}; fcns{2}.type='interp'; fcns{2}.name='HB'; fcns{2}.method='linear'; fcns{2}.extmethod='extrap'; fcns{2}.x={'0','1','1.1','1.2','1.3','1.4','1.5','1.6','1.7','1.8', ... '1.9','2.0','2.1','2.2','2.3','2.4'}; fcns{2}.data={'0','663.146','1067.5','1705.23','2463.11','3841.67', ... '5425.74','7957.75','12298.3','20462.8','32169.6','61213.4','111408', ... '175070','261469','318310'}; fcns{3}.type='interp'; fcns{3}.name='BH'; fcns{3}.method='linear'; fcns{3}.extmethod='extrap'; fcns{3}.x={'0','663.146','1067.5','1705.23','2463.11','3841.67', ... '5425.74','7957.75','12298.3','20462.8','32169.6','61213.4','111408', ... '175070','261469','318310'}; fcns{3}.data={'0','1','1.1','1.2','1.3','1.4','1.5','1.6','1.7','1.8', ... '1.9','2.0','2.1','2.2','2.3','2.4'}; lib.mat{3}.functions = fcns; lib.mat{4}.name='Copper'; lib.mat{4}.varname='mat4'; lib.mat{4}.variables.alphares='3.9e-3[1/K]'; lib.mat{4}.variables.mur='1'; lib.mat{4}.variables.sigma='5.998e7[S/m]'; lib.mat{4}.variables.epsilonr='1'; lib.mat{4}.variables.C='385[J/(kg*K)]'; lib.mat{4}.variables.epsilon='0.5'; lib.mat{4}.variables.res0='1.72e-8[ohm*m]'; lib.mat{4}.variables.rho='8700[kg/m^3]'; lib.mat{4}.variables.k='400[W/(m*K)]'; lib.mat{4}.variables.T0='273.15[K]'; lib.matgroups{1}.name='Resistivity'; lib.matgroups{1}.variables={'alphares','T0','res0'}; lib.matgroups{1}.descr={'Temperature coefficient','Reference temperature','Resistivity at reference temperature'}; lib.matgroups{2}.name='Electromagnetic (AC/DC)'; lib.matgroups{2}.variables={'alphares','T0','res0','Br','normfH','fH','normfB','fB'}; lib.matgroups{2}.descr={'Temperature coefficient','Reference temperature','Resistivity at reference temperature','Remanent flux density','Nonlinear magnetic field, norm','Nonlinear magnetic field','Nonlinear magnetic flux density, norm','Nonlinear magnetic flux density'}; fem.lib = lib; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; fem.ode=ode; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femtime(fem, ... 'solcomp',{'Az'}, ... 'outcomp',{'Az','Azt'}, ... 'blocksize','auto', ... 'tlist',[0:0.1:1], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',60, ... 'arrowyspacing',60, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-2.008564053411092,2.008564053411092,-1.1316441964124861,1.1316441964124861]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',10, ... 'arrowyspacing',60, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-2.008564053411092,2.008564053411092,-1.1821159491420163,1.1821159491420163]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',10, ... 'arrowyspacing',60, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-2.008564053411092,2.008564053411092,-1.1821159491420163,1.1821159491420163]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',10, ... 'arrowyspacing',600, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-2.008564053411092,2.008564053411092,-1.1821159491420163,1.1821159491420163]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',600, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-2.008564053411092,2.008564053411092,-1.1821159491420163,1.1821159491420163]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-2.008564053411092,2.008564053411092,-1.1821159491420163,1.1821159491420163]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'flowdata',{'Hx_emqa','Hy_emqa'}, ... 'flowcolor',[1.0,0.0,0.0], ... 'flowlines',20, ... 'solnum','end', ... 'title','Time=1 Surface: Magnetic field, norm [A/m] Arrow: Magnetization Streamline: Magnetic field', ... 'axis',[-2.008564053411092,2.008564053411092,-1.1821159491420163,1.1821159491420163]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-2.0085640534110922,2.0085640534110922,-1.1821159491420175,1.1821159491420166]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',4, ... 'title','Time=0.3 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-1.0042820267055468,1.0042820267055468,-0.5910579745710092,0.5910579745710082]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',4, ... 'title','Time=0.3 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-1.0042820267055468,1.0042820267055468,-0.5910579745710092,0.5910579745710082]); % Plot in cross-section or along domain postcrossplot(fem,0,[0;0], ... 'pointdata',{'normH_emqa','unit','A/m'}, ... 'title','Magnetic field, norm [A/m]', ... 'axislabel',{'Time','Magnetic field',' norm [A/m]'}); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',2, ... 'title','Time=0.1 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-1.0042820267055468,1.0042820267055468,-0.5910579745710092,0.5910579745710082]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',2, ... 'title','Time=0.1 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-1.0042820267055468,1.0042820267055468,-0.5910579745710092,0.5910579745710082]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'flowdata',{'Hx_emqa','Hy_emqa'}, ... 'flowcolor',[1.0,0.0,0.0], ... 'flowlines',20, ... 'solnum',2, ... 'title','Time=0.1 Surface: Magnetic field, norm [A/m] Arrow: Magnetization Streamline: Magnetic field', ... 'axis',[-2.008564053411094,2.0085640534110936,-1.182115949142018,1.182115949142017]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'flowdata',{'Hx_emqa','Hy_emqa'}, ... 'flowcolor',[1.0,0.0,0.0], ... 'flowlines',20, ... 'solnum',3, ... 'title','Time=0.2 Surface: Magnetic field, norm [A/m] Arrow: Magnetization Streamline: Magnetic field', ... 'axis',[-2.00856405t�`3411094,2.0085640534110936,-1.182115949142018,1.182115949142017]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'flowdata',{'Hx_emqa','Hy_emqa'}, ... 'flowcolor',[1.0,0.0,0.0], ... 'flowlines',20, ... 'solnum',5, ... 'title','Time=0.4 Surface: Magnetic field, norm [A/m] Arrow: Magnetization Streamline: Magnetic field', ... 'axis',[-2.008564053411094,2.0085640534110936,-1.182115949142018,1.182115949142017]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'flowdata',{'Hx_emqa','Hy_emqa'}, ... 'flowcolor',[1.0,0.0,0.0], ... 'flowlines',20, ... 'solnum',6, ... 'title','Time=0.5 Surface: Magnetic field, norm [A/m] Arrow: Magnetization Streamline: Magnetic field', ... 'axis',[-2.008564053411094,2.0085640534110936,-1.182115949142018,1.182115949142017]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'flowdata',{'Hx_emqa','Hy_emqa'}, ... 'flowcolor',[1.0,0.0,0.0], ... 'flowlines',20, ... 'solnum',10, ... 'title','Time=0.9 Surface: Magnetic field, norm [A/m] Arrow: Magnetization Streamline: Magnetic field', ... 'axis',[-2.008564053411094,2.0085640534110936,-1.182115949142018,1.182115949142017]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'flowdata',{'Hx_emqa','Hy_emqa'}, ... 'flowcolor',[1.0,0.0,0.0], ... 'flowlines',200, ... 'solnum',10, ... 'title','Time=0.9 Surface: Magnetic field, norm [A/m] Arrow: Magnetization Streamline: Magnetic field', ... 'axis',[-2.008564053411094,2.0085640534110936,-1.182115949142018,1.182115949142017]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'flowdata',{'Hx_emqa','Hy_emqa'}, ... 'flowcolor',[1.0,0.0,0.0], ... 'flowlines',100, ... 'solnum',10, ... 'title','Time=0.9 Surface: Magnetic field, norm [A/m] Arrow: Magnetization Streamline: Magnetic field', ... 'axis',[-2.008564053411094,2.0085640534110936,-1.182115949142018,1.182115949142017]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'flowdata',{'Hx_emqa','Hy_emqa'}, ... 'flowcolor',[1.0,0.0,0.0], ... 'flowlines',100, ... 'solnum',4, ... 'title','Time=0.3 Surface: Magnetic field, norm [A/m] Arrow: Magnetization Streamline: Magnetic field', ... 'axis',[-2.008564053411094,2.0085640534110936,-1.182115949142018,1.182115949142017]); % Animate solution postmovie(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'flowdata',{'Hx_emqa','Hy_emqa'}, ... 'flowcolor',[1.0,0.0,0.0], ... 'flowlines',100, ... 'axis',[-2.008564053411094,2.0085640534110936,-1.182115949142018,1.182115949142017], ... 'fps',10); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'tridlim',[0 300], ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'flowdata',{'Hx_emqa','Hy_emqa'}, ... 'flowcolor',[1.0,0.0,0.0], ... 'flowlines',100, ... 'solnum',4, ... 'title','Time=0.3 Surface: Magnetic field, norm [A/m] Arrow: Magnetization Streamline: Magnetic field', ... 'axis',[-2.008564053411094,2.0085640534110936,-1.182115949142018,1.182115949142017]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'tridlim',[0 300], ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'flowdata',{'Hx_emqa','Hy_emqa'}, ... 'flowcolor',[1.0,0.0,0.0], ... 'flowlines',100, ... 'solnum',7, ... 'title','Time=0.6 Surface: Magnetic field, norm [A/m] Arrow: Magnetization Streamline: Magnetic field', ... 'axis',[-2.041031657507379,2.0410316575073786,-1.182115949142018,1.182115949142017]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'tridlim',[0 300], ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',7, ... 'title','Time=0.6 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-2.041031657507379,2.0410316575073786,-1.182115949142018,1.182115949142017]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'tridlim',[0 300], ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',2, ... 'title','Time=0.1 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-2.041031657507379,2.0410316575073786,-1.182115949142018,1.182115949142017]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'tridlim',[0 300], ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',3, ... 'title','Time=0.2 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-2.041031657507379,2.0410316575073786,-1.182115949142018,1.182115949142017]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'tridlim',[0 300], ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',4, ... 'title','Time=0.3 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-2.041031657507379,2.0410316575073786,-1.182115949142018,1.182115949142017]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'tridlim',[0 300], ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',9, ... 