最新内容

为什么微波炉加热食物不均匀?
我们可能都经历过这样的场景:下班回到家,把昨晚的剩菜放在微波炉里,坐下来准备吃一顿简餐,结果却发现吃到的食物一口滚烫,一口冰冷。这样的经历不止一次促使我思考:为什么微波炉对食物的加热会这么不均匀?

使用 COMSOL Multiphysics® 模拟磁致伸缩效应
如果你曾经站在变压器旁边,可能听到过它发出的嗡嗡声,并怀疑附近是不是有蜜蜂。下次再听到这种声音时,你大可以放心,这不是蜜蜂,而是变压器铁芯的磁致伸缩发出嗡嗡声。 什么是磁致伸缩? 磁致伸缩是一种效应,它会使所有暴露在磁场中的磁性材料的形状发生变化。例如,磁致伸缩效应会使一块铁伸长 0.002%,使镍收缩 0.007%。这一现象曾经因为被用在第一次世界大战期间的声呐设计中而引起了广泛关注。进一步的研究,最终研制出了用于工程的磁致伸缩材料,例如 Terfenol-D,以及最近研制出的 Galfenol,它的伸长率高达 0.04% ~ 0.2%。 磁场引起的应变现象也称为正(磁致伸缩)效应。磁致伸缩效应可以追溯到原子级的相互作用,它是磁性材料中的磁能和机械能在受到磁场和机械应力时所发挥的平衡作用而产生的。下面的动画是对磁致伸缩材料内部情况的简单说明。 当对材料施加交变的磁场时,构成材料的微小椭圆体磁铁会随着磁场大小和方向的变化来回翻转。这些微小磁性体方向的改变表现为一种宏观应变。如果以典型的电力线频率(50Hz – 60Hz)交变磁场,材料中的交变应变会使它像扬声器一样工作,从而产生可以听见的声音。这就解释了变压器发出的嗡嗡声之谜。 这种双向磁机械耦合也会产生逆 效应,即作用在磁性材料上的应力可以通过调整这些微小磁体的方向来改变材料本身的磁性状态。正效应和逆向效应分别用于驱动类和传感类应用。 磁致伸缩材料的应用 从航空航天、石油生产到声学和 MEMS,磁致伸缩材料几乎可以应用在所有行业。下面列出了一些重要的商业应用: 声学设备 声呐 水听器 用于清洗、混合和乳化的超声波振动器 超声波摩擦焊接 驱动器 直线电机和旋转电机 尺蠖式驱动器 用于机床头部的位置控制器 燃油喷射系统 光学扫描系统 液压驱动器,例如伺服阀和泵 用于减小阻力的智能机翼中的主动后缘 传感器 位置传感器 非接触式扭矩传感器 磁场传感器 MEMS生物和化学传感器 振动控制 减振器 平台稳定器 图像稳定器 能量收集器 混合智能结构 带混合压电/磁致伸缩磁芯的 Tonpilz 换能器 混合压电/磁致伸缩复合驱动器和传感器 您还可以利用磁致伸缩效应把家里客厅的墙壁或窗户变成扬声器! 那么,如何在 COMSOL Multiphysics 中对这种有趣的现象进行建模呢? 在 COMSOL Multiphysics 中对磁致伸缩进行建模 对磁致伸缩型换能器进行建模的正确方法包括准确模拟磁和结构性能,并使用适当的材料模型模拟这些物理场之间的相互作用。COMSOL 中内置了预定义的物理场接口,可用于设置磁仿真和结构仿真。COMSOL 还支持灵活地设置用户自定义的本构关系,用数学的方式表示材料模型。 实验表明,正向和逆向磁致伸缩效应都是非线性的。当模拟那些在准静态条件下运行,但暴露在大范围机械力和磁场中设备时,建立完整的非线性响应模型可能很重要。在这类设备中,了解磁致伸缩磁芯在什么工作条件下饱和是有用的。这些信息可以为设计人员提供极限值,还可以解释实际的非线性行为,例如传感器灵敏度的变化或用户期望从磁致伸缩设备获得的驱动器最大力。 在某些已知频率和已知工作条件下工作的声学换能器中,可以使用线性本构定律简化材料模型。这些定律(或方程)是在假设换能器操作涉及围绕偏置点的小幅振荡的条件下推导的。而如果在建模方法中考虑这些实际因素,那么我们就能够轻松模拟磁致伸缩换能器在较宽工作频率范围内的响应。 在 COMSOL Multiphysics 中,可以同时设置非线性和线性本构方程模拟磁致伸缩器件。接下来,我想与大家分享一些我们对一个实验换能器进行模拟的结果。 模拟磁致伸缩换能器 典型的换能器有一个被驱动线圈包围的磁致伸缩磁芯。流过线圈的电流会产生磁场。传感器有一个钢制外壳,包围着驱动线圈和铁芯。磁芯连接到活塞上,活塞用于在启动器配置中将磁芯的位移传递到外部机械部件上,或在传感器配置中将负载从外部机械或声源传递到磁芯上。钢制外壳、活塞和铁芯形成了一个封闭的磁通路径。 对于非线性模型,我们使用了 Galfenol的典型材料表征曲线,并确定了重要设计参数的非线性,例如换能器的阻力。我们还能够探索驱动和传感行为的变化与各种磁场和作用在传感器上的拉伸和压缩载荷的函数关系。有关这个模型的更多信息,请查看 COMSOL 案例库中的非线性磁致伸缩换能器和传感器 教程案例。 非线性磁致伸缩换能器仿真中的位移幅度、驱动器和传感器曲线以及换能器阻力图。 对于线性模型,我们使用了 Terfenol-D 的典型材料参数,并生成了驱动器载荷线。我们还研究了换能器位移的幅度和相位,以及驱动线圈阻抗的频率响应。 线性磁致伸缩传感器仿真中的驱动器载荷线、线圈阻抗、位移幅度和位移相位图。 2013 年 COMSOL […]