'title','Time=0.8 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-2.041031657507379,2.0410316575073786,-1.182115949142018,1.182115949142017]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'tridlim',[0 300], ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',10, ... 'title','Time=0.9 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-2.041031657507379,2.0410316575073786,-1.182115949142018,1.182115949142017]); % Plot in cross-section or along domain postcrossplot(fem,0,[-0.5;-0.5], ... 'pointdata',{'Jez_emqa','unit','A/m^2'}, ... 'title','External current density [A/m^2]', ... 'axislabel',{'Time','External current density [A/m^2]'}); % Constants fem.const = {'R','1'}; % Constants fem.const = {'R','1'}; % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'PerpendicularCurrents'; appl.module = 'ACDC'; appl.sshape = 2; appl.assignsuffix = '_emqa'; clear prop prop.analysis='transient'; appl.prop = prop; clear bnd bnd.type = {'A0','cont'}; bnd.ind = [1,1,1,2,2,2,1,1,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,1,1,2,1]; appl.bnd = bnd; clear equ equ.Jez = {0,0,'(1-flc2hs(t-0.5,0.25))*R','(flc2hs(t-0.5,0.25)-1)*R'}; equ.sigma = {'mat2_sigma','mat3_sigma','mat4_sigma','mat4_sigma'}; equ.epsilonr = {1,'mat3_epsilonr','mat4_epsilonr','mat4_epsilonr'}; equ.mur = {1,'mat3_MUR(normB_emqa[1/T])','mat4_mur','mat4_mur'}; equ.normfH = {'1/mu0_emqa*normB_emqa','mat3_HB(normB_emqa[1/T])[A/m]','1/mu0_emqa*normB_emqa', ... '1/mu0_emqa*normB_emqa'}; equ.ind = [1,2,3,4,2,3,4]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Library materials clear lib lib.mat{1}.name='Iron'; lib.mat{1}.varname='mat1'; lib.mat{1}.variables.nu='0.29'; lib.mat{1}.variables.E='200e9[Pa]'; lib.mat{1}.variables.mur='4000'; lib.mat{1}.variables.sigma='1.12e7[S/m]'; lib.mat{1}.variables.epsilonr='1'; lib.mat{1}.variables.alpha='12.2e-6[1/K]'; lib.mat{1}.variables.C='440[J/(kg*K)]'; lib.mat{1}.variables.rho='7870[kg/m^3]'; lib.mat{1}.variables.k='76.2[W/(m*K)]'; lib.mat{2}.name='Air'; lib.mat{2}.varname='mat2'; lib.mat{2}.variables.nu0='nu0(T[1/K])[m^2/s]'; lib.mat{2}.variables.eta='eta(T[1/K])[Pa*s]'; lib.mat{2}.variables.gamma='1.4'; lib.mat{2}.variables.sigma='0[S/m]'; lib.mat{2}.variables.C='Cp(T[1/K])[J/(kg*K)]'; lib.mat{2}.variables.rho='rho(p[1/Pa],T[1/K])[kg/m^3]'; lib.mat{2}.variables.k='k(T[1/K])[W/(m*K)]'; lib.mat{2}.variables.cs='cs(T[1/K])[m/s]'; clear fcns fcns{1}.type='inline'; fcns{1}.name='cs(T)'; fcns{1}.expr='sqrt(1.4*287*T)'; fcns{1}.dexpr={'diff(sqrt(1.4*287*T),T)'}; fcns{2}.type='inline'; fcns{2}.name='rho(p,T)'; fcns{2}.expr='p*0.02897/8.314/T'; fcns{2}.dexpr={'diff(p*0.02897/8.314/T,p)','diff(p*0.02897/8.314/T,T)'}; fcns{3}.type='piecewise'; fcns{3}.name='Cp(T)'; fcns{3}.extmethod='const'; fcns{3}.subtype='poly'; fcns{3}.expr={{'0','1.04763657E+03','1','-3.72589265E-01','2', ... '9.45304214E-04','3','-6.02409443E-07','4','1.28589610E-10'}}; fcns{3}.intervals={'200','1600'}; fcns{4}.type='piecewise'; fcns{4}.name='eta(T)'; fcns{4}.extmethod='const'; fcns{4}.subtype='poly'; fcns{4}.expr={{'0','-8.38278000E-07','1','8.35717342E-08','2', ... '-7.69429583E-11','3','4.64372660E-14','4','-1.06585607E-17'}}; fcns{4}.intervals={'200','1600'}; fcns{5}.type='piecewise'; fcns{5}.name='nu0(T)'; fcns{5}.extmethod='const'; fcns{5}.subtype='poly'; fcns{5}.expr={{'0','-5.86912450E-06','1','5.01274491E-08','2', ... '7.50108343E-11','3','1.80336823E-15','4','-2.91688030E-18'}}; fcns{5}.intervals={'200','1600'}; fcns{6}.type='piecewise'; fcns{6}.name='k(T)'; fcns{6}.extmethod='const'; fcns{6}.subtype='poly'; fcns{6}.expr={{'0','-2.27583562E-03','1','1.15480022E-04','2', ... '-7.90252856E-08','3','4.11702505E-11','4','-7.43864331E-15'}}; fcns{6}.intervals={'200','1600'}; lib.mat{2}.functions = fcns; lib.mat{3}.name='Soft Iron (without losses)'; lib.mat{3}.varname='mat3'; lib.mat{3}.variables.normfB='BH(normH[m/A])[T]'; lib.mat{3}.variables.mur='MUR(normB[1/T])'; lib.mat{3}.variables.sigma='0[S/m]'; lib.mat{3}.variables.normfH='HB(normB[1/T])[A/m]'; lib.mat{3}.variables.epsilonr='1'; clear fcns fcns{1}.type='interp'; fcns{1}.name='MUR'; fcns{1}.method='linear'; fcns{1}.extmethod='const'; fcns{1}.x={'1','1.1','1.2','1.3','1.4','1.5','1.6','1.7','1.8','1.9', ... '2.0','2.1','2.2','2.3','2.4'}; fcns{1}.data={'1200','820','560','420','290','220','160','110','70','47', ... '26','15','10','7','6'}; fcns{2}.type='interp'; fcns{2}.name='HB'; fcns{2}.method='linear'; fcns{2}.extmethod='extrap'; fcns{2}.x={'0','1','1.1','1.2','1.3','1.4','1.5','1.6','1.7','1.8', ... '1.9','2.0','2.1','2.2','2.3','2.4'}; fcns{2}.data={'0','663.146','1067.5','1705.23','2463.11','3841.67', ... '5425.74','7957.75','12298.3','20462.8','32169.6','61213.4','111408', ... '175070','261469','318310'}; fcns{3}.type='interp'; fcns{3}.name='BH'; fcns{3}.method='linear'; fcns{3}.extmethod='extrap'; fcns{3}.x={'0','663.146','1067.5','1705.23','2463.11','3841.67', ... '5425.74','7957.75','12298.3','20462.8','32169.6','61213.4','111408', ... '175070','261469','318310'}; fcns{3}.data={'0','1','1.1','1.2','1.3','1.4','1.5','1.6','1.7','1.8', ... '1.9','2.0','2.1','2.2','2.3','2.4'}; lib.mat{3}.functions = fcns; lib.mat{4}.name='Copper'; lib.mat{4}.varname='mat4'; lib.mat{4}.variables.alphares='3.9e-3[1/K]'; lib.mat{4}.variables.mur='1'; lib.mat{4}.variables.sigma='5.998e7[S/m]'; lib.mat{4}.variables.epsilonr='1'; lib.mat{4}.variables.C='385[J/(kg*K)]'; lib.mat{4}.variables.epsilon='0.5'; lib.mat{4}.variables.res0='1.72e-8[ohm*m]'; lib.mat{4}.variables.rho='8700[kg/m^3]'; lib.mat{4}.variables.k='400[W/(m*K)]'; lib.mat{4}.variables.T0='273.15[K]'; lib.matgroups{1}.name='Resistivity'; lib.matgroups{1}.variables={'alphares','T0','res0'}; lib.matgroups{1}.descr={'Temperature coefficient','Reference temperature','Resistivity at reference temperature'}; lib.matgroups{2}.name='Electromagnetic (AC/DC)'; lib.matgroups{2}.variables={'alphares','T0','res0','Br','normfH','fH','normfB','fB'}; lib.matgroups{2}.descr={'Temperature coefficient','Reference temperature','Resistivity at reference temperature','Remanent flux density','Nonlinear magnetic field, norm','Nonlinear magnetic field','Nonlinear magnetic flux density, norm','Nonlinear magnetic flux density'}; fem.lib = lib; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; fem.ode=ode; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femtime(fem, ... 'solcomp',{'Az'}, ... 'outcomp',{'Az','Azt'}, ... 'blocksize','auto', ... 'tlist',[0:0.1:1], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'tridlim',[0 300], ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-2.129579668679066,2.1295796686790656,-1.182115949142018,1.182115949142017]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'tridlim',[0 300], ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',2, ... 'title','Time=0.1 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-2.041031657507379,2.0410316575073786,-1.182115949142018,1.182115949142017]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',2, ... 'title','Time=0.1 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-2.041031657507379,2.0410316575073786,-1.182115949142018,1.182115949142017]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'tridlim',[0 0.01], ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',2, ... 'title','Time=0.1 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-2.0085640534110936,2.008564053411093,-1.1856004471498054,1.1856004471498045]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'tridlim',[0 0.01], ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',6, ... 'title','Time=0.5 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-2.0174188545282625,2.017418854528262,-1.182115949142018,1.182115949142017]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',6, ... 'title','Time=0.5 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-2.0174188545282625,2.017418854528262,-1.182115949142018,1.182115949142017]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',10, ... 'title','Time=0.9 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-2.008564053411094,2.0085640534110936,-1.182115949142018,1.182115949142017]); % Plot in cross-section or along domain postcrossplot(fem,0,[-0.5;-0.5], ... 'pointdata',{'Jez_emqa','unit','A/m^2'}, ... 'title','External current density [A/m^2]', ... 'axislabel',{'Time','External current density [A/m^2]'}); % Plot in cross-section or along domain postcrossplot(fem,0,[-0.5;0.5], ... 'pointdata',{'Jez_emqa','unit','A/m^2'}, ... 'title','External current density [A/m^2]', ... 'axislabel',{'Time','External current density [A/m^2]'}); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',3, ... 'title','Time=0.2 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-2.129579668679066,2.1295796686790656,-1.182115949142018,1.182115949142017]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'tridlim',[0 0.02], ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',3, ... 'title','Time=0.2 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-2.008564053411094,2.0085640534110936,-1.182115949142018,1.182115949142017]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'tridlim',[0 0.02], ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',2, ... 'title','Time=0.1 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-2.0174188545282625,2.017418854528262,-1.182115949142018,1.182115949142017]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'tridlim',[0 0.02], ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',4, ... 'title','Time=0.3 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-2.0174188545282625,2.017418854528262,-1.182115949142018,1.182115949142017]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'tridlim',[0 0.02], ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',5, ... 