优化太阳能电池板设计 推动光伏产业发展
太阳能光伏电池是利用光伏效应 将太阳能直接转化为电能或电压的半导体器件。这些光伏电池通常被称为太阳能电池或太阳能电池板,2012 年产生了大约 93TWh 电能,足以为 2000 多万户家庭供电。由于这些电池需要直接暴露在太阳光下,因此被放置在室外,受到各种因素的影响。

通过模拟农药径流了解杀虫剂的危害
使用杀虫剂控制农作物中的害虫时,即使它已经完成使命,对环境的影响也会继续。杀虫剂会渗入人类和动物赖以生存的土壤和水源,将有害化学物质扩散到周围的生态系统中。

如何执行网格细化研究
几周前,我主持了一场有关 COMSOL Multiphysics 后处理和可视化特征的网络研讨会。这场网络研讨会在 COMSOL 用户中的反响非常好,因此我特意写了本篇博客,希望再次强调下我们所涉及的一个重要专题,即在 COMSOL Multiphysics 中进行网格细化研究。

使用无梯度的优化方法求解模型
COMSOL 软件的优化模块包含基于梯度和无梯度的优化 2 种功能。基于梯度的优化方法可以计算目标函数和任何相关约束函数的精确解析导数,但它要求函数是平滑和可微分的。在这篇博客中,我们将研究无梯度优化器的使用,它可以考虑不可微分或不平滑的目标函数和约束条件。为了减轻质量,同时保持对零件峰值应力的约束,我们对旋转轮的尺寸进行了优化。 旋转轮的压力 旋转的轮子会产生离心应力,从而导致整个零件产生应力。为了减轻质量,轮毂上被切割了一些规则的孔洞。下图中显示了离心力产生的 von Mises 应力。我们希望进一步减轻质量,同时将应力保持在临界值以下。 求解应力 虽然我们可以一次对整个轮子进行建模,但由于这个零件存在镜面对称和旋转对称,因此可以减小模型,从而最大限度地降低计算要求。对称边界条件用于约束该零件。 基于旋转速度、旋转轴和材料密度施加体载荷,用于模拟离心力。该模型使用瞬态求解器求解,即假设转速恒定。 选择设计变量 在这个示例中,假设已经有了一套制造工艺,我们希望对零件的整体设计做最小的改动,以降低重新加工的成本。设计变量的一个常见选择就是改变轮毂上孔的半径。因此,我们回到几何序列,对孔的半径及其位置进行参数化。我们还可以根据纯粹的几何分析推算出,每个孔的最大半径必须有一定的限制,否则孔与孔之间的区域会变得太薄,孔与孔之间就会重叠。我们还将对最小半径设限,因为我们不希望孔洞完全消失。 定义目标函数和约束条件 这里的优化目标只是减少零件的质量,即所有域上材料密度的积分。 优化目标是使质量(密度的积分)最小。 这个约束条件稍微复杂一些;我们希望尽量减小零件的峰值应力。但是,我们并不知道峰值应力会出现在哪里。如果内孔或外孔太小,就会导致孔周围应力集中。如果我们将孔的半径做得过大,孔之间的材料就会变得过薄,同样会导致高应力。因此,我们必须监控整个零件的最大应力,并将其限制在指定的峰值应力以下。这是一种无差别约束,尤其需要使用无梯度优化方法。 峰值应力通过域探针进行监测,并命名为 PeakStress。 峰值应力变量受限于一个上限。 用无梯度优化法求解问题 为了求解优化问题,我们在研究分支下添加了优化 功能。Nelder-Mead 方法是两种无梯度方法之一(另一种是坐标搜索)。无梯度优化算法还允许当几何尺寸变化时重新划分网格。 目标函数和约束条件由模型树中的优化 分支定义。控制变量给定了初始条件,我们指定了上限和下限。优化后的设计有很大不同——质量减少了 20%,同时保持了对峰值应力的限制。