'title','Time=0.4 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-2.0174188545282625,2.017418854528262,-1.182115949142018,1.182115949142017]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'tridlim',[0 0.02], ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',6, ... 'title','Time=0.5 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-2.0174188545282625,2.017418854528262,-1.182115949142018,1.182115949142017]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'tridlim',[0 0.02], ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',7, ... 'title','Time=0.6 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-2.0174188545282625,2.017418854528262,-1.182115949142018,1.182115949142017]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'tridlim',[0 0.02], ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',8, ... 'title','Time=0.7 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-2.0174188545282625,2.017418854528262,-1.182115949142018,1.182115949142017]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'tridlim',[0 0.02], ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',9, ... 'title','Time=0.8 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-2.0174188545282625,2.017418854528262,-1.182115949142018,1.182115949142017]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'tridlim',[0 0.02], ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',10, ... 'title','Time=0.9 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-2.0174188545282625,2.017418854528262,-1.182115949142018,1.182115949142017]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'tridlim',[0 0.02], ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-2.0174188545282625,2.017418854528262,-1.182115949142018,1.182115949142017]); % Plot in cross-section or along domain postcrossplot(fem,0,[0;0], ... 'pointdata',{'Hx_emqa','unit','A/m'}, ... 'title','Magnetic field, x component [A/m]', ... 'axislabel',{'Time','Magnetic field',' x component [A/m]'}); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'PerpendicularCurrents'; appl.module = 'ACDC'; appl.sshape = 2; appl.assignsuffix = '_emqa'; clear prop prop.analysis='transient'; appl.prop = prop; clear bnd bnd.type = {'A0','cont'}; bnd.ind = [1,1,1,2,2,2,1,1,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,1,1,2,1]; appl.bnd = bnd; clear equ equ.Jez = {0,0,'(1-flc2hs(t-0.2,0.1))*R','(flc2hs(t-0.2,0.1)-1)*R'}; equ.sigma = {'mat2_sigma','mat3_sigma','mat4_sigma','mat4_sigma'}; equ.epsilonr = {1,'mat3_epsilonr','mat4_epsilonr','mat4_epsilonr'}; equ.mur = {1,'mat3_MUR(normB_emqa[1/T])','mat4_mur','mat4_mur'}; equ.normfH = {'1/mu0_emqa*normB_emqa','mat3_HB(normB_emqa[1/T])[A/m]','1/mu0_emqa*normB_emqa', ... '1/mu0_emqa*normB_emqa'}; equ.ind = [1,2,3,4,2,3,4]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Library materials clear lib lib.mat{1}.name='Iron'; lib.mat{1}.varname='mat1'; lib.mat{1}.variables.nu='0.29'; lib.mat{1}.variables.E='200e9[Pa]'; lib.mat{1}.variables.mur='4000'; lib.mat{1}.variables.sigma='1.12e7[S/m]'; lib.mat{1}.variables.epsilonr='1'; lib.mat{1}.variables.alpha='12.2e-6[1/K]'; lib.mat{1}.variables.C='440[J/(kg*K)]'; lib.mat{1}.variables.rho='7870[kg/m^3]'; lib.mat{1}.variables.k='76.2[W/(m*K)]'; lib.mat{2}.name='Air'; lib.mat{2}.varname='mat2'; lib.mat{2}.variables.nu0='nu0(T[1/K])[m^2/s]'; lib.mat{2}.variables.eta='eta(T[1/K])[Pa*s]'; lib.mat{2}.variables.gamma='1.4'; lib.mat{2}.variables.sigma='0[S/m]'; lib.mat{2}.variables.C='Cp(T[1/K])[J/(kg*K)]'; lib.mat{2}.variables.rho='rho(p[1/Pa],T[1/K])[kg/m^3]'; lib.mat{2}.variables.k='k(T[1/K])[W/(m*K)]'; lib.mat{2}.variables.cs='cs(T[1/K])[m/s]'; clear fcns fcns{1}.type='inline'; fcns{1}.name='cs(T)'; fcns{1}.expr='sqrt(1.4*287*T)'; fcns{1}.dexpr={'diff(sqrt(1.4*287*T),T)'}; fcns{2}.type='inline'; fcns{2}.name='rho(p,T)'; fcns{2}.expr='p*0.02897/8.314/T'; fcns{2}.dexpr={'diff(p*0.02897/8.314/T,p)','diff(p*0.02897/8.314/T,T)'}; fcns{3}.type='piecewise'; fcns{3}.name='Cp(T)'; fcns{3}.extmethod='const'; fcns{3}.subtype='poly'; fcns{3}.expr={{'0','1.04763657E+03','1','-3.72589265E-01','2', ... '9.45304214E-04','3','-6.02409443E-07','4','1.28589610E-10'}}; fcns{3}.intervals={'200','1600'}; fcns{4}.type='piecewise'; fcns{4}.name='eta(T)'; fcns{4}.extmethod='const'; fcns{4}.subtype='poly'; fcns{4}.expr={{'0','-8.38278000E-07','1','8.35717342E-08','2', ... '-7.69429583E-11','3','4.64372660E-14','4','-1.06585607E-17'}}; fcns{4}.intervals={'200','1600'}; fcns{5}.type='piecewise'; fcns{5}.name='nu0(T)'; fcns{5}.extmethod='const'; fcns{5}.subtype='poly'; fcns{5}.expr={{'0','-5.86912450E-06','1','5.01274491E-08','2', ... '7.50108343E-11','3','1.80336823E-15','4','-2.91688030E-18'}}; fcns{5}.intervals={'200','1600'}; fcns{6}.type='piecewise'; fcns{6}.name='k(T)'; fcns{6}.extmethod='const'; fcns{6}.subtype='poly'; fcns{6}.expr={{'0','-2.27583562E-03','1','1.15480022E-04','2', ... '-7.90252856E-08','3','4.11702505E-11','4','-7.43864331E-15'}}; fcns{6}.intervals={'200','1600'}; lib.mat{2}.functions = fcns; lib.mat{3}.name='Soft Iron (without losses)'; lib.mat{3}.varname='mat3'; lib.mat{3}.variables.normfB='BH(normH[m/A])[T]'; lib.mat{3}.variables.mur='MUR(normB[1/T])'; lib.mat{3}.variables.sigma='0[S/m]'; lib.mat{3}.variables.normfH='HB(normB[1/T])[A/m]'; lib.mat{3}.variables.epsilonr='1'; clear fcns fcns{1}.type='interp'; fcns{1}.name='MUR'; fcns{1}.method='linear'; fcns{1}.extmethod='const'; fcns{1}.x={'1','1.1','1.2','1.3','1.4','1.5','1.6','1.7','1.8','1.9', ... '2.0','2.1','2.2','2.3','2.4'}; fcns{1}.data={'1200','820','560','420','290','220','160','110','70','47', ... '26','15','10','7','6'}; fcns{2}.type='interp'; fcns{2}.name='HB'; fcns{2}.method='linear'; fcns{2}.extmethod='extrap'; fcns{2}.x={'0','1','1.1','1.2','1.3','1.4','1.5','1.6','1.7','1.8', ... '1.9','2.0','2.1','2.2','2.3','2.4'}; fcns{2}.data={'0','663.146','1067.5','1705.23','2463.11','3841.67', ... '5425.74','7957.75','12298.3','20462.8','32169.6','61213.4','111408', ... '175070','261469','318310'}; fcns{3}.type='interp'; fcns{3}.name='BH'; fcns{3}.method='linear'; fcns{3}.extmethod='extrap'; fcns{3}.x={'0','663.146','1067.5','1705.23','2463.11','3841.67', ... '5425.74','7957.75','12298.3','20462.8','32169.6','61213.4','111408', ... '175070','261469','318310'}; fcns{3}.data={'0','1','1.1','1.2','1.3','1.4','1.5','1.6','1.7','1.8', ... '1.9','2.0','2.1','2.2','2.3','2.4'}; lib.mat{3}.functions = fcns; lib.mat{4}.name='Copper'; lib.mat{4}.varname='mat4'; lib.mat{4}.variables.alphares='3.9e-3[1/K]'; lib.mat{4}.variables.mur='1'; lib.mat{4}.variables.sigma='5.998e7[S/m]'; lib.mat{4}.variables.epsilonr='1'; lib.mat{4}.variables.C='385[J/(kg*K)]'; lib.mat{4}.variables.epsilon='0.5'; lib.mat{4}.variables.res0='1.72e-8[ohm*m]'; lib.mat{4}.variables.rho='8700[kg/m^3]'; lib.mat{4}.variables.k='400[W/(m*K)]'; lib.mat{4}.variables.T0='273.15[K]'; lib.matgroups{1}.name='Resistivity'; lib.matgroups{1}.variables={'alphares','T0','res0'}; lib.matgroups{1}.descr={'Temperature coefficient','Reference temperature','Resistivity at reference temperature'}; lib.matgroups{2}.name='Electromagnetic (AC/DC)'; lib.matgroups{2}.variables={'alphares','T0','res0','Br','normfH','fH','normfB','fB'}; lib.matgroups{2}.descr={'Temperature coefficient','Reference temperature','Resistivity at reference temperature','Remanent flux density','Nonlinear magnetic field, norm','Nonlinear magnetic field','Nonlinear magnetic flux density, norm','Nonlinear magnetic flux density'}; fem.lib = lib; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; fem.ode=ode; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femtime(fem, ... 'solcomp',{'Az'}, ... 'outcomp',{'Az','Azt'}, ... 'blocksize','auto', ... 'tlist',[0:0.1:1], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'tridlim',[0 0.02], ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-2.129579668679066,2.1295796686790656,-1.182115949142018,1.182115949142017]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'tridlim',[0 0.02], ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',2, ... 'title','Time=0.1 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-2.0174188545282625,2.017418854528262,-1.182115949142018,1.182115949142017]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',2, ... 'title','Time=0.1 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-2.0174188545282625,2.017418854528262,-1.182115949142018,1.182115949142017]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'tridlim',[0 0.01], ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',2, ... 'title','Time=0.1 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-2.0085640534110936,2.008564053411093,-1.1856004471498054,1.1856004471498045]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'tridlim',[0 0.01], ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',3, ... 'title','Time=0.2 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-2.0174188545282625,2.017418854528262,-1.182115949142018,1.182115949142017]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'tridlim',[0 0.01], ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',4, ... 'title','Time=0.3 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-2.0174188545282625,2.017418854528262,-1.182115949142018,1.182115949142017]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'tridlim',[0 0.01], ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',5, ... 'title','Time=0.4 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-2.0174188545282625,2.017418854528262,-1.182115949142018,1.182115949142017]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'tridlim',[0 0.01], ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',10, ... 'title','Time=0.9 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-2.0174188545282625,2.017418854528262,-1.182115949142018,1.182115949142017]); % Plot in cross-section or along domain postcrossplot(fem,0,[0;0], ... 'pointdata',{'Hx_emqa','unit','A/m'}, ... 'title','Magnetic field, x component [A/m]', ... 'axislabel',{'Time','Magnetic field',' x component [A/m]'}); % Plot in cross-section or along domain postcrossplot(fem,1,[-1 1;-0.5 -0.5], ... 'lindata','Jez_emqa', ... 'linxdata','x', ... 'title','External current density [A/m^2]', ... 'axislabel',{'x','External current density [A/m^2]'}); % Plot in cross-section or along domain postcrossplot(fem,1,[-0.5 -0.5;-1 1], ... 'lindata','Jez_emqa', ... 'linxdata','y', ... 'title','External current density [A/m^2]', ... 'axislabel',{'y','External current density [A/m^2]'}); % Plot in cross-section or along domain postcrossplot(fem,1,[-0.5 -0.5;-1 1], ... 'lindata','Jez_emqa', ... 'linxdata','y', ... 'solnum',[2], ... 'title','External current density [A/m^2]', ... 'axislabel',{'y','External current density [A/m^2]'}); % Plot in cross-section or along domain postcrossplot(fem,1,[-0.5 -0.5;-1 1], ... 'lindata','Jez_emqa', ... 'linxdata','y', ... 'solnum',[2,7], ... 'title','External current density [A/m^2]', ... 'axislabel',{'y','External current density [A/m^2]'}); % COMSOL Multiphysics Model M-file % Generated by COMSOL 3.5 (COMSOL 3.5.0.494, $Date: 2008/09/19 16:09:48 $) % Plot in cross-section or along domain postcrossplot(fem,1,[-0.5 -0.5;-1 1], ... 'lindata','Jez_emqa', ... 'linxdata','y', ... 'solnum',[2,7], ... 'title','External current density [A/m^2]', ... 'axislabel',{'y','External current density [A/m^2]'}); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'tridlim',[0 0.01], ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',10, ... 'title','Time=0.9 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-4.25915933735813,4.25915933735813,-2.3642318982840353,2.3642318982840345]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'tridlim',[0 0.01], ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',10, ... 'title','Time=0.9 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-4.1962935168805195,4.1962935168805195,-2.458837678874394,2.458837678874393]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'tridlim',[0 0.01], ... 'trimap','jet(1024)', ... 'contdata',{'normB_emqa','cont','internal','unit','T'}, ... 'contlevels',20, ... 'contlabel','off', ... 'contmap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',10, ... 'title','Time=0.9 Surface: Magnetic field, norm [A/m] Contour: Magnetic flux density, norm [T] Arrow: Magnetization', ... 'axis',[-4.1962935168805195,4.1962935168805195,-2.458837678874394,2.458837678874393]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'tridlim',[0 0.01], ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',10, ... 'title','Time=0.9 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-4.1962935168805195,4.1962935168805195,-2.628014939031506,2.6280149390315053]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'tridlim',[0 0.01], ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',2, ... 'title','Time=0.1 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-4.1962935168805195,4.1962935168805195,-2.458837678874394,2.458837678874393]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'tridlim',[0 0.01], ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',3, ... 'title','Time=0.2 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-4.1962935168805195,4.1962935168805195,-2.458837678874394,2.458837678874393]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'tridlim',[0 0.01], ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',3, ... 'title','Time=0.2 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'geom','off', ... 'axis',[-4.1962935168805195,4.1962935168805195,-2.458837678874394,2.458837678874393]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'tridlim',[0 0.01], ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',3, ... 'title','Time=0.2 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-4.1962935168805195,4.1962935168805195,-2.458837678874394,2.458837678874393]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'tridlim',[0 0.01], ... 'trimap','jet(1024)', ... 'arrowdata',{{'Mx_emqa','My_emqa'},'recover','pprint'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',3, ... 'title','Time=0.2 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-4.1962935168805195,4.1962935168805195,-2.458837678874394,2.458837678874393]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'tridlim',[0 0.01], ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'arrowz',{'normB_emqa','unit','T'}, ... 'solnum',3, ... 'title','Time=0.2 Surface: Magnetic field, norm [A/m] Arrow: Magnetization Height: Magnetic flux density, norm [T]', ... 'grid','on'); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'tridlim',[0 0.01], ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',3, ... 'title','Time=0.2 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-2,2,-2,2]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'tridlim',[0 0.01], ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',3, ... 'title','Time=0.2 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-4.1962935168805195,4.1962935168805195,-2.458837678874394,2.458837678874393]); % COMSOL Multiphysics Model M-file % Generated by COMSOL 3.5 (COMSOL 3.5.0.494, $Date: 2008/09/19 16:09:48 $) % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'PerpendicularCurrents'; appl.module = 'ACDC'; appl.assignsuffix = '_emqa'; clear prop prop.analysis='transient'; appl.prop = prop; clear bnd bnd.type = {'A0','cont'}; bnd.ind = [1,1,1,2,2,2,1,1,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,1,1,2,1]; appl.bnd = bnd; clear equ equ.Jez = {0,0,'(1-flc2hs(t-0.2,0.1))*R','(flc2hs(t-0.2,0.1)-1)*R'}; equ.sigma = {'mat2_sigma','mat3_sigma','mat4_sigma','mat4_sigma'}; equ.epsilonr = {1,'mat3_epsilonr','mat4_epsilonr','mat4_epsilonr'}; equ.mur = {1,'mat3_MUR(normB_emqa[1/T])','mat4_mur','mat4_mur'}; equ.normfH = {'1/mu0_emqa*normB_emqa','mat3_HB(normB_emqa[1/T])[A/m]','1/mu0_emqa*normB_emqa', ... '1/mu0_emqa*normB_emqa'}; equ.ind = [1,2,3,4,2,3,4]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Library materials clear lib lib.mat{1}.name='Iron'; lib.mat{1}.varname='mat1'; lib.mat{1}.variables.nu='0.29'; lib.mat{1}.variables.E='200e9[Pa]'; lib.mat{1}.variables.mur='4000'; lib.mat{1}.variables.sigma='1.12e7[S/m]'; lib.mat{1}.variables.epsilonr='1'; lib.mat{1}.variables.alpha='12.2e-6[1/K]'; lib.mat{1}.variables.C='440[J/(kg*K)]'; lib.mat{1}.variables.rho='7870[kg/m^3]'; lib.mat{1}.variables.k='76.2[W/(m*K)]'; lib.mat{2}.name='Air'; lib.mat{2}.varname='mat2'; lib.mat{2}.variables.nu0='nu0(T[1/K])[m^2/s]'; lib.mat{2}.variables.eta='eta(T[1/K])[Pa*s]'; lib.mat{2}.variables.gamma='1.4'; lib.mat{2}.variables.sigma='0[S/m]'; lib.mat{2}.variables.C='Cp(T[1/K])[J/(kg*K)]'; lib.mat{2}.variables.rho='rho(p[1/Pa],T[1/K])[kg/m^3]'; lib.mat{2}.variables.k='k(T[1/K])[W/(m*K)]'; lib.mat{2}.variables.cs='cs(T[1/K])[m/s]'; clear fcns fcns{1}.type='inline'; fcns{1}.name='cs(T)'; fcns{1}.expr='sqrt(1.4*287*T)'; fcns{1}.dexpr={'diff(sqrt(1.4*287*T),T)'}; fcns{2}.type='inline'; fcns{2}.name='rho(p,T)'; fcns{2}.expr='p*0.02897/8.314/T'; fcns{2}.dexpr={'diff(p*0.02897/8.314/T,p)','diff(p*0.02897/8.314/T,T)'}; fcns{3}.type='piecewise'; fcns{3}.name='Cp(T)'; fcns{3}.extmethod='const'; fcns{3}.subtype='poly'; fcns{3}.expr={{'0','1.04763657E+03','1','-3.72589265E-01','2', ... '9.45304214E-04','3','-6.02409443E-07','4','1.28589610E-10'}}; fcns{3}.intervals={'200','1600'}; fcns{4}.type='piecewise'; fcns{4}.name='eta(T)'; fcns{4}.extmethod='const'; fcns{4}.subtype='poly'; fcns{4}.expr={{'0','-8.38278000E-07','1','8.35717342E-08','2', ... '-7.69429583E-11','3','4.64372660E-14','4','-1.06585607E-17'}}; fcns{4}.intervals={'200','1600'}; fcns{5}.type='piecewise'; fcns{5}.name='nu0(T)'; fcns{5}.extmethod='const'; fcns{5}.subtype='poly'; fcns{5}.expr={{'0','-5.86912450E-06','1','5.01274491E-08','2', ... '7.50108343E-11','3','1.80336823E-15','4','-2.91688030E-18'}}; fcns{5}.intervals={'200','1600'}; fcns{6}.type='piecewise'; fcns{6}.name='k(T)'; fcns{6}.extmethod='const'; fcns{6}.subtype='poly'; fcns{6}.expr={{'0','-2.27583562E-03','1','1.15480022E-04','2', ... '-7.90252856E-08','3','4.11702505E-11','4','-7.43864331E-15'}}; fcns{6}.intervals={'200','1600'}; lib.mat{2}.functions = fcns; lib.mat{3}.name='Soft Iron (without losses)'; lib.mat{3}.varname='mat3'; lib.mat{3}.variables.normfB='BH(normH[m/A])[T]'; lib.mat{3}.variables.mur='MUR(normB[1/T])'; lib.mat{3}.variables.sigma='0[S/m]'; lib.mat{3}.variables.normfH='HB(normB[1/T])[A/m]'; lib.mat{3}.variables.epsilonr='1'; clear fcns fcns{1}.type='interp'; fcns{1}.name='MUR'; fcns{1}.method='linear'; fcns{1}.extmethod='const'; fcns{1}.x={'1','1.1','1.2','1.3','1.4','1.5','1.6','1.7','1.8','1.9', ... '2.0','2.1','2.2','2.3','2.4'}; fcns{1}.data={'1200','820','560','420','290','220','160','110','70','47', ... '26','15','10','7','6'}; fcns{2}.type='interp'; fcns{2}.name='HB'; fcns{2}.method='linear'; fcns{2}.extmethod='extrap'; fcns{2}.x={'0','1','1.1','1.2','1.3','1.4','1.5','1.6','1.7','1.8', ... '1.9','2.0','2.1','2.2','2.3','2.4'}; fcns{2}.data={'0','663.146','1067.5','1705.23','2463.11','3841.67', ... '5425.74','7957.75','12298.3','20462.8','32169.6','61213.4','111408', ... '175070','261469','318310'}; fcns{3}.type='interp'; fcns{3}.name='BH'; fcns{3}.method='linear'; fcns{3}.extmethod='extrap'; fcns{3}.x={'0','663.146','1067.5','1705.23','2463.11','3841.67', ... '5425.74','7957.75','12298.3','20462.8','32169.6','61213.4','111408', ... '175070','261469','318310'}; fcns{3}.data={'0','1','1.1','1.2','1.3','1.4','1.5','1.6','1.7','1.8', ... '1.9','2.0','2.1','2.2','2.3','2.4'}; lib.mat{3}.functions = fcns; lib.mat{4}.name='Copper'; lib.mat{4}.varname='mat4'; lib.mat{4}.variables.alphares='3.9e-3[1/K]'; lib.mat{4}.variables.mur='1'; lib.mat{4}.variables.sigma='5.998e7[S/m]'; lib.mat{4}.variables.epsilonr='1'; lib.mat{4}.variables.C='385[J/(kg*K)]'; lib.mat{4}.variables.epsilon='0.5'; lib.mat{4}.variables.res0='1.72e-8[ohm*m]'; lib.mat{4}.variables.rho='8700[kg/m^3]'; lib.mat{4}.variables.k='400[W/(m*K)]'; lib.mat{4}.variables.T0='273.15[K]'; lib.matgroups{1}.name='Resistivity'; lib.matgroups{1}.variables={'alphares','T0','res0'}; lib.matgroups{1}.descr={'Temperature coefficient','Reference temperature','Resistivity at reference temperature'}; fem.lib = lib; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; fem.ode=ode; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femtime(fem, ... 