模拟冷冻干燥工艺
提起冷冻干燥工艺,我就会想起小时候吃过的像冻干冰淇淋一样的太空食品。对于保存太空食物而言,冷冻干燥工艺很重要,但它也可以用于其很多应用。

多孔介质中由密度驱动的流体流动
如动能、压力梯度、浓度梯度,以及其他很多不同的力都能诱导流体流动。在自然系统中,密度变化是一种能够在静止流体中诱导流体流动的效应。密度的变化会导致流体浮力变化从而诱导流动,因为密度大的流体会下沉,密度小、有浮力的流体 会上升。

使用临界面法预测疲劳
对疲劳的研究始于 19 世纪,起因是铁路车轴发生故障从而导致了火车事故。在旋转轴中,应力的变化是从拉伸到压缩,再回到拉伸,由于应力状态是单轴和成比例的,因此载荷历程很简单。

使用 COMSOL 模拟离心调速器
无论是小时候坐旋转木马,还是搅拌一桶水并观察水与桶内壁“拥抱”的过程,或是观看泥浆从转动的轮胎上滚落下来,我们可能都见过离心力以这样或那样的方式在发挥作用。

通过 CFD 仿真分析帆船航行的物理原理
在所有类型的船只中,我发现帆船是最迷人的一种,尤其是当帆是唯一的推进方式时。动能从风传递到帆,产生能够平衡阻力并使帆船在水中移动的升力。

永磁体模拟快速入门
我之前写过几篇有关永磁体的博客,这里将会是另外一篇。阅读这些博客时,您可能会产生这样的疑问:“能不能更简单地介绍下永磁体仿真呢?”好的,这里就将介绍一下如何模拟永磁体以及它周围的磁场。

使用 COMSOL 模拟共面波导
共面波导 (CPW) 常用于微波电路中。使用 COMSOL Multiphysics 及其附加产品 RF 模块,您能够轻松地计算设计共面波导时所需的阻抗、场、损耗和其他工作参数。 二维接地共面波导设计 下图为2个典型的共面波导的横截面。如图所示,介电基板的顶部刻蚀有金属层。当基板底部也刻蚀金属层时,称为接地共面波导。底部的金属层通常是经通孔连接至电介质顶部的金属层。虽然这些金属层常常被称为接地,但是金属层中有电流流过,因此表面的电势并不恒定。接下来,我们将重点讨论接地共面波导的示例。 共面波导可以由以下特征参数表征:金属迹线层厚度 t,中心导体宽度 w,中心导体和侧导体之间的间隙 g。如果是接地波导,还包括介电基板厚度 h。 无论进行任何仿真分析,都需要先计算趋肤深度: 以工作频率为 1GHz 的器件中使用的铜为例,其相对磁导率和介电常数为 1,电导率为 6×107S/m,趋肤深度为 2.05µm。由此可知,电场和电流衰减为:,其中 是进入金属的距离。趋肤深度和金属层的厚度将决定需要进行什么分析。如果趋肤深度和迹线厚度相同,则有必要将金属域本身包含在 COMSOL 模型中。另一方面,如果趋肤深度远小于迹线厚度,至少小 10 倍 (), 那么金属层一侧的场不会显著影响另一侧的场。在这种情况下,没有必要对金属层的内部进行建模,可以将它们看作模拟域的边界。 另外,如果金属层的厚度 t 足够小,使得其对结果的影响可以忽略不计,那么我们可以将金属迹线建模为理想电导体 (PEC) 边界条件。例如,下图显示了一个最简单的共面波导模型,该共面波导上方的空气区域可以通过代表金属封装的理想电导体边界条件,或代表没有电流流过的表面的理想磁导体边界条件来截断。 我们可以使用 RF 模块建立和求解此类模型,选择二维模式分析研究类型。计算阻抗 Z=V/I;计算电压 V 沿导体之间的任意一条线获取电场的路径积分,此处标记为 A;计算电流 I 沿任意路径环绕中心导体对磁场进行积分,标记为 B。同轴电缆的阻抗教程模型提供了一个类似的示例,其中详细介绍了如何设置这类模型。 建立三维共面波导模型的 3 种方法 上述二维模型可以快速计算共面波导的阻抗,并可以帮助我们了解横截面中的相对场强。然而,我们通常对一些结构上有变化,需要建立完整三维模型才能求解的设备更感兴趣。这就提出了如何激励三维共面波导模型的问题。我们可以采用多种不同的方法,但首先可以考虑使用理想电导体表面建模的共面波导,其迹线厚度 t,可以忽略不计。 1.为模型添加矩形面 如下图所示,一种方法是向模型中添加几个矩形面,这些矩形表面可以垂直或平行于共面波导平面,代表探针尖端。这些理想电导体表面充当两侧导体之间的桥梁。然后在电桥和中心导体之间的另一个矩形面上应用集总端口激励。该集总端口在相邻的理想电导体表面之间施加电压差(注意:图中箭头的方向是任意的,它们只是为了表明存在沿箭头方向流动的正弦时变电流)。 这种方法非常简单,只需要对模型进行少量修改。要了解使用此方法激励的共面波导模型的示例,请查看 COMSOL 案例库中接地共面波导上的 SMA 连接器模型。 2.通过两个集总端口减少修改 实际上,上述方法需要向模型添加一些额外的结构,因此我们可以考虑一种需要更少修改的方法,如下图所示。通过在中心导体两侧增加 2 个集总端口也可以激励共面波导。 这种方法的唯一困难是它需要手动设置;2 个集总端口功能中的端口号、尺寸以及最重要的是,方向 相同,而且必须设置集总端口的方向,使它们要么都指向中心导体,要么都指向远离中心导体。 相比于第一种方法,这种方法在模型中引入了较少的额外结构,但确实需要两个端口特征,因此必须手动设置并指向正确的方向。 3.模拟两点探针 我们还可以扩展共面波导的布局,以及将理想电导体的侧平面扩展为围绕中心理想电导体的带状结构,然后为集总端口引入一个额外矩形,模拟两点探针,如下所示: 结束语 当然还有其他方法可以激励共面波导,但以上3种方法是最常见的。这 3 种方法的解之间的差异应该很小,但应该注意,所有这些都是为了近似激励,并且集总端口附近的场并不是理想的物理场。这是一种局部效应,远离激励的场和计算的阻抗等量应该更准确。 为了获得最高的保真度,可以对同轴波导的耦合进行具有完整细节的显式建模,如上图所示。有关说明此方法的类似示例,请参阅 Wilkinson 功分器模型。 所有上述方法都可以推广到共面波导金属迹线厚度值很大的情况,或者金属层必须明确包含在模型中而不是通过边界条件近似的情况。其他激励策略当然也是可行的,但这些是最常见的方法。学习了这些方法,您就可以自信地使用 COMSOL Multiphysics 和 RF 模块进行共面波导的建模和设计。

集成 COMSOL Multiphysics® 和 MATLAB®
您知道可以实时结合 COMSOL Multiphysics® 和 MATLAB® 的功能来运行工程仿真吗?对我而言,这就像是能兼具两者之长,让我来解释一下吧。

利用橙子电池模型学习电化学建模
你的化学老师曾经拿出橙子或者柠檬来解释电池的概念吗?也许你还记得,当他把几根金属钉插进了柑橘类水果后,居然成功地发出了电!整个班的同学都目不转睛地盯住这个迷你发电机。如果我们现在使用仿真工具来演示橙子电池 的工作原理,然后将它 用作电化学建模的入门教程,效果会怎样呢?