'solcomp',{'Az'}, ... 'outcomp',{'Az','Azt'}, ... 'blocksize','auto', ... 'tlist',[0:0.1:1], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'tridlim',[0 0.01], ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-1.10739786848182,1.10739786848182,-0.6147094197185987,0.6147094197185983]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-1.04907337922013,1.04907337922013,-0.6147094197185987,0.6147094197185983]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',5, ... 'title','Time=0.4 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-1.04907337922013,1.04907337922013,-0.6192393343812266,0.6192393343812261]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',2, ... 'title','Time=0.1 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-1.04907337922013,1.04907337922013,-0.6174193804227219,0.6174193804227215]); % Plot in cross-section or along domain postcrossplot(fem,0,[0;0], ... 'pointdata',{'Hx_emqa','unit','A/m'}, ... 'title','Magnetic field, x component [A/m]', ... 'axislabel',{'Time','Magnetic field',' x component [A/m]'}); % Plot in cross-section or along domain postcrossplot(fem,0,[-0.2;0], ... 'pointdata',{'normM_emqa','unit','A/m'}, ... 'title','Magnetization, norm [A/m]', ... 'axislabel',{'Time','Magnetization',' norm [A/m]'}); % Plot in cross-section or along domain postcrossplot(fem,0,[-0.5;-0.5], ... 'pointdata',{'normJ_emqa','unit','A/m^2'}, ... 'title','Total current density, norm [A/m^2]', ... 'axislabel',{'Time','Total current density',' norm [A/m^2]'}); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',2, ... 'title','Time=0.1 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-1.10739786848182,1.10739786848182,-0.6147094197185987,0.6147094197185983]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',9, ... 'title','Time=0.8 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-1.04907337922013,1.04907337922013,-0.6192393343812266,0.6192393343812261]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',1000, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',9, ... 'title','Time=0.8 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-2.098146758440261,2.098146758440261,-1.2348387608454443,1.2348387608454432]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... t�� 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',1000, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','proportional', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',9, ... 'title','Time=0.8 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-2.098146758440261,2.098146758440261,-1.2348387608454443,1.2348387608454432]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',1000, ... 'arrowyspacing',100, ... 'arrowscale',5, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',9, ... 'title','Time=0.8 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-2.098146758440261,2.098146758440261,-1.2348387608454443,1.2348387608454432]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',1000, ... 'arrowyspacing',1000, ... 'arrowscale',5, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',9, ... 'title','Time=0.8 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-2.098146758440261,2.098146758440261,-1.2348387608454443,1.2348387608454432]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{{'Mx_emqa','My_emqa'},'recover','pprint'}, ... 'arrowxspacing',1000, ... 'arrowyspacing',1000, ... 'arrowscale',5, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',9, ... 'title','Time=0.8 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-1.0490733792201308,1.0490733792201306,-0.6174193804227226,0.6174193804227213]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowscale',5, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',9, ... 'title','Time=0.8 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-1.0490733792201308,1.0490733792201306,-0.6174193804227226,0.6174193804227213]); % Plot solution postplot(fem, ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',100, ... 'arrowyspacing',100, ... 'arrowscale',5, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',9, ... 'title','Time=0.8 Arrow: Magnetization', ... 'axis',[-1.0490733792201308,1.0490733792201306,-0.6174193804227226,0.6174193804227213]); % Plot solution postplot(fem, ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',10, ... 'arrowyspacing',100, ... 'arrowscale',5, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',9, ... 'title','Time=0.8 Arrow: Magnetization', ... 'axis',[-1.1122798576154658,1.1122798576154656,-0.6174193804227226,0.6174193804227213]); % Plot solution postplot(fem, ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',10, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',9, ... 'title','Time=0.8 Arrow: Magnetization', ... 'axis',[-1.1122798576154658,1.1122798576154656,-0.6174193804227226,0.6174193804227213]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',10, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',9, ... 'title','Time=0.8 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-1.1122798576154658,1.1122798576154656,-0.6174193804227226,0.6174193804227213]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',10, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',9, ... 'title','Time=0.8 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-1.0490733792201308,1.0490733792201306,-0.6174193804227226,0.6174193804227213]); % COMSOL Multiphysics Model M-file % Generated by COMSOL 3.5 (COMSOL 3.5.0.494, $Date: 2008/09/19 16:09:48 $) % Geometry g7=move(g7,[0,0.10000000000000009]); g11=move(g11,[0,0.10000000000000009]); g2=move(g2,[0,0.10000000000000009]); g1=move(g1,[0,0.10000000000000009]); g13=move(g13,[0,0.10000000000000009]); g4=move(g4,[0,0.10000000000000009]); g3=move(g3,[0,0.10000000000000009]); % Analyzed geometry clear s s.objs={g7,g11,g2,g1,g13,g4,g3}; s.name={'SQ5','R1','SQ2','SQ1','R2','SQ4','SQ3'}; s.tags={'g7','g11','g2','g1','g13','g4','g3'}; fem.draw=struct('s',s); fem.geom=geomcsg(fem); % Analyzed geometry clear s s.objs={g7,g2,g1,g4,g3}; s.name={'SQ5','SQ2','SQ1','SQ4','SQ3'}; s.tags={'g7','g2','g1','g4','g3'}; fem.draw=struct('s',s); fem.geom=geomcsg(fem); % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'PerpendicularCurrents'; appl.module = 'ACDC'; appl.assignsuffix = '_emqa'; clear prop prop.analysis='transient'; appl.prop = prop; clear bnd bnd.type = 'A0'; bnd.ind = [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]; appl.bnd = bnd; clear equ equ.Jez = {0,'(1-flc2hs(t-0.2,0.1))*R','(flc2hs(t-0.2,0.1)-1)*R'}; equ.sigma = {'mat2_sigma','mat4_sigma','mat4_sigma'}; equ.epsilonr = {1,'mat4_epsilonr','mat4_epsilonr'}; equ.mur = {1,'mat4_mur','mat4_mur'}; equ.ind = [1,2,3,2,3]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Library materials clear lib lib.mat{1}.name='Iron'; lib.mat{1}.varname='mat1'; lib.mat{1}.variables.nu='0.29'; lib.mat{1}.variables.E='200e9[Pa]'; lib.mat{1}.variables.mur='4000'; lib.mat{1}.variables.sigma='1.12e7[S/m]'; lib.mat{1}.variables.epsilonr='1'; lib.mat{1}.variables.alpha='12.2e-6[1/K]'; lib.mat{1}.variables.C='440[J/(kg*K)]'; lib.mat{1}.variables.rho='7870[kg/m^3]'; lib.mat{1}.variables.k='76.2[W/(m*K)]'; lib.mat{2}.name='Air'; lib.mat{2}.varname='mat2'; lib.mat{2}.variables.nu0='nu0(T[1/K])[m^2/s]'; lib.mat{2}.variables.eta='eta(T[1/K])[Pa*s]'; lib.mat{2}.variables.gamma='1.4'; lib.mat{2}.variables.sigma='0[S/m]'; lib.mat{2}.variables.C='Cp(T[1/K])[J/(kg*K)]'; lib.mat{2}.variables.rho='rho(p[1/Pa],T[1/K])[kg/m^3]'; lib.mat{2}.variables.k='k(T[1/K])[W/(m*K)]'; lib.mat{2}.variables.cs='cs(T[1/K])[m/s]'; clear fcns fcns{1}.type='inline'; fcns{1}.name='cs(T)'; fcns{1}.expr='sqrt(1.4*287*T)'; fcns{1}.dexpr={'diff(sqrt(1.4*287*T),T)'}; fcns{2}.type='inline'; fcns{2}.name='rho(p,T)'; fcns{2}.expr='p*0.02897/8.314/T'; fcns{2}.dexpr={'diff(p*0.02897/8.314/T,p)','diff(p*0.02897/8.314/T,T)'}; fcns{3}.type='piecewise'; fcns{3}.name='Cp(T)'; fcns{3}.extmethod='const'; fcns{3}.subtype='poly'; fcns{3}.expr={{'0','1.04763657E+03','1','-3.72589265E-01','2', ... '9.45304214E-04','3','-6.02409443E-07','4','1.28589610E-10'}}; fcns{3}.intervals={'200','1600'}; fcns{4}.type='piecewise'; fcns{4}.name='eta(T)'; fcns{4}.extmethod='const'; fcns{4}.subtype='poly'; fcns{4}.expr={{'0','-8.38278000E-07','1','8.35717342E-08','2', ... '-7.69429583E-11','3','4.64372660E-14','4','-1.06585607E-17'}}; fcns{4}.intervals={'200','1600'}; fcns{5}.type='piecewise'; fcns{5}.name='nu0(T)'; fcns{5}.extmethod='const'; fcns{5}.subtype='poly'; fcns{5}.expr={{'0','-5.86912450E-06','1','5.01274491E-08','2', ... '7.50108343E-11','3','1.80336823E-15','4','-2.91688030E-18'}}; fcns{5}.intervals={'200','1600'}; fcns{6}.type='piecewise'; fcns{6}.name='k(T)'; fcns{6}.extmethod='const'; fcns{6}.subtype='poly'; fcns{6}.expr={{'0','-2.27583562E-03','1','1.15480022E-04','2', ... '-7.90252856E-08','3','4.11702505E-11','4','-7.43864331E-15'}}; fcns{6}.intervals={'200','1600'}; lib.mat{2}.functions = fcns; lib.mat{3}.name='Soft Iron (without losses)'; lib.mat{3}.varname='mat3'; lib.mat{3}.variables.normfB='BH(normH[m/A])[T]'; lib.mat{3}.variables.mur='MUR(normB[1/T])'; lib.mat{3}.variables.sigma='0[S/m]'; lib.mat{3}.variables.normfH='HB(normB[1/T])[A/m]'; lib.mat{3}.variables.epsilonr='1'; clear fcns fcns{1}.type='interp'; fcns{1}.name='MUR'; fcns{1}.method='linear'; fcns{1}.extmethod='const'; fcns{1}.x={'1','1.1','1.2','1.3','1.4','1.5','1.6','1.7','1.8','1.9', ... '2.0','2.1','2.2','2.3','2.4'}; fcns{1}.data={'1200','820','560','420','290','220','160','110','70','47', ... '26','15','10','7','6'}; fcns{2}.type='interp'; fcns{2}.name='HB'; fcns{2}.method='linear'; fcns{2}.extmethod='extrap'; fcns{2}.x={'0','1','1.1','1.2','1.3','1.4','1.5','1.6','1.7','1.8', ... '1.9','2.0','2.1','2.2','2.3','2.4'}; fcns{2}.data={'0','663.146','1067.5','1705.23','2463.11','3841.67', ... '5425.74','7957.75','12298.3','20462.8','32169.6','61213.4','111408', ... '175070','261469','318310'}; fcns{3}.type='interp'; fcns{3}.name='BH'; fcns{3}.method='linear'; fcns{3}.extmethod='extrap'; fcns{3}.x={'0','663.146','1067.5','1705.23','2463.11','3841.67', ... '5425.74','7957.75','12298.3','20462.8','32169.6','61213.4','111408', ... '175070','261469','318310'}; fcns{3}.data={'0','1','1.1','1.2','1.3','1.4','1.5','1.6','1.7','1.8', ... '1.9','2.0','2.1','2.2','2.3','2.4'}; lib.mat{3}.functions = fcns; lib.mat{4}.name='Copper'; lib.mat{4}.varname='mat4'; lib.mat{4}.variables.alphares='3.9e-3[1/K]'; lib.mat{4}.variables.mur='1'; lib.mat{4}.variables.sigma='5.998e7[S/m]'; lib.mat{4}.variables.epsilonr='1'; lib.mat{4}.variables.C='385[J/(kg*K)]'; lib.mat{4}.variables.epsilon='0.5'; lib.mat{4}.variables.res0='1.72e-8[ohm*m]'; lib.mat{4}.variables.rho='8700[kg/m^3]'; lib.mat{4}.variables.k='400[W/(m*K)]'; lib.mat{4}.variables.T0='273.15[K]'; lib.matgroups{1}.name='Resistivity'; lib.matgroups{1}.variables={'alphares','T0','res0'}; lib.matgroups{1}.descr={'Temperature coefficient','Reference temperature','Resistivity at reference temperature'}; fem.lib = lib; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; fem.ode=ode; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femtime(fem, ... 'solcomp',{'Az'}, ... 'outcomp',{'Az','Azt'}, ... 'blocksize','auto', ... 'tlist',[0:0.1:1], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Mx_emqa','My_emqa'}, ... 'arrowxspacing',10, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1 Surface: Magnetic field, norm [A/m] Arrow: Magnetization', ... 'axis',[-2.1917248854858253,2.1917248854858244,-1.2348387608454447,1.2348387608454434]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Hx_emqa','Hy_emqa'}, ... 'arrowxspacing',10, ... 'arrowyspacing',100, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1 Surface: Magnetic field, norm [A/m] Arrow: Magnetic field', ... 'axis',[-2.1917248854858253,2.1917248854858244,-1.2937152787576616,1.2937152787576602]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Hx_emqa','Hy_emqa'}, ... 'arrowxspacing',25, ... 'arrowyspacing',25, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1 Surface: Magnetic field, norm [A/m] Arrow: Magnetic field', ... 'axis',[-2.1917248854858253,2.1917248854858244,-1.2937152787576616,1.2937152787576602]); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Hx_emqa','Hy_emqa'}, ... 'arrowxspacing',25, ... 'arrowyspacing',25, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',2, ... 'title','Time=0.1 Surface: Magnetic field, norm [A/m] Arrow: Magnetic field', ... 'axis',[-2.1917248854858253,2.1917248854858244,-1.2937152787576616,1.2937152787576602]); % Plot in cross-section or along domain postcrossplot(fem,0,[0;0], ... 'pointdata',{'normH_emqa','unit','A/m'}, ... 'title','Magnetic field, norm [A/m]', ... 'axislabel',{'Time','Magnetic field',' norm [A/m]'}); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'PerpendicularCurrents'; appl.module = 'ACDC'; appl.sshape = 2; appl.assignsuffix = '_emqa'; clear prop prop.analysis='transient'; appl.prop = prop; clear bnd bnd.type = 'A0'; bnd.ind = [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]; appl.bnd = bnd; clear equ equ.Jez = {0,'(1-flc2hs(t-0.2,0.1))*R','(flc2hs(t-0.2,0.1)-1)*R','(1-flc2hs(t-0.2,0.1))*R', ... '(flc2hs(t-0.2,0.1)-1)*R'}; equ.sigma = {'mat2_sigma','mat5_sigma','mat5_sigma','mat4_sigma','mat4_sigma'}; equ.epsilonr = {1,'mat5_epsilonr','mat5_epsilonr','mat4_epsilonr','mat4_epsilonr'}; equ.mur = {1,'mat5_mur','mat5_mur','mat4_mur','mat4_mur'}; equ.ind = [1,2,3,4,5]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Library materials clear lib lib.mat{1}.name='Iron'; lib.mat{1}.varname='mat1'; lib.mat{1}.variables.nu='0.29'; lib.mat{1}.variables.E='200e9[Pa]'; lib.mat{1}.variables.mur='4000'; lib.mat{1}.variables.sigma='1.12e7[S/m]'; lib.mat{1}.variables.epsilonr='1'; lib.mat{1}.variables.alpha='12.2e-6[1/K]'; lib.mat{1}.variables.C='440[J/(kg*K)]'; lib.mat{1}.variables.rho='7870[kg/m^3]'; lib.mat{1}.variables.k='76.2[W/(m*K)]'; lib.mat{2}.name='Air'; lib.mat{2}.varname='mat2'; lib.mat{2}.variables.nu0='nu0(T[1/K])[m^2/s]'; lib.mat{2}.variables.eta='eta(T[1/K])[Pa*s]'; lib.mat{2}.variables.gamma='1.4'; lib.mat{2}.variables.sigma='0[S/m]'; lib.mat{2}.variables.C='Cp(T[1/K])[J/(kg*K)]'; lib.mat{2}.variables.rho='rho(p[1/Pa],T[1/K])[kg/m^3]'; lib.mat{2}.variables.k='k(T[1/K])[W/(m*K)]'; lib.mat{2}.variables.cs='cs(T[1/K])[m/s]'; clear fcns fcns{1}.type='inline'; fcns{1}.name='cs(T)'; fcns{1}.expr='sqrt(1.4*287*T)'; fcns{1}.dexpr={'diff(sqrt(1.4*287*T),T)'}; fcns{2}.type='inline'; fcns{2}.name='rho(p,T)'; fcns{2}.expr='p*0.02897/8.314/T'; fcns{2}.dexpr={'diff(p*0.02897/8.314/T,p)','diff(p*0.02897/8.314/T,T)'}; fcns{3}.type='piecewise'; fcns{3}.name='Cp(T)'; fcns{3}.extmethod='const'; fcns{3}.subtype='poly'; fcns{3}.expr={{'0','1.04763657E+03','1','-3.72589265E-01','2', ... '9.45304214E-04','3','-6.02409443E-07','4','1.28589610E-10'}}; fcns{3}.intervals={'200','1600'}; fcns{4}.type='piecewise'; fcns{4}.name='eta(T)'; fcns{4}.extmethod='const'; fcns{4}.subtype='poly'; fcns{4}.expr={{'0','-8.38278000E-07','1','8.35717342E-08','2', ... '-7.69429583E-11','3','4.64372660E-14','4','-1.06585607E-17'}}; fcns{4}.intervals={'200','1600'}; fcns{5}.type='piecewise'; fcns{5}.name='nu0(T)'; fcns{5}.extmethod='const'; fcns{5}.subtype='poly'; fcns{5}.expr={{'0','-5.86912450E-06','1','5.01274491E-08','2', ... '7.50108343E-11','3','1.80336823E-15','4','-2.91688030E-18'}}; fcns{5}.intervals={'200','1600'}; fcns{6}.type='piecewise'; fcns{6}.name='k(T)'; fcns{6}.extmethod='const'; fcns{6}.subtype='poly'; fcns{6}.expr={{'0','-2.27583562E-03','1','1.15480022E-04','2', ... '-7.90252856E-08','3','4.11702505E-11','4','-7.43864331E-15'}}; fcns{6}.intervals={'200','1600'}; lib.mat{2}.functions = fcns; lib.mat{3}.name='Soft Iron (without losses)'; lib.mat{3}.varname='mat3'; lib.mat{3}.variables.normfB='BH(normH[m/A])[T]'; lib.mat{3}.variables.mur='MUR(normB[1/T])'; lib.mat{3}.variables.sigma='0[S/m]'; lib.mat{3}.variables.normfH='HB(normB[1/T])[A/m]'; lib.mat{3}.variables.epsilonr='1'; clear fcns fcns{1}.type='interp'; fcns{1}.name='MUR'; fcns{1}.method='linear'; fcns{1}.extmethod='const'; fcns{1}.x={'1','1.1','1.2','1.3','1.4','1.5','1.6','1.7','1.8','1.9', ... '2.0','2.1','2.2','2.3','2.4'}; fcns{1}.data={'1200','820','560','420','290','220','160','110','70','47', ... '26','15','10','7','6'}; fcns{2}.type='interp'; fcns{2}.name='HB'; fcns{2}.method='linear'; fcns{2}.extmethod='extrap'; fcns{2}.x={'0','1','1.1','1.2','1.3','1.4','1.5','1.6','1.7','1.8', ... '1.9','2.0','2.1','2.2','2.3','2.4'}; fcns{2}.data={'0','663.146','1067.5','1705.23','2463.11','3841.67', ... '5425.74','7957.75','12298.3','20462.8','32169.6','61213.4','111408', ... '175070','261469','318310'}; fcns{3}.type='interp'; fcns{3}.name='BH'; fcns{3}.method='linear'; fcns{3}.extmethod='extrap'; fcns{3}.x={'0','663.146','1067.5','1705.23','2463.11','3841.67', ... '5425.74','7957.75','12298.3','20462.8','32169.6','61213.4','111408', ... '175070','261469','318310'}; fcns{3}.data={'0','1','1.1','1.2','1.3','1.4','1.5','1.6','1.7','1.8', ... '1.9','2.0','2.1','2.2','2.3','2.4'}; lib.mat{3}.functions = fcns; lib.mat{4}.name='Copper'; lib.mat{4}.varname='mat4'; lib.mat{4}.variables.alphares='3.9e-3[1/K]'; lib.mat{4}.variables.mur='1'; lib.mat{4}.variables.sigma='5.998e7[S/m]'; lib.mat{4}.variables.epsilonr='1'; lib.mat{4}.variables.C='385[J/(kg*K)]'; lib.mat{4}.variables.epsilon='0.5'; lib.mat{4}.variables.res0='1.72e-8[ohm*m]'; lib.mat{4}.variables.rho='8700[kg/m^3]'; lib.mat{4}.variables.k='400[W/(m*K)]'; lib.mat{4}.variables.T0='273.15[K]'; lib.mat{5}.name='Silicon Carbide'; lib.mat{5}.varname='mat5'; lib.mat{5}.variables.mur='1'; lib.mat{5}.variables.sigma='1e3[S/m]'; lib.mat{5}.variables.epsilonr='10'; lib.mat{5}.variables.C='1200[J/(kg*K)]'; lib.mat{5}.variables.epsilon='0.5'; lib.mat{5}.variables.rho='3200[kg/m^3]'; lib.mat{5}.variables.k='450[W/(m*K)]*(300[K]/T)^0.75'; lib.matgroups{1}.name='Resistivity'; lib.matgroups{1}.variables={'alphares','T0','res0'}; lib.matgroups{1}.descr={'Temperature coefficient','Reference temperature','Resistivity at reference temperature'}; lib.matgroups{2}.name='Electromagnetic (AC/DC)'; lib.matgroups{2}.variables={'alphares','T0','res0','Br','normfH','fH','normfB','fB'}; lib.matgroups{2}.descr={'Temperature coefficient','Reference temperature','Resistivity at reference temperature','Remanent flux density','Nonlinear magnetic field, norm','Nonlinear magnetic field','Nonlinear magnetic flux density, norm','Nonlinear magnetic flux density'}; fem.lib = lib; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; fem.ode=ode; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femtime(fem, ... 'solcomp',{'Az'}, ... 'outcomp',{'Az','Azt'}, ... 'blocksize','auto', ... 'tlist',[0:0.1:1], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Hx_emqa','Hy_emqa'}, ... 'arrowxspacing',25, ... 'arrowyspacing',25, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1 Surface: Magnetic field, norm [A/m] Arrow: Magnetic field', ... 'axis',[-2.2245597152309315,2.2245597152309307,-1.2348387608454447,1.2348387608454434]); % Plot in cross-section or along domain postcrossplot(fem,0,[0;0], ... 'pointdata',{'normH_emqa','unit','A/m'}, ... 'title','Magnetic field, norm [A/m]', ... 'axislabel',{'Time','Magnetic field',' norm [A/m]'}); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Hx_emqa','Hy_emqa'}, ... 