曲线坐标的用法
曲线坐标是一种坐标线可以弯曲的坐标系。COMSOL 4.3b 版本软件中新增了自动计算曲线坐标的用户接口,对于那些在自由曲面 CAD 设计中处理各向异性材料的用户来说,这是一个非常实用的补充。

模拟电分析:循环伏安法
如果你不是电化学家,很有可能从未接触过循环伏安法。但是,当你去看任何一本电化学期刊、会议论文集或者电化学传感器制造商公司的网站时,会发现在靠前的位置总能看到一个独特的“双峰”图。 为什么要使用循环伏安法? 这个“双峰图”看起来像这样: 这是一个循环伏安图,绘制了电化学电池中电流随施加电压的变化而变化的曲线。通过在一定范围内扫描往返变化的电压,驱动电极的电化学反应朝不同方向发展: 循环伏安法是一种应用非常广泛的技术,用于检测电极与电解质(如盐溶液)界面的物理和化学性质。电活性表面在所有电化学装置中都很常见,包括电池和燃料电池等常见的能量提取装置,以及如用于监测糖尿病患者血糖浓度的电化学类传感器。然而,人们仍然没有完全理解电极-电解质界面的化学性质,这是一个活跃的学术研究领域。 伏安法对设备验证和设计很有价值,因为一次扫描就包含了关于系统的化学和物理行为的大量信息。此外,伏安法还是传感器运行的基本工作模式,因为在设计良好的系统中,测得的电流与分析物的浓度成线性关系。对电极材料进行化学修饰使得伏安法可专门用于检测混合物中的某种生物化合物或有毒气体,由于可以使用丝网印刷电极技术实现“一次性电化学”应用,因此它成为了一种成本低廉的先进技术。 对于设计和研究而言,伏安法的最大优势在于其提供信息的多样性。它阐明了电极表面的电解速率与反应化学物质通过扩散到达该表面的传输速率之间的竞争关系,还能提供有关溶液中化学反应的机理和速率的宝贵信息。在不同的扫描速率下使用伏安法,改变了电压随时间的变化速率,我们可以观察到不同系统时间尺度下不同的物理现象。 为什么模拟伏安法? 尽管伏安法非常重要,但却是一种理解起来有些困难的技术。系统中所有真实的物理效应都被归结到一些非常晦涩的电流-电压曲线中,虽然经验丰富的电分析化学家可以直观地从伏安图中“看到”化学反应,但要从实验中获得定量信息,就必须将伏安法与理论预测结果进行比较。由于电化学动力学通常是非线性的,而伏安法又是一个瞬态问题,理论上不太可能获得解析解(极少数特殊情况除外),因此必须进行计算机模拟。 保持模型的简洁性 COMSOL 的电化学模块包括一个电分析 接口,专为模拟伏安法等电分析技术而设计。其中假定存在大量的支持电解质,例如,人为地添加到电化学电池的电解质中的惰性盐(如氯化钾),用于增加其导电性。支持电解质可减轻电场,其优势在于可以简化实验分析和基础理论。我们假定只有扩散对化学物质的传递起作用,因为溶液没有搅拌,而且时间尺度足够短,溶液中的自然对流不重要。在这些条件下,化学物质传递方程是线性的,因此更容易求解。 在伏安法实验的典型持续时间内,物质扩散的尺度非常短,通常远小于 1mm。