'arrowxspacing',25, ... 'arrowyspacing',25, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',3, ... 'title','Time=0.2 Surface: Magnetic field, norm [A/m] Arrow: Magnetic field', ... 'axis',[-2.1917248854858253,2.1917248854858244,-1.295624821604536,1.2956248216045347]); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'PerpendicularCurrents'; appl.module = 'ACDC'; appl.sshape = 2; appl.assignsuffix = '_emqa'; clear prop prop.analysis='transient'; appl.prop = prop; clear bnd bnd.type = 'A0'; bnd.ind = [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]; appl.bnd = bnd; clear equ equ.Jez = {0,'(1-flc2hs(t-0.2,0.1))*R','(flc2hs(t-0.2,0.1)-1)*R'}; equ.sigma = {'mat2_sigma','mat5_sigma','mat5_sigma'}; equ.epsilonr = {1,'mat5_epsilonr','mat5_epsilonr'}; equ.mur = {1,'mat5_mur','mat5_mur'}; equ.ind = [1,2,3,2,3]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Library materials clear lib lib.mat{1}.name='Iron'; lib.mat{1}.varname='mat1'; lib.mat{1}.variables.nu='0.29'; lib.mat{1}.variables.E='200e9[Pa]'; lib.mat{1}.variables.mur='4000'; lib.mat{1}.variables.sigma='1.12e7[S/m]'; lib.mat{1}.variables.epsilonr='1'; lib.mat{1}.variables.alpha='12.2e-6[1/K]'; lib.mat{1}.variables.C='440[J/(kg*K)]'; lib.mat{1}.variables.rho='7870[kg/m^3]'; lib.mat{1}.variables.k='76.2[W/(m*K)]'; lib.mat{2}.name='Air'; lib.mat{2}.varname='mat2'; lib.mat{2}.variables.nu0='nu0(T[1/K])[m^2/s]'; lib.mat{2}.variables.eta='eta(T[1/K])[Pa*s]'; lib.mat{2}.variables.gamma='1.4'; lib.mat{2}.variables.sigma='0[S/m]'; lib.mat{2}.variables.C='Cp(T[1/K])[J/(kg*K)]'; lib.mat{2}.variables.rho='rho(p[1/Pa],T[1/K])[kg/m^3]'; lib.mat{2}.variables.k='k(T[1/K])[W/(m*K)]'; lib.mat{2}.variables.cs='cs(T[1/K])[m/s]'; clear fcns fcns{1}.type='inline'; fcns{1}.name='cs(T)'; fcns{1}.expr='sqrt(1.4*287*T)'; fcns{1}.dexpr={'diff(sqrt(1.4*287*T),T)'}; fcns{2}.type='inline'; fcns{2}.name='rho(p,T)'; fcns{2}.expr='p*0.02897/8.314/T'; fcns{2}.dexpr={'diff(p*0.02897/8.314/T,p)','diff(p*0.02897/8.314/T,T)'}; fcns{3}.type='piecewise'; fcns{3}.name='Cp(T)'; fcns{3}.extmethod='const'; fcns{3}.subtype='poly'; fcns{3}.expr={{'0','1.04763657E+03','1','-3.72589265E-01','2', ... '9.45304214E-04','3','-6.02409443E-07','4','1.28589610E-10'}}; fcns{3}.intervals={'200','1600'}; fcns{4}.type='piecewise'; fcns{4}.name='eta(T)'; fcns{4}.extmethod='const'; fcns{4}.subtype='poly'; fcns{4}.expr={{'0','-8.38278000E-07','1','8.35717342E-08','2', ... '-7.69429583E-11','3','4.64372660E-14','4','-1.06585607E-17'}}; fcns{4}.intervals={'200','1600'}; fcns{5}.type='piecewise'; fcns{5}.name='nu0(T)'; fcns{5}.extmethod='const'; fcns{5}.subtype='poly'; fcns{5}.expr={{'0','-5.86912450E-06','1','5.01274491E-08','2', ... '7.50108343E-11','3','1.80336823E-15','4','-2.91688030E-18'}}; fcns{5}.intervals={'200','1600'}; fcns{6}.type='piecewise'; fcns{6}.name='k(T)'; fcns{6}.extmethod='const'; fcns{6}.subtype='poly'; fcns{6}.expr={{'0','-2.27583562E-03','1','1.15480022E-04','2', ... '-7.90252856E-08','3','4.11702505E-11','4','-7.43864331E-15'}}; fcns{6}.intervals={'200','1600'}; lib.mat{2}.functions = fcns; lib.mat{3}.name='Soft Iron (without losses)'; lib.mat{3}.varname='mat3'; lib.mat{3}.variables.normfB='BH(normH[m/A])[T]'; lib.mat{3}.variables.mur='MUR(normB[1/T])'; lib.mat{3}.variables.sigma='0[S/m]'; lib.mat{3}.variables.normfH='HB(normB[1/T])[A/m]'; lib.mat{3}.variables.epsilonr='1'; clear fcns fcns{1}.type='interp'; fcns{1}.name='MUR'; fcns{1}.method='linear'; fcns{1}.extmethod='const'; fcns{1}.x={'1','1.1','1.2','1.3','1.4','1.5','1.6','1.7','1.8','1.9', ... '2.0','2.1','2.2','2.3','2.4'}; fcns{1}.data={'1200','820','560','420','290','220','160','110','70','47', ... '26','15','10','7','6'}; fcns{2}.type='interp'; fcns{2}.name='HB'; fcns{2}.method='linear'; fcns{2}.extmethod='extrap'; fcns{2}.x={'0','1','1.1','1.2','1.3','1.4','1.5','1.6','1.7','1.8', ... '1.9','2.0','2.1','2.2','2.3','2.4'}; fcns{2}.data={'0','663.146','1067.5','1705.23','2463.11','3841.67', ... '5425.74','7957.75','12298.3','20462.8','32169.6','61213.4','111408', ... '175070','261469','318310'}; fcns{3}.type='interp'; fcns{3}.name='BH'; fcns{3}.method='linear'; fcns{3}.extmethod='extrap'; fcns{3}.x={'0','663.146','1067.5','1705.23','2463.11','3841.67', ... '5425.74','7957.75','12298.3','20462.8','32169.6','61213.4','111408', ... '175070','261469','318310'}; fcns{3}.data={'0','1','1.1','1.2','1.3','1.4','1.5','1.6','1.7','1.8', ... '1.9','2.0','2.1','2.2','2.3','2.4'}; lib.mat{3}.functions = fcns; lib.mat{4}.name='Copper'; lib.mat{4}.varname='mat4'; lib.mat{4}.variables.alphares='3.9e-3[1/K]'; lib.mat{4}.variables.mur='1'; lib.mat{4}.variables.sigma='5.998e7[S/m]'; lib.mat{4}.variables.epsilonr='1'; lib.mat{4}.variables.C='385[J/(kg*K)]'; lib.mat{4}.variables.epsilon='0.5'; lib.mat{4}.variables.res0='1.72e-8[ohm*m]'; lib.mat{4}.variables.rho='8700[kg/m^3]'; lib.mat{4}.variables.k='400[W/(m*K)]'; lib.mat{4}.variables.T0='273.15[K]'; lib.mat{5}.name='Silicon Carbide'; lib.mat{5}.varname='mat5'; lib.mat{5}.variables.mur='1'; lib.mat{5}.variables.sigma='1e3[S/m]'; lib.mat{5}.variables.epsilonr='10'; lib.mat{5}.variables.C='1200[J/(kg*K)]'; lib.mat{5}.variables.epsilon='0.5'; lib.mat{5}.variables.rho='3200[kg/m^3]'; lib.mat{5}.variables.k='450[W/(m*K)]*(300[K]/T)^0.75'; lib.matgroups{1}.name='Resistivity'; lib.matgroups{1}.variables={'alphares','T0','res0'}; lib.matgroups{1}.descr={'Temperature coefficient','Reference temperature','Resistivity at reference temperature'}; lib.matgroups{2}.name='Electromagnetic (AC/DC)'; lib.matgroups{2}.variables={'alphares','T0','res0','Br','normfH','fH','normfB','fB'}; lib.matgroups{2}.descr={'Temperature coefficient','Reference temperature','Resistivity at reference temperature','Remanent flux density','Nonlinear magnetic field, norm','Nonlinear magnetic field','Nonlinear magnetic flux density, norm','Nonlinear magnetic flux density'}; fem.lib = lib; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; fem.ode=ode; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femtime(fem, ... 'solcomp',{'Az'}, ... 'outcomp',{'Az','Azt'}, ... 'blocksize','auto', ... 'tlist',[0:0.1:1], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Hx_emqa','Hy_emqa'}, ... 'arrowxspacing',25, ... 'arrowyspacing',25, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1 Surface: Magnetic field, norm [A/m] Arrow: Magnetic field', ... 'axis',[-2.2245597152309315,2.2245597152309307,-1.2348387608454447,1.2348387608454434]); % Plot in cross-section or along domain postcrossplot(fem,0,[0;0], ... 'pointdata',{'normH_emqa','unit','A/m'}, ... 'title','Magnetic field, norm [A/m]', ... 'axislabel',{'Time','Magnetic field',' norm [A/m]'}); % Plot in cross-section or along domain postcrossplot(fem,0,[-0.5;-0.5], ... 'pointdata',{'Jz_emqa','unit','A/m^2'}, ... 'title','Total current density, z component [A/m^2]', ... 'axislabel',{'Time','Total current density',' z component [A/m^2]'}); % Plot in cross-section or along domain postcrossplot(fem,0,[-0.5;-0.4], ... 'pointdata',{'Jz_emqa','unit','A/m^2'}, ... 'title','Total current density, z component [A/m^2]', ... 'axislabel',{'Time','Total current density',' z component [A/m^2]'}); % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Hx_emqa','Hy_emqa'}, ... 'arrowxspacing',25, ... 'arrowyspacing',25, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum',2, ... 'title','Time=0.1 Surface: Magnetic field, norm [A/m] Arrow: Magnetic field', ... 'axis',[-2.1917248854858253,2.1917248854858244,-1.295624821604536,1.2956248216045347]); % Geometry g5=rect2('0.4','0.1','base','center','pos',{'-0.25','0'},'rot','0'); [g6,g8,g9,g10]=geomcopy({g2,g1,g4,g3}); [g12,g14,g15,g16]=geomcopy({g6,g8,g9,g10}); g12=move(g12,[0,-0.1]); g14=move(g14,[0,-0.1]); g15=move(g15,[0,-0.1]); g16=move(g16,[0,-0.1]); % Analyzed geometry clear s s.objs={g7,g12,g14,g15,g16}; s.name={'SQ5','SQ1','SQ2','SQ3','SQ4'}; s.tags={'g7','g12','g14','g15','g16'}; fem.draw=struct('s',s); fem.geom=geomcsg(fem); % Initialize mesh fem.mesh=meshinit(fem, ... 'hauto',5); % (Default values are not included) % Application mode 1 clear appl appl.mode.class = 'PerpendicularCurrents'; appl.module = 'ACDC'; appl.assignsuffix = '_emqa'; clear prop prop.analysis='transient'; appl.prop = prop; clear bnd bnd.type = {'A0','cont'}; bnd.ind = [1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1]; appl.bnd = bnd; clear equ equ.Jez = {0,'(1-flc2hs(t-0.2,0.1))*R','(flc2hs(t-0.2,0.1)-1)*R'}; equ.sigma = {'mat2_sigma','mat5_sigma','mat5_sigma'}; equ.epsilonr = {1,'mat5_epsilonr','mat5_epsilonr'}; equ.mur = {1,'mat5_mur','mat5_mur'}; equ.ind = [1,2,3,2,3]; appl.equ = equ; fem.appl{1} = appl; fem.frame = {'ref'}; fem.border = 1; clear units; units.basesystem = 'SI'; fem.units = units; % Library materials clear lib lib.mat{1}.name='Iron'; lib.mat{1}.varname='mat1'; lib.mat{1}.variables.nu='0.29'; lib.mat{1}.variables.E='200e9[Pa]'; lib.mat{1}.variables.mur='4000'; lib.mat{1}.variables.sigma='1.12e7[S/m]'; lib.mat{1}.variables.epsilonr='1'; lib.mat{1}.variables.alpha='12.2e-6[1/K]'; lib.mat{1}.variables.C='440[J/(kg*K)]'; lib.mat{1}.variables.rho='7870[kg/m^3]'; lib.mat{1}.variables.k='76.2[W/(m*K)]'; lib.mat{2}.name='Air'; lib.mat{2}.varname='mat2'; lib.mat{2}.variables.nu0='nu0(T[1/K])[m^2/s]'; lib.mat{2}.variables.eta='eta(T[1/K])[Pa*s]'; lib.mat{2}.variables.gamma='1.4'; lib.mat{2}.variables.sigma='0[S/m]'; lib.mat{2}.variables.C='Cp(T[1/K])[J/(kg*K)]'; lib.mat{2}.variables.rho='rho(p[1/Pa],T[1/K])[kg/m^3]'; lib.mat{2}.variables.k='k(T[1/K])[W/(m*K)]'; lib.mat{2}.variables.cs='cs(T[1/K])[m/s]'; clear fcns