对于半径超过 1mm、形状像圆盘的传统“大电极”,可以准确地假设扩散只在电极表面的法线方向比较显著,电极边缘的影响可以忽略,因此整个电极表面的反应和传递是均匀的。因此,伏安分析可以简化为一维瞬态问题。 设置循环伏安模型 为便于定义瞬态外加电压及其对电解反应速率的影响,电分析 接口包含一个预置的“电极表面”功能,可直接设置伏安法的电位窗口和扫描速率,它会自动实现电极动力学的 Butler-Volmer 方程,但与 COMSOL Multiphysics 中的其他很多功能一样,用户也可以自定义动力学表达式。然后,相关的循环伏安法研究会使用适当的数值方法对瞬态扩散方程进行积分,自动求解相应的瞬态问题。使用“参数扫描”功能,我们可以在一次计算中研究一系列扫描速率。 查看结果 从上图中,我们可以看到在 1mV/s 到 1V/s 四种连续扫描速率下记录的仿真预测的 4 个伏安图,这些预测对应的实验持续时间从近半小时到一秒多一点。可以看到电流随着扫描速率的增加而增加,但伏安图具有相同的“双峰”。后者可以解释为,刚开始时电压无法驱动反应物进行正向反应,因此电流可以忽略不计。随着电压升高,反应加速,因此电流增大。但一段时间后,电极表面的反应会耗尽反应物浓度。这时,决定反应速率的过程发生变化,致使电流受反应物向表面扩散的控制,从而再次下降。反向反应也有类似的过程,当电压扫描回到起点时,生成物会重新转化为原始反应物。 电流密度随扫描速度增加的原因是,扫描速度越快,扩散层形成的距离越短。由于反应物浓度在较短的距离上快速变化为零,扩散通量较大,因此电流也较大。实际上,峰值电流应与扫描速率的平方根成比例:检查这个关系是对实验数据进行验证的常用方法,用于检查测量结果是否受到扩散以外的物理效应的干扰。 在设计传感器时,我们总是希望最大限度地提高电流,从而最大限度地提高灵敏度,因此这种分析有助于电化学电池和化学环境的实际设计。通过比较仿真预测的伏安图和实验测量结果,我们可以确定材料属性和其他可能未知的系统参数,如扩散系数和反应速率。 请尝试对上述动画进行比较,了解电流与不断变化的浓度曲线之间的关系。请注意电极表面(x = 0)的反应物浓度是如何随着电流的增加而趋于零的,一旦电极表面浓度为零,浓度梯度在扩散作用下降低,电流也随之降低。在第二次扫描中,电流被反向反应逆转,电极表面的浓度又恢复到其主体值。 进一步研究 由于电分析 接口将电分析仿真嵌入到 COMSOL Multiphysics 环境(一个功能强大、灵活的有限元方法用户界面)中,因此可以直接进行扩展。通过添加反应域条件,可以将电化学生成物的后续化学反应包括在内;我们可以建立同一过程的二维或三维模型,研究真实系统几何结构中的扩散情况;还可以进行多个伏安循环,或应用非标准电压波形;将反应物对流与流体流动进行耦合,可以研究流体动力电化学。我们还可以通过同一用户界面考虑一系列相关技术,如电位阶跃计时电流法和电化学阻抗谱法。 提示:查看 COMSOL 案例库中的电极循环伏安法模型。