fcns{1}.type='inline'; fcns{1}.name='cs(T)'; fcns{1}.expr='sqrt(1.4*287*T)'; fcns{1}.dexpr={'diff(sqrt(1.4*287*T),T)'}; fcns{2}.type='inline'; fcns{2}.name='rho(p,T)'; fcns{2}.expr='p*0.02897/8.314/T'; fcns{2}.dexpr={'diff(p*0.02897/8.314/T,p)','diff(p*0.02897/8.314/T,T)'}; fcns{3}.type='piecewise'; fcns{3}.name='Cp(T)'; fcns{3}.extmethod='const'; fcns{3}.subtype='poly'; fcns{3}.expr={{'0','1.04763657E+03','1','-3.72589265E-01','2', ... '9.45304214E-04','3','-6.02409443E-07','4','1.28589610E-10'}}; fcns{3}.intervals={'200','1600'}; fcns{4}.type='piecewise'; fcns{4}.name='eta(T)'; fcns{4}.extmethod='const'; fcns{4}.subtype='poly'; fcns{4}.expr={{'0','-8.38278000E-07','1','8.35717342E-08','2', ... '-7.69429583E-11','3','4.64372660E-14','4','-1.06585607E-17'}}; fcns{4}.intervals={'200','1600'}; fcns{5}.type='piecewise'; fcns{5}.name='nu0(T)'; fcns{5}.extmethod='const'; fcns{5}.subtype='poly'; fcns{5}.expr={{'0','-5.86912450E-06','1','5.01274491E-08','2', ... '7.50108343E-11','3','1.80336823E-15','4','-2.91688030E-18'}}; fcns{5}.intervals={'200','1600'}; fcns{6}.type='piecewise'; fcns{6}.name='k(T)'; fcns{6}.extmethod='const'; fcns{6}.subtype='poly'; fcns{6}.expr={{'0','-2.27583562E-03','1','1.15480022E-04','2', ... '-7.90252856E-08','3','4.11702505E-11','4','-7.43864331E-15'}}; fcns{6}.intervals={'200','1600'}; lib.mat{2}.functions = fcns; lib.mat{3}.name='Soft Iron (without losses)'; lib.mat{3}.varname='mat3'; lib.mat{3}.variables.normfB='BH(normH[m/A])[T]'; lib.mat{3}.variables.mur='MUR(normB[1/T])'; lib.mat{3}.variables.sigma='0[S/m]'; lib.mat{3}.variables.normfH='HB(normB[1/T])[A/m]'; lib.mat{3}.variables.epsilonr='1'; clear fcns fcns{1}.type='interp'; fcns{1}.name='MUR'; fcns{1}.method='linear'; fcns{1}.extmethod='const'; fcns{1}.x={'1','1.1','1.2','1.3','1.4','1.5','1.6','1.7','1.8','1.9', ... '2.0','2.1','2.2','2.3','2.4'}; fcns{1}.data={'1200','820','560','420','290','220','160','110','70','47', ... '26','15','10','7','6'}; fcns{2}.type='interp'; fcns{2}.name='HB'; fcns{2}.method='linear'; fcns{2}.extmethod='extrap'; fcns{2}.x={'0','1','1.1','1.2','1.3','1.4','1.5','1.6','1.7','1.8', ... '1.9','2.0','2.1','2.2','2.3','2.4'}; fcns{2}.data={'0','663.146','1067.5','1705.23','2463.11','3841.67', ... '5425.74','7957.75','12298.3','20462.8','32169.6','61213.4','111408', ... '175070','261469','318310'}; fcns{3}.type='interp'; fcns{3}.name='BH'; fcns{3}.method='linear'; fcns{3}.extmethod='extrap'; fcns{3}.x={'0','663.146','1067.5','1705.23','2463.11','3841.67', ... '5425.74','7957.75','12298.3','20462.8','32169.6','61213.4','111408', ... '175070','261469','318310'}; fcns{3}.data={'0','1','1.1','1.2','1.3','1.4','1.5','1.6','1.7','1.8', ... '1.9','2.0','2.1','2.2','2.3','2.4'}; lib.mat{3}.functions = fcns; lib.mat{4}.name='Copper'; lib.mat{4}.varname='mat4'; lib.mat{4}.variables.alphares='3.9e-3[1/K]'; lib.mat{4}.variables.mur='1'; lib.mat{4}.variables.sigma='5.998e7[S/m]'; lib.mat{4}.variables.epsilonr='1'; lib.mat{4}.variables.C='385[J/(kg*K)]'; lib.mat{4}.variables.epsilon='0.5'; lib.mat{4}.variables.res0='1.72e-8[ohm*m]'; lib.mat{4}.variables.rho='8700[kg/m^3]'; lib.mat{4}.variables.k='400[W/(m*K)]'; lib.mat{4}.variables.T0='273.15[K]'; lib.mat{5}.name='Silicon Carbide'; lib.mat{5}.varname='mat5'; lib.mat{5}.variables.mur='1'; lib.mat{5}.variables.sigma='1e3[S/m]'; lib.mat{5}.variables.epsilonr='10'; lib.mat{5}.variables.C='1200[J/(kg*K)]'; lib.mat{5}.variables.epsilon='0.5'; lib.mat{5}.variables.rho='3200[kg/m^3]'; lib.mat{5}.variables.k='450[W/(m*K)]*(300[K]/T)^0.75'; lib.matgroups{1}.name='Resistivity'; lib.matgroups{1}.variables={'alphares','T0','res0'}; lib.matgroups{1}.descr={'Temperature coefficient','Reference temperature','Resistivity at reference temperature'}; lib.matgroups{2}.name='Electromagnetic (AC/DC)'; lib.matgroups{2}.variables={'alphares','T0','res0','Br','normfH','fH','normfB','fB'}; lib.matgroups{2}.descr={'Temperature coefficient','Reference temperature','Resistivity at reference temperature','Remanent flux density','Nonlinear magnetic field, norm','Nonlinear magnetic field','Nonlinear magnetic flux density, norm','Nonlinear magnetic flux density'}; fem.lib = lib; % ODE Settings clear ode clear units; units.basesystem = 'SI'; ode.units = units; fem.ode=ode; % Multiphysics fem=multiphysics(fem); % Extend mesh fem.xmesh=meshextend(fem); % Solve problem fem.sol=femtime(fem, ... 'solcomp',{'Az'}, ... 'outcomp',{'Az','Azt'}, ... 'blocksize','auto', ... 'tlist',[0:0.1:1], ... 'tout','tlist'); % Save current fem structure for restart purposes fem0=fem; % Plot solution postplot(fem, ... 'tridata',{'normH_emqa','cont','internal','unit','A/m'}, ... 'trimap','jet(1024)', ... 'arrowdata',{'Hx_emqa','Hy_emqa'}, ... 'arrowxspacing',25, ... 'arrowyspacing',25, ... 'arrowtype','arrow', ... 'arrowstyle','normalized', ... 'arrowcolor',[1.0,0.0,0.0], ... 'solnum','end', ... 'title','Time=1 Surface: Magnetic field, norm [A/m] Arrow: Magnetic field', ... 'axis',[-2.1917248854858253,2.1917248854858244,-1.2348387608454447,1.2348387608454434]); % Plot in cross-section or along domain postcrossplot(fem,0,[-0.5;-0.5], ... 'pointdata',{'Jz_emqa','unit','A/m^2'}, ... 'title','Total current density, z component [A/m^2]', ... 'axislabel',{'Time','Total current density',' z component [A/m^2]'}); uq~ tM% COMSOL Multiphysics Model M-file % Generated by COMSOL 3.5 (COMSOL 3.5.0.494, $Date: 2008/09/19 16:09:48 $) flclear fem % COMSOL version clear vrsn vrsn.name = 'COMSOL 3.5'; vrsn.ext = ''; vrsn.major = 0; vrsn.build = 494; vrsn.rcs = '$Name: $'; vrsn.date = '$Date: 2008/09/19 16:09:48 $'; fem.version = vrsn; % Geometry g1=square2('0.1','base','center','pos',{'-0.5','-0.5'},'rot','0'); % Analyzed geometry clear s s.objs={g1}; s.name={'SQ1'}; s.tags={'g1'}; fem.draw=struct('s',s); fem.geom=geomcsg(fem); g2=square2('0.1','base','center','pos',{'-0.5','0.5'},'rot','0'); g3=square2('0.1','base','center','pos',{'0.5','0.5'},'rot','0'); g4=square2('0.1','base','center','pos',{'0.5','-0.5'},'rot','0'); % Analyzed geometry clear s s.objs={g1,g2,g3,g4}; s.name={'SQ1','SQ2','SQ3','SQ4'}; s.tags={'g1','g2','g3','g4'}; fem.draw=struct('s',s); fem.geom=geomcsg(fem); g5=square2('1','base','center','pos',{'0','0'},'rot','0'); g6=square2('2','base','center','pos',{'0','0'},'rot','0'); g7=square2('4','base','center','pos',{'0','0'},'rot','0'); % Analyzed geometry clear s s.objs={g1,g2,g3,g4,g7}; s.name={'SQ1','SQ2','SQ3','SQ4','SQ5'}; s.tags={'g1','g2','g3','g4','g7'}; fem.draw=struct('s',s); fem.geom=geomcsg(fem); g8=rect2('0.2','0.2','base','corner','pos',{'0','0'},'rot','0'); g9=rect2('0.2','0.2','base','center','pos',{'0','0'},'rot','0'); % Analyzed geometry clear s s.objs={g1,g2,g3,g4,g7,g9}; s.name={'SQ1','SQ2','SQ3','SQ4','SQ5','R1'}; s.tags={'g1','g2','g3','g4','g7','g9'}; fem.draw=struct('s',s); fem.geom=geomcsg(fem); g10=rect2(0.8,0.2,'base','center','pos',[0,0]); % Analyzed geometry clear s s.objs={g1,g2,g3,g4,g7,g10}; s.name={'SQ1','SQ2','SQ3','SQ4','SQ5','R1'}; s.tags={'g1','g2','g3','g4','g7','g10'}; fem.draw=struct('s',s); fem.geom=geomcsg(fem); % COMSOL Multiphysics Model M-file % Generated by COMSOL 3.5 (COMSOL 3.5.0.494, $Date: 2008/09/19 16:09:48 $) % Geometry g10=move(g10,[-0.6000000000000001,0]); [g5]=geomcopy({g10}); [g6]=geomcopy({g5}); g6=move(g6,[0.4,0]); g6=move(g6,[0.6000000000000001,0]); g6=move(g6,[0.20000000000000007,0]); % Analyzed geometry clear s s.objs={g10,g7,g2,g1,g4,g3,g6}; s.name={'R1','SQ5','SQ2','SQ1','SQ4','SQ3','R2'}; s.tags={'g10','g7','g2','g1','g4','g3','g6'}; fem.draw=struct('s',s); fem.geom=geomcsg(fem); % COMSOL Multiphysics Model M-file % Generated by COMSOL 3.5 (COMSOL 3.5.0.494, $Date: 2008/09/19 16:09:48 $) % Geometry g5=rect2(1.1,0.2,'base','center','pos',[-0.6,0]); g8=rect2(1.1,0.2,'base','center','pos',[0.6,0]); % Analyzed geometry clear s s.objs={g7,g2,g1,g4,g3,g5,g8}; s.name={'SQ5','SQ2','SQ1','SQ4','SQ3','R1','R2'}; s.tags={'g7','g2','g1','g4','g3','g5','g8'}; fem.draw=struct('s',s); fem.geom=geomcsg(fem); % COMSOL Multiphysics Model M-file % Generated by COMSOL 3.5 (COMSOL 3.5.0.494, $Date: 2008/09/19 16:09:48 $) % Geometry [g10]=geomcopy({g5}); [g11]=geomcopy({g10}); g11=move(g11,[0.045,0]); [g12]=geomcopy({g8}); [g13]=geomcopy({g12}); g13=move(g13,[-0.045,0]); % Analyzed geometry clear s s.objs={g7,g2,g1,g4,g3,g11,g13}; s.name={'SQ5','SQ2','SQ1','SQ4','SQ3','R1','R2'}; s.tags={'g7','g2','g1','g4','g3','g11','g13'}; fem.draw=struct('s',s); fem.geom=geomcsg(fem); % COMSOL Multiphysics Model M-file % Generated by COMSOL 3.5 (COMSOL 3.5.0.494, $Date: 2008/09/19 16:09:48 $) % Constants fem.const = {'R','10000'}; % COMSOL Multiphysics Model M-file % Generated by COMSOL 3.5 (COMSOL 3.5.0.494, $Date: 2008/09/19 16:09:48 $) % Constants fem.const = {'R','1'}; % COMSOL Multiphysics Model M-file % Generated by COMSOL 3.5 (COMSOL 3.5.0.494, $Date: 2008/09/19 16:09:48 $) % Geometry g7=move(g7,[0,0.10000000000000009]); g11=move(g11,[0,0.10000000000000009]); g2=move(g2,[0,0.10000000000000009]); g1=move(g1,[0,0.10000000000000009]); g13=move(g13,[0,0.10000000000000009]); g4=move(g4,[0,0.10000000000000009]); g3=move(g3,[0,0.10000000000000009]); % Analyzed geometry clear s s.objs={g7,g11,g2,g1,g13,g4,g3}; s.name={'SQ5','R1','SQ2','SQ1','R2','SQ4','SQ3'}; s.tags={'g7','g11','g2','g1','g13','g4','g3'}; fem.draw=struct('s',s); fem.geom=geomcsg(fem); % Analyzed geometry clear s s.objs={g7,g2,g1,g4,g3}; s.name={'SQ5','SQ2','SQ1','SQ4','SQ3'}; s.tags={'g7','g2','g1','g4','g3'}; fem.draw=struct('s',s); fem.geom=geomcsg(fem); g5=rect2('0.4','0.1','base','center','pos',{'-0.25','0'},'rot','0'); [g6,g8,g9,g10]=geomcopy({g2,g1,g4,g3}); [g12,g14,g15,g16]=geomcopy({g6,g8,g9,g10}); g12=move(g12,[0,-0.1]); g14=move(g14,[0,-0.1]); g15=move(g15,[0,-0.1]); g16=move(g16,[0,-0.1]); % Analyzed geometry clear s s.objs={g7,g12,g14,g15,g16}; s.name={'SQ5','SQ1','SQ2','SQ3','SQ4'}; s.tags={'g7','g12','g14','g15','g16'}; fem.draw=struct('s',s); fem.geom=geomcsg(fem); tclear mfile clear vrsn vrsn.name = 'COMSOL 3.5'; vrsn.ext = ''; vrsn.major = 0; vrsn.build = 494; vrsn.rcs = '$Name: $'; vrsn.date = '$Date: 2008/09/19 16:09:48 $'; mfile.version=vrsn; mfile.fem='fem'; mfile.stored={'fem0','fem1'}; mfile.tags={}; mfile.types={}; x
Baidu
map