石墨烯革命:第五部分
在一篇名为”选择石墨烯基晶体管的栅介质“的论文中,讨论了半导体形式石墨烯的应用。正如我们之前所了解的,单层石墨烯并非一种半导体,它是一种零带隙导体(半金属)。人们正尝试向石墨烯中引入带隙,这将使它变得半导电,室温迁移率将比硅高一个数量级。人们现在正积极思考在攻克剩余技术难题之后,如何应用这类材料。半导体石墨烯的应用之一是设计下一代快速切换金属氧化物半导体场效应晶体管(MOSFET)。

石墨烯革命:第四部分
石墨烯可以在高真空下利用热分解制造。为了设计和优化这些高真空系统,工程师可能转向仿真寻求帮助,不过目前还没有多少仿真工具能胜任这一工作。让我们来看一下真空系统如何与石墨烯的生产相关,为什么要模拟它们,以及如何模拟。

什么是分子流?
提到真空环境,大家可能很自然地会想到外太空的恶劣环境。在地球上建立人工真空环境是一项非常具有挑战性的任务。事实证明,我们甚至无法实现星际真空的低压,分子流就是发生在这种低压环境下。

非牛顿流体:倒番茄酱的困惑
如果你喜欢吃番茄酱,那么很有可能你已经体验过我们称之为“要么全有要么全无的番茄酱困境”。想象一下,你伸手去拿一个新的番茄酱玻璃瓶,取下瓶盖,把瓶子倒过来时,然后——“什么都没有发生”。直觉上,我们会摇晃或轻拍瓶子,然后——突然你的食物就完全被涂上了番茄酱(当然,除非你的反应真的很好)。在这篇博客文章中,我们将通过仿真模拟瓶子中的番茄酱的流量来演示倾倒番茄酱时的“全有或全无”效果。 我的番茄酱在哪里? 番茄酱除了是一种特别受欢迎的调味品以外,也是一种非牛顿流体。这是它会出现上述奇怪现象的关键。作为一种非牛顿流体,番茄酱的黏度——以及其流动能力——会随着流体的速度梯度或剪切速率变化。当第一次把番茄酱瓶子倒过来的时候,由于番茄酱的初始黏度很高,很可能你只能得到非常小的流量,如果有的话。好在番茄酱还有一个有趣的剪切稀化特性。当在重力之外施加外力时,增加的剪切力将导致番茄酱的黏度降低,更容易流动。这就是为什么我们有时必须轻拍或摇晃瓶子才能享受番茄酱加薯条。 模拟瓶子中的非牛顿流体流动 为了满足我们的好奇心,以及我们的胃口,并进一步完善我们的番茄酱倾倒技术,我们使用COMSOL Multiphysics 软件和其附加的计算流体力学模块对这个过程进行模拟。在模拟中,我们做了几个简化的假设,包括瓶子的无限延伸(即番茄酱一直都有)和单相层流,忽略了瓶内滞留的空气。所有速度均以米/秒(m/s)为单位。 我们规定了瓶子的几何形状和层流的边界,包括无滑移壁面、压力入口(代表未建模番茄酱部分的重量)和压力出口(外部大气),如下图所示。 用于模拟的二维几何图形。显示了应用的边界条件。 我们还添加了体积力特性,以包括重力和沿着 y 轴摇晃瓶子 0.2 秒所产生的力。 为了给求解器提供一致的初始条件,重力产生的体积力通过阶跃函数从 0 上升到其最大值(过渡区域为 0.05 秒)。摇动动作是以 0.2 秒宽的矩形函数模拟的。在此期间,体积力加倍。 倾倒番茄酱 我们基于Koocheki 等人的工作,我们先做了一个仿真为之后模拟番茄酱的流动做准备。为了模拟番茄酱的流动,我们使用了非牛顿幂律来表示动力黏度。番茄酱配方通过在幂律方程中指定稠度系数和流动特性指数来模拟。下面的图像显示了添加1%黄原胶的番茄酱配方中较高的初始黏度和非牛顿流动性。 左:以p1(见上面的模型设置)为单位测量的黏度是时间的函数,时间间隔 [0,0.1]秒。右图:以p1(见上面的模型设置)为单位测量的黏度是时间的函数,时间间隔为[0.1,2]秒。番茄酱的剪切稀化特性很明显,尤其是在瓶子摇晃的[1,1.2]秒间隔内。黏度降低,从而允许更多的番茄酱流出瓶子。 左:在三个不同时间沿线 1(见上面的模型设置)测量的黏度。右图:平均出口速度与时间的函数关系。可以看出,番茄酱在重力的作用下慢慢开始流动,然后在摇晃瓶子时容易增加。 左:速度幅度动画从 0.05 到 2 秒。右:1.1 秒时的速度大小。 “番茄酱困境” 等待流速的变化对你来说可能很熟悉。一旦流速开始改变,就会快速变化,导致番茄酱泛滥,覆盖在你的食物上。流速顺其自然地增加导致了剪切力增加,进而降低黏度,导致更高的流速。这就是为什么番茄酱最初似乎是静止的,但后来突然又像水一样流动的原因。 番茄酱从瓶子中流出这个特殊的问题比一开始看起来要复杂得多。有许多变量会影响我们体验一个“绝对的” 番茄酱惊喜。如果你有兴趣进一步研究这种效应,建议你使用 COMSOL Multiphysics 和计算流体力学模块进行模拟实验。例如,你可以研究诸如倾斜角度、瓶子里的空气、甚至瓶子的设计等变量是如何影响番茄酱的倾倒体验的。

石墨烯革命:第三部分
现在人人都在谈论石墨烯。上一次某个材料得到如此广泛的关注是什么时候?当然,其他材料之前也曾引起过我们的极大兴趣,但当某个事物最终被主流媒体频繁报道时,你就会知道它可能真的非常重要。

使用弹性薄层边界条件进行结构分析
一些结构类应用包含夹在较低纵横比结构之间的薄层或高纵横比结构。例如,如果在一个机械系统的表面黏合一个压电换能器,那么相较于黏合在一起的两个结构,黏合剂层的厚度非常小。

在 COMSOL 中计算直导线的电感
你可能偶尔会遇到这样一个问题:能不能计算单根直导线的电感?这个看似简单的问题实际上并没有真正的答案,并引出了一个在求解麦克斯韦方程时值得讨论的非常有趣的关键点。